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S1. Additional information on methodology, simulations and sample data

Force field

As depicted in Figure 2 of the main paper, we define 2-body bonded and 3-body angular 

interactions between atoms, which are interpreted using the class2 quartic [
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0 )()(   KU ] potentials. 

For bond stretching, we used a scaled set of parameters, borrowed from the parameters for sp3 

carbon-carbon bonds1 and divided by five (i.e., 2
2 kcal/mol/Å 60K , 3

3 kcal/mol/Å 100K , and 

4
4 kcal/mol/Å 136K ) and 0r  is the equilibrium distance between bonded atoms (3.34 Å). For all 

angle bending potentials, we used an equilibrium angle 0  of 180° and 2egreekcal/mol/d 10K  

except for the angles containing the corner atoms of the hexagonal structure for which an 

equilibrium angle 0  of 120° was used. These force field parameters were chosen so that the 

thermal conductivity of the simple cubic structure with pore size of 1 nm was of the same order as 

typical MOFs (~1 W/m K). 

We chose a point particle with the TraPPE force field parameters2 for methane as the model 

gas molecule. The Lennard-Jones (LJ) parameters for the atoms in the idealized structures (which 

were only used for interactions with gas molecules) were taken from the definition of carbon in 

the Universal Force Field (UFF).3 In this study, a well depth of  was used where  is the 57.2 

well depth calculated in the standard way (i.e., the Lorentz–Berthelot mixing rules4). Based on our 

previous study, this choice of the energy scale results in adsorption isotherms similar to the 

materials of interest. 



Green-Kubo calculation of thermal conductivity

The Green-Kubo relation for thermal conductivity is,5
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In which the i-th diagonal element of the thermal conductivity tensor ( ) at temperature T is iik

calculated by integrating over time the heat current autocorrelation function (HCACF). The 

HCACF is extracted from equilibrium molecular dynamics (MD) simulations. In Eq. (1),  is the Bk

Boltzmann constant, V is the volume of the simulation box that contains the system of particle,s 

and J(t) is the microscopic heat current.

The microscopic heat current is calculated from5
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where  and  are the velocity vector and instantaneous energy of particle j. The quantities jv jE

and  are the displacement vector and interacting force between particles i and j. The parameter ijr ijF

N is the total number of particles and  is the number of particles for species .  denotes the N  h

average partial enthalpy of species  and is given by
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In which  and  are the time-averaged kinetic and potential energies of particles of species iK iU

. 

For determining thermal conductivity, the time step for all simulations was 1 fs. The 

systems were initially equilibrated under NVT conditions for 300,000 time steps and further 



equilibrated for 300,000 time steps under NVE conditions. Finally, the NVE simulations were run 

for an additional 1,000,000 time steps where the heat current was calculated every 5 fs. For all 

cases, we performed all procedures for eight simulations starting with random velocity 

distribution, which were then averaged for the thermal conductivity predictions. Thermal 

conductivity values were obtained from the plateau region of the HCACF integral [eq. (1)].

The initial atomic configurations for the MD simulations involving gases were taken from 

snapshots of equilibrated Grand canonical Monte Carlo (GCMC) calculations6 at different 

pressures (described below). The framework atoms were fixed coordinates in the GCMC 

calculations.

A sample heat current autocorrelation and its integral are shown in Figure S1.

Figure S1 Samples of Green-Kubo calculations of thermal conductivity. Heat current 
autocorrelation and its time integral for the pure simple cubic model structure with pore size of 1 
nm.



Green-Kubo calculation of corrected diffusivity 

The Green-Kubo relation for diffusivity is7:
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where N is the number of particles.

A sample of the velocity autocorrelation function and its integral is shown in Figure S2.

The corrected diffusivities for the triangular and hexagonal structures are shown in Figure 

S3. The diffusivities for the simple cubic structures with different pore sizes are shown in Figure 

4 in the main paper.

Figure S2 Sample of velocity autocorrelation function and its integral for the gas density of ~5 

molecules/nm3 in the cubic structure with pore size of 2.7 nm. 



Figure S3 Gas diffusivity vs. density of loaded gas for the triangular (top) and hexagonal (bottom) 
structures along parallel and perpendicular to the channel directions.



Grand canonical Monte Carlo simulations 

GCMC simulations were performed to estimate the adsorption of methane in the idealized MOFs. 

The interactions between non-bonded atoms were computed through the Lennard-Jones (LJ) 

potential:

 ,

(5)

where i and j are interacting atoms, and rij is the distance between atoms i and j. εij and σij are the 

LJ well depth and diameter. The LJ parameters between atoms of different types were calculated 

using the Lorentz-Berthelot mixing rules (i.e., geometric average of well depths and arithmetic 

average of diameters). All GCMC simulations of methane adsorption included an M-cycle 

equilibration period followed by an M-cycle production run, where M was 5000.  A cycle consists 

of n Monte Carlo steps; where n is equal to the number of molecules (which fluctuates during a 

GCMC simulation).  All simulations included random insertion, deletion, and translation moves 

of molecules with equal probabilities.  Atoms belonging to the crystal structure were held fixed at 

their crystallographic positions.  An LJ cutoff distance of 12 Å was used for all simulations. 

Supercells containing 8x8x8 unit cells of crystals were used for the simulations. Methane 

adsorption was simulated at various pressures: 2, 4, 6, 8, 10, 20, 50, 100, 150, 200, 300, 400, 500, 

600, 800, and 1000 bar, at 298 K. Fugacities needed to run the GCMC simulations were calculated 

using the Peng-Robinson equation of state.



Thermal conductivity of gas-loaded MOF crystal with hexagonal channel perpendicular 

to the channel direction  

Figure S4 Thermal conductivity of gas-loaded MOF crystal with hexagonal channel perpendicular 

to the channel direction.

Thermal conductivity of pure gas vs. gas density  

Figure S5 Thermal conductivity of pure gas vs. gas density.



S2. Collision time calculations and sample data

From fluctuation-dissipation theory (i.e., the Langevin equation), the self-diffusivity can 

be determined using the time integral of the autocorrelation of velocities as 

. On the other hand, from the kinetic theory, the self-diffusivity is equal to  
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, where  is the average collision time for a gas molecule and  is the average of its  2v   2v

squared velocity. Assuming an ideal gas (i.e., the correlation between velocities of different gas 

molecules can be ignored), we derive the following equation for the collision time:
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If we assume a similar stochastic dynamics for a single molecule inside the MOF, we can 

use the same equation to calculate collision times. A sample of the velocity autocorrelation 

function and its integral for a gas molecule moving inside a MOF is given in Figure S6. We should 

mention that the proposed method can only predict the exact value for collision time at low gas 

density where the gas-gas collisions are not important. 



Figure S6 Sample of velocity autocorrelation function and its integral for a gas molecule moving 
inside cubic structure with pore size of 1 nm.

We can also record the potential energy (which changes with the distance to the pore walls) 

versus time to qualitatively shed light on the change of collision time with pore size. These 

potential energy plots for the simple cubic structures with different pore sizes are provided in 

Figure S7.



Figure S7 Potential energy vs. time for a single molecule moving in nanoporous simple cubic 
structures with different pore sizes.



S3. Verification of independency of outcomes on metal-linker interactions

To verify that the reported pore size and gas adsorption effects are independent of the 

interaction between metal atoms and linker atoms, we investigated two other models with weaker 

and stronger interaction between metal-linker than linker-linker atoms (spring constants equal to 

the 0.67 and 1.5 of the regular spring constants). The results (shown in the figures below) show 

consistency with the results presented in the main text. Thermal conductivity increases linearly 

with the inverse of pore cross sectional area (consistent with results presented in Figure 3a in the 

manuscript). Moreover, thermal conductivity decreases as the gas loading increases (consistent 

with results presented in Figure 4a in the manuscript).
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Figure S8 Pore size effect (top) thermal conductivity vs. gas density (bottom) for the 0.67 case
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Figure S9 Pore size effect (top) thermal conductivity vs. gas density (bottom) for the 1.5 case



S4. Pore size effect on thermal conductivity of triangular and hexagonal 
structures

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

pore size (nm)

k 
(W

/m
 K

)

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

pore size (nm)

k 
(W

/m
 K

)

Figure S10 Pore size effect on triangular (top) and hexagonal (bottom) structures in parallel and 
normal to channel directions.  



S5. k/density for different pore shapes 

Figure S11 k/density for different pore shapes. Blue bar: cubic structure. Green bars: triangular-
channel structure (open bar: perpendicular to the channel, filled bar: parallel to the channel). Red 
bars: hexagonal-structure (open bar: perpendicular to the channel, filled bar: parallel to the 
channel).
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