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Supplementary Fig 1 - Sequence of the H&E stained tissue sections from the human colorectal 
adenocarcinoma biopsy.
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Parametric t-SNE

Parametric t-SNE is an unsupervised dimensionality reduction 
technique based on a (deep) neural network topology in which the 
deepest layer consists of a t-SNE feed-forward network1. The objective 
of this technique is to define a non-linear mapping between the high-
dimensional original feature space and a low-dimensional (often 2-
dimensional) latent space where the data points are placed according to 
their mutual similarities in the high-dimensional space. The topology 
of parametric t-SNE consists of a deep encoder that projects the data to 
a lower dimensional space, followed by a t-SNE mapping. The large 
number of weights (several millions) represents the main difficulty of 
training deep neural networks, because back propagation may get stuck 
in poor local minima that depend strongly on the initial values of the 
weights. An approach which has been shown to successfully overcome 
this problem is based on a greedy layer-wise training procedure2, 3 
where the deep neural network is seen as a combination of simpler 
neural networks. In the case of parametric t-SNE, restricted Boltzmann 
machines (RBM) represent these building blocks. The training 
procedure consists of four steps: (1) multiple RBMs are trained to 
reconstruct the input data, and their hidden layers are used as the input 
layers of the successive RBMs, (2) RBMs are stacked together and 
unfolded to generate a deep autoencoder, (3) weights are learnt to 
reconstruct the input data, (4) the encoder with a t-SNE layer added on 
top is fine-tuned with back-propagation to minimise the objective 
function.

Pre-training. A greedy layer-wise pre-training step consists of 
stacking together a set of RBMs. The procedure is performed through 
a greedy layer-wise unsupervised learning algorithm. A set of RBMs is 
iteratively trained to reconstruct the input, and hidden layers are used 
as input for the successive neural network (Supplementary Fig 2-A, 2-
B). After training, all the RBMs are stacked together to generate a deep 



neural network (Supplementary Fig 2-C), which is fine-tuned to 
reconstruct the input through back-propagation.

Restricted Boltzmann Machine. A RBM is a generative stochastic 
neural network consisting of a visible and a hidden layer with a 
symmetric connection between them. The nodes of an RBM are usually 
Bernoulli distributed, but can be extended to being Gaussian 
distributed4. Let W=(wij) be the (m x n)-dimensional weight matrix, vi 
and hj the visible and the hidden activations, and bi and cj the respective 
biases. Since an RBM can be seen as a Markov Random Field, it can 
be associated to an energy function:
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from which the probability distributions for the hidden and visible 
states are defined as

𝑃(𝑣,ℎ) =
1
𝑍

𝑒 ‒ 𝐸(𝑣,ℎ)

where Z represents the partition function. Activation functions are 
usually non-linear, such as the logistic sigmoid. The learning approach 
of RBMs is performed through a single-step contrastive divergence 
(CD-1) method5. In practice, the input activations generate the hidden 
activation through the transfer function σ (ex. logistic sigmoid),
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Therefore, the reconstructions of visible and hidden activations may be 
calculated,
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where i{1, …, m} and j{1, …, n}.

The weight matrix is updated as follows,

Δ𝑤𝑖𝑗 = 𝜖(𝑣𝑖ℎ𝑗 ‒ 𝑣'𝑖ℎ'𝑗)
where the variables v', h' correspond to the reconstructed activations 
from the hidden and visible layers respectively, and ϵ is the learning 
rate. Bias updates are defined analogously. When batch learning is 
employed, the average of the product between visible and hidden 
activations over the batch is used for the calculation of the updated 
weights.

Fine-tuning. After pre-training RBMs independently, they are stacked 
together, and fine-tuning is performed by adding on top of the inner 
layer a t-SNE6 non-linear mapping (Supplementary Fig 2-D). This 
ensures that during the fine-tuning process the network will learn a 
low-dimensional manifold in which the spectra that were similar in 
the original high-dimensional space are placed close together. For 
this purpose, the pair-wise distances in the original high-
dimensional space and the low-dimensional latent space are converted 
into probabilities, defined by an isotropic Gaussian distribution centred 
on each data sample, and computing the density of other data samples 
under this distribution. The conditional probabilities are defined as
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where the variance  of the Gaussian is set specifically so that the 𝜎
perplexity of the conditional distributions is constant. The perplexity is 
a free parameter that can be interpreted as the number of neighbours 
considered for each data sample. The conditional distribution is 
symmetrised
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Then, p can be interpreted as the similarity measure between the data 
samples and, setting a small perplexity value, the local structure can be 
captured. In the latent space, the similarity of the low-dimensional data 
samples is based on a Student’s t-distribution
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where  is the representation of the data sample xi through the 𝑓(𝑥𝑖|𝑊)
feed-forward neural network, an  is the number of degrees of freedom  𝛼
of the Student’s t-distribution. The learning process is performed 
through back propagation to minimise the Kullback-Leibler divergence 
between p and q,
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using batches (of thousands) of samples.



Supplementary Fig 2 - Example of a 4-layer parametric t-SNE model. 
Two RBMs (A-B) are pre-trained through contrastive divergence. The 
hidden layer of the first RBM is used as input for the second RBM (B). 
A stacked autoencoder is defined combining the RBMs (C). Fine-tuning 
of network weights and biases is performed after adding a t-SNE layer 
on top (D) of the encoder by backpropagation.

OPTICS

Density based clustering. Density-based clusters are defined by 
objects where neighbours of radius ε contain at least a minimum 
number of data points MinPts. In order to define the clusters, some 
definitions are required. A data point p is defined as directly density-
reachable from another object q if p belongs to the ε-neighbourhood 
Nε(q) of q and its cardinality, |Nε(x)|, is larger than MinPts. Those 
objects that satisfy the second property are labelled as core. Two 
objects p and o are said to be density-reachable if there is a chain of 
objects that are all directly density-reachable with respect to ε and 



MinPts. Finally, an object p is density-connected to data point q if there 
is an object o such that both p and q are density-reachable from o.

A density-based cluster is defined as a subset C of D of density-
connected data points which satisfy the following conditions

Maximality: ∀p,q∈D: if p∈C and q is density-reachable from p 
wrt ε and MinPts, then q∈C.

Connectivity: ∀p,q∈C: p∈C is density-connected to q wrt ε and 
MinPts.

All the points not contained in any clusters are labelled as noise.

OPTICS algorithm. In OPTICS, given a dataset D, the data points are 
characterised by two values: the core-distance and the reachability-
distance. Let p be a data point from D, and let ε’ be the minimum radius 
of the closed-ball containing MinPts neighbours. Then, the core-
distance is defined as

core - 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) = {𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷 𝑖𝑓 |𝑁𝜀(𝑝)| < 𝑀𝑖𝑛𝑃𝑡𝑠
𝜀’ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �

The reachability-distance between two data points p and o from D is 
defined as follows. Let Nε(o) be the ε-neighbourhood of o. Then the 
reachability-distance of p with respect to o is defined as

reachability - 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑝,𝑜)

= { 𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷 𝑖𝑓 |𝑁𝜀(𝑜)| < 𝑀𝑖𝑛𝑃𝑡𝑠
𝑚𝑎𝑥(core - distance𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑝),distance(𝑜,𝑝)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �

The algorithm first orders the data points following the 
ExpandClusterOrder procedure. This procedure retrieves the ε-
neighbourhood of a data point, sets its reachability-distance to 
UNDEFINED and calculates the core-distance. The data point is then 
pushed into an ordered list. If the data point is a core object (there are 
at least MinPts data points in its ε-neighbourhood), then all the directly 
density-reachable data points are pushed into an OrderSeeds list. These 
objects are sorted by their reachability-distance to the closest core 



object. At each iteration, the object from OrderSeeds having the 
smallest reachability-distance is selected. The ε-neighbourhood and its 
core-distance are calculated and are added to the ordered list together 
with its core-distance and its current reachability-distance. If the 
current object is itself a core object, then further candidates are added 
to the OrderSeeds list.

The ordered list of objects together with their reachability-distance can 
then be clustered using MinPts and a clustering-distance ε’≤ε.

The visualisation of the reachability-distances through the reachability 
plot permits the identification of structures in the data, and partitions 
can be generated assigning a particular threshold to the reachability-
distance. Furthermore, the reachability plot can be seen as a special 
case of a dendrogram. An example of the application of OPTICS on a 
simulated dataset is shown in Supplementary Fig 3.

Supplementary Fig 3 - An example of clustering using OPTICS. The 
three clusters (top) are identified in the reachability-plot (bottom) by 
setting an opportune threshold value for the reachability distance 
(represented by the grey dashed line).





Random Forest:
Number trees: 400
Min. leaf size 1

Stacked sparse autoencoder:
Topology: 391-250-50-3
Activation function: Logistic sigmoid
Max epochs pre-training: 1000
Max epochs fine-tuning: 1000
Loss function (pre-tr. and fine tun.): Sparse MSE
Weight regularization: 0.001
Sparsity proportion: 0.05
Sparsity regularization: 1
Back propagation: Conjugate gradient

Supplementary Table 1 – Parameters for Random forest and stacked 
sparse autoencoder classifiers. Also, linear SVM and MMC-LDA 
were tested for supervised segmentation.

Supplementary Table 2 – Results of the supervised segmentation. 
Four classifiers were tested with a 30% hold-out cross-validation. 
Mean accuracy and its standard deviation were calculated over 5 
repetitions.

Method Mean accuracy +/- st. dev.
Linear SVM 0.99976 (0.00025)
SSAE 0.99946 (0.00025)
Random Forest 0.99940 (0.00042)
MMC-LDA 0.99443 (0.00151)



Supplementary Fig 4 - Results of the linear SVM classification on the entire dataset. The three main classes 
are reported: tumour (red), healthy (green), background (blue). The segmented regions are compatible with 
contiguous tissue slices.





Supplementary Fig 5 - Prediction error for the k-NN classifier of the 
2-dimensional data points. Average prediction errors and their 
standard deviations are calculated over 5 repetitions. For all the tested 
values of k varying in the range of 1-20 the prediction error of the 2- 

dimensional parametric t-SNE representation was lower than that of 
the 2 first principal components scores. This result confirms that the 2- 
dimensional parametric t-SNE data points are mapped closer if their 
spectral profiles are similar in the original high- dimensional space.

Parametric t-SNE trustworthiness: mean = 0.82396, st.dev = 
0.00514

Supplementary Table 3 – Mean trustworthiness and its standard 
deviation for the scores of the first 2 principal components using 
different scaling methods, compared with the results of parametric t-
SNE. In all the cases, parametric t-SNE provides a more faithful low-

Scaling method Mean 
trustworthiness

St. Dev. 
Trustworthiness

Centring 0.78257 0.00170
Autoscaling 0.74378 0.00287
Range scaling 0.76172 0.00694
Pareto Scaling 0.78257 0.00170
Vast scaling 0.68432 0.03424
Level scaling 0.75520 0.01319



dimensional representation of the high-dimensional similarity 
relationships.

Supplementary Fig 6 – Scatter plot of the first 2 principal components 
scores after applying different data scaling method. No clusters are 
visible.



Supplementary Fig 7 – Reachability plot for 20,000 randomly selected 
2-dimensional data points. A MinPts of 200 was used. Candidate 
partitions with 2, 3 and 4 clusters are identified through the 
reachability distance.

Supplementary Fig 8 – Davies-Bouldin indices corresponding to the 3 
candidate partitions. The minimum value is reached with 3 clusters.



Supplementary Fig 9 – SSI images corresponding to the first sub-network.



Supplementary Fig 10 - SSI images corresponding to the second sub-network.



Supplementary Fig 11 - SSI images corresponding to the third sub-network.



Supplementary Table 4 – Percentage of peaks found in the search 
window of +/- 5 ppm corresponding to the sub-networks top ions. Left 
column represents the common m/z value that was searched in the raw 
data, and the second column represents the percentage of times at least 
one peak was found in the window +/- 5 ppm.

Query m/z Percentage
885.5458 65.45%
859.5355 62.27%
716.5239 46.63%
744.5542 34.45%
768.5544 50.96%
770.5745 60.48%
698.5137 64.15%
740.5241 61.92%
714.5038 96.60%
722.5139 41.19%
819.515 77.96%
841.5053 80.74%
843.5153 84.05%
817.505 66.64%
796.5248 78.65%
793.5047 73.21%
865.5055 80.39%
845.5353 90.93%
821.535 66.89%
869.5356 93.16%
682.5935 81.34%
670.5933 93.81%
656.5732 92.82%
684.6035 91.98%
646.6131 65.01%
620.6028 98.84%
702.5437 78.74%



Supplementary Fig 12 - Box plots of 3 ions with largest degree values 
in each sub-network. Multiple comparison Dunn’s test shows that ions 
from first sub-network (first row) are more ubiquitous in the entire 
tumour region, with 859.5356 m/z being expressed in both the first (c1) 
and third cluster (c3). Ions from the other two sub-networks instead are 
significantly more abundant in cluster 2 (c2) and 3 respectively. All the 
ions are less abundant in healthy (h) tissue and background (b). All the 
pairwise tests result in a Bonferroni-Hochberg corrected p-value < 
0.05, except those reported with n.s. where p-value was not significant.



Sub network 1 [# nodes = 66] Sub network 2 [# nodes = 20] Sub network 3 [# nodes = 11]

rank m/z [Da] error 
[ppm] name Degree m/z [Da] error 

[ppm] name Degree m/z [Da] error 
[ppm] name Degree

1 885.5498 0 PI(38:4) [M-H]- 15 819.5186 0 PG(40:7) [M-H]- 16 682.5912 0 Cer(d18:1/24:1) [M+Cl]- 10
2 859.5356 1 PI(36:3) [M-H]- 14 841.5029 0 PG(42:8) [M-H]- 15 670.5914 0 Cer(d18:1/23:0) [M+Cl]- 6
3 716.5239 0 PE(37:1) [M-H]- 13 843.5186 0 PG(42:9) [M-H]- 15 656.5754 0 Cer(d18:1/22:0) [M+Cl]- 6

0 PG(40:8) [M-H]-4 744.5554 0 PE(36:1) [M-H]- 12 817.5031 3 PI(O-31:0) [M+Cl]- 14 684.6063 0 Cer(d18:1/24:0) [M+Cl]- 6

5 768.5557 1 PE(35:3) [M-H]- 11 796.5223 5 PS(O-35:1) [M+Cl]-,
PS(P-35:0) [M+Cl]- 13 646.6146 0 Cer(d18:1/24:1) [M-H]- 2

6 770.5712 0 PE(38:2) [M-H]- 11 793.5032 0 PG(38:6) [M-H]- 11 620.6001 2

Cer(d18:1/22:0) [M-H]-,
Cer(d18:0/22:1) [M-H]-, 
Cer(d14:1/26:0), [M-H],
Cer(d16:1/24:0) [M-H]-

1

7 698.5133 0
PE(37:2)

PE(O-34:3) [M-H]-,
PE(P-34:2) [M-H]-

10 865.5031 0 PG(44:12) [M-H]- 11 702.5443 0 PE(O-34:1) [M-H]-,
PE(P-34:0) [M-H]- 1

8 740.5243 0 PE(33:3) [M-H]- 10 845.5351 1 PG(42:8) [M-H]- 10 - - - -
9 714.5070 1 PE(34:2) [M-H]- 9 821.5351 1 PG(40:6) [M-H]- 7 - - - -

1 PG(44:8) [M-H]-
10 722.5134 0 PE(36:4) [M-H]- 9 869.5350 3 PI(O-35:2) [M+Cl]-

PI(P-35:1) [M+Cl]-
7 - - - -

Supplementary Table 5 - Identified molecules for the top 10 ions in the three sub-networks corresponding to 
the three OPTICS clusters. Ions are ranked accordingly with a descent value of their node degree value 
(Column “Degree”). In cluster 3 only 7 of the 11 molecules belonging to the cluster were identified. The ions 
annotation was performed using the Lipid maps online search engine. It is evident that cluster 1 is 
characterised by an abundance of phosphoethanolammines, whereas the cluster 2 is characterised by an 
abundance of phosphatidylglycerols and the cluster 3 is characterised by an abundance of ceramides.



Supplementary Fig 13 – Results of k-means with 3 clusters (correlation distance), similarity with clusters 
found by OPTICS results in aRI = 0.2647. OPTICS clusters 2 and 3 are here combined in one cluster (ex. 
blue cluster in Slice 10 and 16), instead they are found to be distinct by co-expression network analysis.



Supplementary Fig 14 – Example of 3 slices where the clusters found 
in the 3D dataset (left) were significantly different from those found 
when analysing the single 2D slice (right). In all the cases, aRI 
confirmed these results.

Supplementary Fig 15 – Example of clusters found by parametric t-
SNE+OPTICS analysing individual 2D slices. The 2 optimal clusters 
found in the slice 11 are not topologically compatible with the 
candidate partitions (2 and 3 clusters) found in the slice 12. The region 



delineated by the dashed line is assigned to a completely different 
cluster in the slice 12.

Supplementary Fig 16 – Analysis of the SSIM sequences. Left: the 
OPTICS clusters show a highly correlated SSIM sequence with that of 
the entire tumour region, whereas the shuffled order clusters result in 
a poor correlation. The sequence generated by the 3 randomly 
assigned clusters is still highly correlated with that of the entire tumour 
because they share the overall shape, but its values are significantly 
lower than those of OPTICS clusters (right) because, being the clusters 
labels randomly assigned, the internal structures are not preserved in 
the adjacent slices.
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