Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Contents:

1.	General information	2
2.	The X-ray data for 4a and 5a	2
3.	The nonlinear effect between the ee value of the ligand L-PiPr ₂ and the pro-	duct
	4a	5
4.	Typical experimental procedure for the reduction of 4a	5
5.	Typical experimental procedure for the deprotection of 4h	6
6.	Reference	6
7.	Characterization of the products	7
8.	Copies of NMR spectra for the reaction products	31
9.	The NOESY spectra of 6	58
10.	CD information of the products	. 59

1. General information

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomeric excesses (ee) were determined by chiral HPLC analysis on Daicel Chiralpak IC or IA in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). The Ni(ClO₄)₂·6H₂O, Mg(OTf)₂ is commercially available, and used without further purification. The CH₂Cl₂ was purified by usual methods before use. The α -tetralone-derived β -keto esters 1 and amides 2 were prepared by previously reported methods.^[1] 1,3,5-triaryl-1,3,5-triazinanes **3** were prepared according to reported methods.^[2] The N,N'-dioxide ligands L were synthesized according to the method reported by our group.^[3]

2. The X-ray data for 4a and 5a.

(1) The X-ray data for 4a

Single crystal of **4a** [C₂₂H₂₅NO₃] was obtained from the mixed solvents of ethyl acetate and petroleum ether. The absolute configuration is *R*. Mp 99–100 °C; $[\alpha]_D^{19} = 109.1$ (c = 0.54, CH₂Cl₂). CCDC 1448521 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centere via www.ccdc.cam.ac.uk/data_request/cif.

Table 1 Crystal data and structure refinement for fxm-lxj.

Identification code	fxm-lxj
Empirical formula	C22H25NO3

Formula weight	351.43
Temperature/K	217.05(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.05221(8)
b/Å	17.0223(3)
c/Å	19.5981(3)
α/°	90
β/°	90
$\gamma/^{o}$	90
Volume/Å ³	2019.05(6)
Ζ	4
pcalcg/cm ³	1.156
μ/mm^{-1}	0.610
F(000)	752.0
Crystal size/mm ³	0.7 imes 0.2 imes 0.2
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	9.024 to 134.104
Index ranges	$-7 \le h \le 4, -20 \le k \le 18, -19 \le l \le 23$
Reflections collected	10704
Independent reflections	$3602 [R_{int} = 0.0285, R_{sigma} = 0.0203]$
Data/restraints/parameters	3602/0/238
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0524, wR_2 = 0.1425$
Final R indexes [all data]	$R_1 = 0.0546, wR_2 = 0.1470$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.26
Flack parameter	0.05(9)

(2) The X-ray data for 5a

Single crystal of **5a** [C₂₂H₂₆N₂O₂] was obtained from the mixed solvents of ethyl acetate and petroleum ether. The absolute configuration is *R*. Mp 78–80 °C; $[\alpha]_D^{23} = 77.7$ (c = 0.69, CH₂Cl₂). CCDC 1480808 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from

the	Cambrige	Crystallographic	Data	Centere	via
www.ccc	lc.cam.ac.uk/data	request/cif.			

Table 2 Crystal data and structure refinement for fxm-lxj-nh-ph-5.

Identification code	fxm-lxj-nh-ph-5
Empirical formula	C44H52N4O4
Formula weight	700.89
Temperature/K	295.1(5)
Crystal system	monoclinic
Space group	P21
a/Å	9.20362(17)
b/Å	10.9688(3)
c/Å	19.3712(4)
a/°	90
β/°	100.345(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1923.78(7)
Ζ	2
pcalcg/cm ³	1.210
μ/mm^{-1}	0.613
F(000)	752.0
Crystal size/mm ³	$0.6\times0.3\times0.15$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.282 to 145.172
Index ranges	$\begin{array}{l} \text{-11} \leq h \leq 11, \ \text{-13} \leq k \leq 12, \ \text{-23} \leq l \leq \\ 23 \end{array}$
Reflections collected	18988
Independent reflections	$6766 [R_{int} = 0.0289, R_{sigma} = 0.0263]$
Data/restraints/parameters	6766/1/475
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0532, wR_2 = 0.1487$
Final R indexes [all data]	$R_1 = 0.0558, wR_2 = 0.1522$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.23
Flack parameter	0.04(12)

3. The nonlinear effect^[4] between the *ee* value of the ligand L-PiPr₂ and the

product 4a

To a dry reaction tube, the ligand (S)-L-PiPr₂ (x mol% loading), (R)-L-PiPr₂ (y mol% loading), Ni(ClO₄)₂·6H₂O (0.005 mmol, 1.8 mg), **1a** (0.1 mmol) and CH₂Cl₂ (1.0 mL) were added and stirred at 30 °C for 0.5 h. Then **3a** (0.034 mmol) were added, and the reaction was stirred at 0 °C for 8 h. The product **4a** was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10/1).

$x/y \pmod{\%}$	ee of L-PiPr 2 [%]	<i>ee</i> of 4a [%]
0.25/0.25	0	0
0.30/0.20	20	21
0.35/0.15	40	40
0.40/0.10	60	54
0.45/0.05	80	80
0.50/0	100	99

4. Typical experimental procedure for the reduction of 4a

NaBH₄ (8.4 mg, 0.22 mmol) was added to a solution of 4a (70.3 mg, 0.2 mmol)

in 2 mL MeOH/CH₂Cl₂ (1:1) at 0 °C, and the mixture was stirred at 0 °C, and monitored by TLC. After 1 h, the mixture was quenched by saturated NH₄Cl aq. and extraction with ethyl acetate three times (10 mL), and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 10:1) to afford **6** (70.0 mg, 99% yield) as a white solid.

5. Typical experimental procedure for the deprotection of 4h

[Ce(NO₃)₆(NH₄)₂] (CAN; 274.1 mg, 0.5 mmol) in H₂O (2.0 mL) was added to a solution of **4h** (38.1 mg, 0.1 mmol) in CH₃CN (2.5 mL) at 0 °C. The solution was stirred at 0 °C. After 8 h, Et₃N (83.0 μ L, 0.6 mmol) and Boc₂O (252.0 mg, 1.2 mmol) were added and the solution was stirred for another 18 h at 30 °C. Then saturated NaHCO₃ solution (3 mL) was added to the mixture and extracted three times with ethyl acetate (10 mL), and the combined organic phases were dried over MgSO₄, filtered, and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether ethyl acetate = 10:1) to afford 7 (22.4 mg, 60% yield) as a yellow oil.

6. Reference

[1] C. Pan, X. Zeng, Y. Guan, X. Jiang, L. Li, H. Zhang, *Synlett.* 2011, *3*, 425-429.
[2] *a*) C. A. Bischoff, F. Reinfeld, *Chem. Ber.* 1903, *36*, 41-53; *b*) A. G. Giumanini, G. Verardo, E. Zangrando, L. Lassiani, *J. Prakt. Chem.* 1987, *329*, 1087-1103; *c*) A. G. Giumanini, N. Toniutti, G. Verardo, M. Merli, *Eur. J. Org. Chem.* 1999, 141-143; *d*) G. O. Jones, J. M. García, H. W. Horn, J. L. Hedrick, *Org. Lett.* 2014, *16*, 5502-5505.

[3] a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, Synlett
2005, 2445-2448; b) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng,
Angew. Chem. Int. Ed. 2008, 47, 1308-1311; c) X. Zhou, D. J. Shang, Q. Zhang, L.
L. Lin, X. H. Liu, X. M. Feng, Org. Lett. 2009, 11, 1401-1404.

[4] a) C. Girard, H. B. Kagan, Angew. Chem. Int. Ed. 1998, 37, 2922-2959; b) H. B.
Kagan, Adv. Synth. Catal. 2001, 343, 227-233; c) T. Satyanarayana, S. Abraham, H.
B. Kagan, Angew. Chem. Int. Ed. 2009, 48, 456-494.

7. Characterization of the products

tert-butyl 1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-

O HN-Ph O'Bu

carboxylate (4a): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 97% yield, 99% ee; mp 99–100 °C; $[\alpha]_D^{19} = 109.1$ (c = 0.54, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 8.26 min (minor), 10.19 min

(major). ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.97 (dd, J = 7.6, 0.8 Hz, 1H), 7.42–7.38 (m, 1H), 7.27–7.23 (t, J = 7.6 Hz, 1H), 7.15–7.13 (d, J = 8.0 Hz, 1H), 7.10–7.06 (t, J = 8.0 Hz, 2H), 6.60–6.58 (m, 3H), 4.56 (s, 1H), 3.63–3.60 (d, J = 13.2 Hz, 1H), 3.47–3.44 (d, J = 13.2 Hz, 1H), 3.05–3.00 (m, 1H), 2.98–2.83 (m, 1H), 2.46–2.41 (m, 1H), 2.21–2.13 (m, 1H), 1.20 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 170.4, 148.4, 142.8, 133.5, 132.6, 129.2, 128.7, 127.6, 126.8, 117.4, 113.2, 82.7, 59.4, 48.3, 30.8, 27.7, 26.2 ppm. HRMS (ESI-TOF) calcd for C₂₂H₂₅NNaO₃ ([M+Na⁺]) = 374.1732, Found 374.1731.

	Retention Time	% Area
1	8.264	0.48
2	10.192	99.52

tert-butyl 5-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal

HN^{_Ph} 0 0 ÓMe

(petroleum ether: EtOAc = 10:1) to afford a white solid in 83% O^tBu yield, 98% ee; mp 117–119 °C; $[\alpha]_D^{19} = 121.7$ (c = 0.63, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 10.81 min (minor), 16.93 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (d, J = 8.0 Hz, 1H), 7.24–7.20 (t, J = 8.0 Hz, 1H), 7.09–7.05 (t, J = 7.8 Hz, 2H), 6.95–6.93 (d, J = 8.0 Hz,

-ene-2-carboxylate (4b): Purified by flash chromatography

1H), 6.61–6.58 (m, 3H), 4.55 (s, 1H), 3.77 (s, 3H), 3.61-3.58 (d, J = 12.8 Hz, 1H), 3.46–3.43 (d, J = 12.8 Hz, 1H), 3.02–2.95 (m, 1H), 2.73–2.64 (m, 1H), 2.48–2.42 (m, 1H), 2.12–2.04 (m, 1H), 1.19 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.2, 170.4, 156.6, 148.5, 133.7, 131.8, 129.2, 127.1, 119.1, 117.4, 114.2, 113.2, 82.6, 58.9, 55.7, 48.2, 30.1, 27.7, 20.1 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₄ ([M+Na⁺]) = 404.1838, Found 404.1837.

tert-butyl 6-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene

-2-carboxylate (4c): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 90% yield, 91% ee; mp 79–80 °C; $[\alpha]_D^{19} = 108.0$ (c = 0.68, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time:

12.56 min (minor), 13.25 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.97–7.95 (d, *J* = 8.8 Hz, 1H), 7.09–7.05 (t, *J* = 8.0 Hz, 2H), 6.78–6.75 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.59–6.57 (m, 4H), 4.59 (s, 1H), 3.77 (s, 3H), 3.62–3.58 (d, *J* = 8.8 Hz, 1H), 3.45–3.42 (d, *J* = 8.8 Hz, 1H), 3.01–2.93 (m, 1H), 2.84–2.78 (m, 1H), 2.43–2.37 (m, 1H), 2.19–2.11 (m, 1H), 1.23 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 195.4, 170.6, 163.7, 148.5, 145.4, 130.1, 129.2, 126.1, 117.3, 113.5, 113.2, 112.4, 82.5, 59.1, 55.5, 48.3, 30.9, 27.8, 26.6 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₄ ([M+Na⁺]) = 404.1838, Found 404.1837.

	Retention Time	% Area
1	12.564	4.39
2	13.247	95.61

tert-butyl 7-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene

-2-carboxylate (4d): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 90% yield, 92% ee; mp 78–80 °C; $[\alpha]_D^{19} = 127.6$ (c = 0.68, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 10.42 min (minor), 23.64 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.45 (d, *J* = 2.8 Hz, 1H), 7.10–7.04 (m, 3H), 7.00–6.97 (m, 1H), 6.62–6.58 (m, 3H), 4.55 (s, 1H), 3.77 (s, 3H), 3.63–3.60 (d, *J* = 12.8 Hz, 1H), 3.46–3.43 (d, *J* = 12.8 Hz, 1H), 2.97–2.89 (m, 1H), 2.83–2.77 (m, 1H), 2.44–2.39 (m, 1H), 2.19–2.11 (m, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 170.5, 158.5, 148.4, 135.4, 133.3, 129.9, 129.2, 122.0, 117.4, 113.2, 109.4, 82.7, 59.3, 55.5, 48.3, 31.1, 27.7, 25.4 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₄ ([M+Na⁺]) = 404.1838, Found 404.1834.

tert-butyl 7-bromo-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene

-2-carboxylate (4e): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 84% yield, 96% ee; mp 109–110 °C; $[\alpha]_D^{19} = 98.5$ (c = 0.71, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 6.96 min

(minor), 10.19 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.10–8.09 (d, J = 2.0 Hz, 1H), 7.51–7.49 (m, 1H), 7.10–7.03 (m, 3H), 6.61–6.58 (m, 3H), 4.46 (s, 1H), 3.64–3.61 (d, J = 12.8 Hz, 1H), 3.47–3.43 (d, J = 12.8 Hz, 1H), 2.97–2.78 (m, 2H),

2.45–2.40 (m, 1H), 2.19–2.11 (m, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 195.5, 170.1, 148.3, 141.5, 136.3, 134.1, 130.5, 130.3, 129.2, 120.8, 117.6, 113.2, 83.1, 59.3, 48.1, 30.6, 27.8, 25.8 ppm. HRMS (ESI-TOF) calcd for C₂₂H₂₄^{78.9183}BrNNaO₃ ([M+Na⁺]) = 452.0837, Found 452.0814. HRMS (ESI-TOF) calcd for C₂₂H₂₄^{80.9163}BrNNaO₃ ([M+Na⁺]) = 454.0817, Found 454.0805.

tert-butyl 5,7-dimethyl-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal

-ene-2-carboxylate (**4f**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 98% yield, 81% ee; mp 138–140 °C; $[\alpha]_D^{19} = 86.8$ (c = 0.74, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 10.16 min

(minor), 29.41 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H), 7.11–7.05 (m, 3H), 6.60–6.58 (m, 1H), 4.57 (s, 1H), 3.61–3.57 (d, *J* = 12.8 Hz, 1H), 3.46–3.43 (d, *J* = 12.8 Hz, 1H), 2.82–2.67 (m, 1H), 2.48–2.43 (m, 1H), 2.26 (s, 3H), 2.16 (s, 3H) 2.13–2.07 (m, 1H), 1.19 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.3, 169.4, 147.4, 137.1, 135.1, 135.0, 134.9, 131.6, 128.1, 124.5, 116.3, 112.1, 81.5, 57.7, 47.1, 29.1, 26.7, 22.2, 19.8, 18.2 ppm. HRMS (ESI-TOF) calcd for C₂₄H₂₉NNaO₃ ([M+Na⁺]) = 402.2045, Found 402.2041.

tert-butyl 2-(((4-(tert-butyl)phenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal

-ene-2-carboxylate (**4g**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a yellow oil in 96% yield, 95% ee; $[\alpha]_D^{21} = 85.3$ (c = 0.78, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 7.90 min (minor), 14.62 min (major). ¹H NMR (400 MHz, CDCl₃): δ

7.99–7.97 (m, 1H), 7.41–7.37 (m, 1H), 7.26–7.22 (m, 1H), 7.17–7.10 (m, 3H), 6.56–6.55 (m, 2H), 4.38 (s, 1H), 3.62–3.58 (d, J = 12.4 Hz, 1H), 3.45–3.42 (d, J = 12.4 Hz, 1H), 3.05–2.98 (m, 1H), 2.89–2.84 (m, 1H), 2.46–2.42 (m, 1H), 2.23–2.16 (m, 1H), 1.21–1.19 (m, 18H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 168.0, 143.6, 140.3, 137.7, 130.9, 130.1, 126.1, 125.1, 124.2, 123.4, 110.5, 80.1, 56.8, 46.0, 31.3, 29.0, 28.3, 25.2, 23.6 ppm. HRMS (ESI-TOF) calcd for C₂₆H₃₃NNaO₃ ([M+Na⁺]) = 430.2358, Found 430.2356.

 Retention Time
 % Area

 1
 7.896
 2.39

 2
 14.617
 97.61

tert-butyl 2-(((4-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal

-ene-2-carboxylate (**4h**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 91% yield, 94% ee; mp 106–108 °C; $[\alpha]_D^{22} = 91.6$ (c = 0.69, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 7.90 min (minor),

14.62 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.97 (m, 1H), 7.42–7.38 (m, 1H), 7.27–7.23 (m, 1H), 7.15–7.13 (m, 1H), 6.70–6.68 (m, 2H), 6.58–6.56 (m, 2H), 4.30 (s, 1H), 3.66 (s, 3H), 3.54–3.51 (d, *J* = 12.8 Hz, 1H), 3.42–3.39 (d, *J* = 12.8 Hz, 1H), 3.05–2.96 (m, 1H), 2.89–2.83 (m, 1H), 2.45–2.40 (m, 1H), 2.22–2.14 (m, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 170.5, 152.1, 142.8, 133.5, 132.6, 128.7, 127.6, 126.8, 114.8, 114.7, 82.6, 59.3, 55.8, 49.6, 30.9, 27.8, 26.2 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₄ ([M+Na⁺]) = 404.1838, Found 404.1836.

	Retention Time	% Area
1	10.273	2.92
2	11.801	97.08

tert-butyl 2-(((4-chlorophenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (**4i**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 95% yield, 98% ee; mp 138–140 °C; $[\alpha]_D^{22} = 108.9$ (c = 0.73, CH₂Cl₂). HPLC (Chiralpak IA, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 6.56 min (minor), 7.41 min (major). ¹H NMR (400 MHz,

CDCl₃): δ 7.98–7.96 (m, 1H), 7.43–7.39 (m, 1H), 7.27–7.24 (m, 1H), 7.16–7.14 (m, 1H), 7.02–7.00 (m, 2H), 6.52–6.50 (m, 2H), 4.63 (s, 1H), 3.57–3.54 (d, *J* = 12.8 Hz, 1H), 3.43–3.40 (d, *J* = 12.8 Hz, 1H), 3.05–2.96 (m, 1H), 2.90–2.83 (m, 1H), 2.43–2.38 (m, 1H), 2.16–2.09 (m, 1H), 1.19 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 170.3, 147.0, 142.7, 133.6, 132.6, 128.0, 129.70, 127.6, 126.9, 121.8, 114.2, 82.9, 59.2, 48.5, 30.9, 27.7, 26.2 ppm. HRMS (ESI-TOF) calcd for C₂₂H₂₄^{34.9689}CINNaO₃ ([M+Na⁺]) = 408.1342, Found 408.1341. HRMS (ESI-TOF) calcd for C₂₂H₂₄^{36.9659}CINNaO₃ ([M+Na⁺]) = 410.1313, Found 410.1289.

	Retention Time	% Area
1	6.558	1.04
2	7.407	98.96

tert-butyl 1-oxo-2-((o-tolylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (**4j**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 82% yield, 99% ee; mp 84–86 °C; $[\alpha]_D{}^{19} = 107.3$ (c = 0.60, CH₂Cl₂). HPLC (Chiralpak ID, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 6.11 min (minor), 7.54 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.98 (m,

1H), 7.42–7.38 (m, 1H), 7.27–7.23 (m, 1H), 7.16–7.14 (m, 1H), 7.05–7.01 (m, 1H), 6.97–6.95 (m, 1H), 6.63–6.61 (m, 1H), 6.58–6.54 (m, 1H), 4.58 (s, 1H), 3.62–3.59 (d, J = 12.4 Hz, 1H), 3.49–3.45 (d, J = 12.4 Hz, 1H), 3.06–2.97 (m, 1H), 2.90–2.83 (m, 1H), 2.50–2.43 (m, 1H), 2.18–2.17 (m, 1H), 2.09(s, 3H), 1.19 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 170.4, 146.5, 142.7, 133.5, 132.6, 130.1, 128.7, 127.6, 127.0, 126.8, 122.7, 117.0, 109.9, 82.7, 59.0, 48.3, 31.1, 27.7, 26.2, 17.6 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₃ ([M+Na⁺]) = 388.1889, Found 388.1887.

tert-butyl 2-(((2-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthalene

-2-carboxylate (**4k**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a yellow oil in 50% yield, 91% ee; $[\alpha]_D^{20} = 86.9$ (c = 0.38, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 9.76 min (minor), 15.14 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.97 (m, 1H),

7.42–7.38 (m, 1H), 7.27–7.23 (m, 1H), 7.15–7.13 (m, 1H), 6.70–6.68 (m, 2H), 6.58–6.56 (m, 2H), 4.30 (s, 1H), 3.66 (s, 3H), 3.54–3.51 (d, J = 12.8 Hz, 1H), 3.42–3.39 (d, J = 12.8 Hz, 1H), 3.05–2.96 (m, 1H), 2.89–2.83 (m, 1H), 2.45–2.40 (m, 1H), 2.22–2.14 (m, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 170.5, 152.1, 142.8, 133.5, 132.6, 128.7, 127.6, 126.8, 114.8, 114.7, 82.6, 59.3, 55.8, 49.6, 30.9, 27.8, 26.2 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₇NNaO₄ ([M+Na⁺]) = 404.1838, Found 404.1837.

	Retention Time	% Area
1	9.757	4.54
2	15.137	95.46

Adamantan-1-yl 1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-

carboxylate (41): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 99% yield, 93% ee; mp 101–102 °C; $[\alpha]_D^{20} = 83.8$ (c = 0.86, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 10.71 min

(major), 11.64 min (minor). ¹H NMR (400 MHz, CDCl₃): δ 7.99–7.97 (d, *J* = 8.0 Hz, 1H), 7.42–7.38 (m, 1H), 7.26–7.23 (m, 1H), 7.15–7.13 (m, 1H), 7.10–7.06 (m, 2H), 6.61–6.58 (m, 3H), 4.49 (s, 1H), 3.64–3.61 (d, *J* = 12.0 Hz, 1H), 3.47–3.44 (d, *J* = 12.0 Hz, 1H), 3.07–2.98 (m, 1H), 2.88–2.82 (m, 1H), 2.45–2.40 (m, 1H), 2.20–2.14 (m, 1H), 1.98 (s, 3H), 1.84 (s, 6H), 1.48 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 170.1, 148.5, 142.8, 133.5, 132.7, 129.2, 128.7, 127.6, 126.8, 117.4, 113.2, 82.8, 59.5, 48.2, 41.0, 36.0, 30.9, 30.8, 26.2 ppm. HRMS (ESI-TOF) calcd for C₂₈H₃₁NNaO₃ ([M+Na⁺]) = 452.2202, Found 452.2201.

	Retention Time	% Area
1	10.707	96.76
2	11.635	3.24

N-(*tert*-butyl)-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carbo xamide (**5a**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 98% yield, 97% ee; mp 78–80 °C; $[\alpha]_D^{23} = 77.7$ (c = 0.69, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 6.39 min (minor), 8.35

min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.98 (d, J = 8.0 Hz, 1H), 7.45–7.42 (m, 1H), 7.27–7.24 (m, 1H), 7.18–7.15 (m, 1H), 7.09–7.05 (m, 2H), 6.63–6.59 (m, 1H), 6.56–6.54 (m, 2H), 6.41(s, 1H), 4.07 (s, 1H), 3.58–3.47 (dd, J = 30.0, 12.8 Hz, 2H), 3.08–3.00 (m, 1H), 2.83–2.76 (m, 1H), 2.68–2.63 (m, 1H), 2.18–2.11 (m, 1H), 1.16 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 167.3, 148.1, 144.8, 134.5, 131.7, 129.3, 128.9, 128.0, 126.8, 117.7, 113.0, 59.2, 51.6, 50.2, 29.4, 28.5, 26.0 ppm. HRMS (ESI-TOF) calcd for C₂₂H₂₆N₂NaO₂ ([M+Na⁺]) = 373.1892, Found 373.1885.

N-(*tert*-butyl)-5-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5b**): Purified by flash chromatography (petroleum ether: EtOAc = 10.1) to afford a white solid in

ene-2-carboxamide (**5b**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 98% yield, 96% ee; mp 92–94 °C; $[\alpha]_D^{27} = 76.3$ (c = 0.74, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 9.13 min (minor), 15.97 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.68–7.66

(d, J = 7.6 Hz, 1H), 7.31–7.27 (m, 1H), 7.16–7.12 (m, 2H), 7.05–7.03 (m, 1H), 6.70–6.66 (m, 1H), 6.63–6.61 (m, 2H), 6.44 (s, 1H), 4.18(s, 1H), 3.85(s, 3H), 3.62–3.54 (dd, J = 22.8, 12.8 Hz, 2H), 3.02–2.83 (m, 2H), 2.71–2.65 (m, 1H), 2.22–2.15 (m, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 167.6, 156.7, 148.1, 133.8, 132.6, 129.2, 127.0, 119.4, 117.6, 115.1, 113.0, 58.5, 55.7, 51.6, 49.8, 28.8, 28.5, 19.4 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₃ ([M+Na⁺]) = 403.1998, Found 403.1991.

N-(*tert*-butyl)-6-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5c**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 77% yield, 96% ee; mp 128–130 °C; $[\alpha]_D^{27} = 83.0$ (c = 0.58, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0

mL/min, $\lambda = 254$ nm) retention time: 8.27 min (minor), 12.73 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.05–8.02 (d, J = 8.8 Hz, 1H), 7.16–7.12 (m, 2H), 6.86–6.83 (m, 1H), 6.68–6.61 (m, 4H), 6.55 (s, 1H), 4.15 (s, 1H), 3.86 (s, 3H), 3.65–3.52 (m, 2H), 3.12–3.04 (m, 1H), 2.85–2.79 (m, 1H), 2.74–2.69 (m, 1H), 2.22–2.15 (m, 1H), 1.24 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 167.5, 164.5, 148.2, 147.6, 130.7, 129.2, 125.3, 117.5, 113.8, 112.9, 112.3, 58.9, 55.6, 51.5, 50.4, 29.4, 28.5, 26.5 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₃ ([M+Na⁺]) = 403.1998, Found 403.1995.

	Retention Time	% Area
1	8.266	2.08
2	12.735	97.92

*N-(tert-*butyl)-7-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal MeO HN Ph $NH^{t}Bu$ ene-2-carboxamide (**5d**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 95% yield, 96% ee; mp 150–152 °C; $[\alpha]_{D}^{27} = 79.7$ (c = 0.72, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0

mL/min, $\lambda = 254$ nm) retention time: 8.78 min (minor), 14.82 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.52 (d, J = 2.8 Hz, 1H), 7.16–7.08 (m, 4H), 6.70–6.67 (m, 1H), 6.64–6.62 (m, 2H), 6.47 (s, 1H), 4.16 (s, 1H), 3.85 (s, 3H), 3.65–3.54 (dd, J = 29.2, 12.4 Hz, 2H), 3.08–3.00 (m, 1H), 2.85–2.78 (m, 1H), 2.72–2.67 (m, 1H), 2.25–2.17 (m, 1H), 1.25 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 167.4, 158.4, 148.1, 137.4, 132.4, 130.1, 129.3, 122.8, 117.7, 113.0, 109.9, 59.0, 55.5, 51.6, 50.2, 29.7, 28.5, 25.2 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₃ ([M+Na⁺]) = 403.1998, Found 403.1991.

	Retention Time	% Area
1	8.775	2.05
2	14.820	97.95

O HN^{Ph} NH^tBu

N-(*tert*-butyl)-5,7-dimethyl-1-oxo-2-((phenylamino)methyl) -1,2,3,4-tetrahydronaphthalene-2-carboxamide (5e): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 75% yield, 98% ee; mp 152–154 °C; $[\alpha]_D^{27} = 67.7$ (c = 0.57, CH₂Cl₂). HPLC

(Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) retention time: 7.24 min (minor), 14.10 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.22 (s, 1H), 7.16–7.12 (m, 2H), 6.70–6.66 (m, 1H), 6.63–6.61 (m, 2H), 6.46 (s, 1H), 4.17 (s, 1H), 3.63–3.52 (m, 2H), 2.92–2.77 (m, 2H), 2.73–2.67 (m, 1H), 2.34 (s, 3H), 2.25 (s, 3H), 2.23–2.17 (m, 1H), 1.23 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.7, 167.6, 148.1, 140.3, 136.9, 136.4, 135.9, 131.6, 129.2, 125.9, 117.6, 113.0, 58.5, 51.6, 50.0, 28.8, 28.5, 22.7, 20.9, 19.2 ppm. HRMS (ESI-TOF) calcd for C₂₄H₃₀N₂NaO₂ ([M+Na⁺]) = 401.2205, Found 401.2199.

N-(tert-butyl)-6,7-dimethoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronapht halene-2-carboxamide Purified (**5f**): by flash HN^{_Ph} Ο chromatography (petroleum ether: EtOAc = 10:1) to MeO afford a yellow oil in 71% yield, 93% ee; $[\alpha]_D^{27} = 85.2$ NH^tBu 0.58, CH_2Cl_2). HPLC (Chiralpak || 0 (c = IC. MeO hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$

nm) retention time: 12.98 min (minor), 23.12 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.52 (s, 1H), 7.16–7.13 (m, 2H), 6.70–6.66 (m, 1H), 6.64–6.62 (m, 3H), 6.56 (s, 1H), 4.16 (s, 1H), 3.94–3.93 (d, *J* = 3.6 Hz, 6H), 3.65–3.53 (dd, *J* = 34.4, 12.4 Hz, 2H), 3.10–3.02 (m, 1H), 2.82–2.68 (m, 2H), 2.25–2.18 (m, 1H), 1.25 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 167.6, 154.6, 148.1, 140.2, 129.2, 124.8, 117.6, 113.0, 110.1, 109.1, 58.5, 56.2, 56.0, 51.5, 50.3, 29.6, 28.5, 25.9 ppm. HRMS (ESI-TOF) calcd for C₂₄H₃₀N₂NaO₄ ([M+Na⁺]) = 433.2103, Found 433.2107.

N-(*tert*-butyl)-2-(((4-(tert-butyl)phenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronapht

halene-2-carboxamide (**5g**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 95% yield, 95% ee; mp 106–108 °C; $[\alpha]_D^{27} = 76.7$ (c = 0.78, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 5.86 min (minor),

10.15 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.05 (m, 1H), 7.52–7.48 (m, 1H), 7.34–7.30 (m, 1H), 7.24–7.22 (m, 1H), 7.19–7.17 (m, 2H), 6.60–6.58 (m, 2H), 6.53 (s, 1H), 4.04 (s, 1H), 3.64–3.52 (dd, *J* = 34.8, 12.4 Hz, 2H), 3.16–3.08 (m, 1H), 2.91–2.84 (m, 1H), 2.76–2.70 (m, 1H), 2.27–2.20 (m, 1H), 1.26–1.24 (m, 18H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 167.4, 145.7, 144.8, 140.5, 134.4, 131.7, 128.8, 128.0, 126.8, 126.0, 112.8, 59.2, 51.6, 50.6, 33.9, 31.6, 29.3, 28.5, 26.0 ppm. HRMS (ESI-TOF) calcd for C₂₆H₃₄N₂NaO₂ ([M+Na⁺]) = 429.2518, Found 429.2512.

1	5.858	2.24
2	10.150	97.76

N-(tert-butyl)-2-(((4-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal

O

ene-2-carboxamide (**5h**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 87% yield, 84% ee; mp 137–138 °C; $[\alpha]_D^{28} = 68.1$ (c = 0.66, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 10.12 min (minor),

14.62 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.05 (m, 1H), 7.53–7.48 (m, 1H), 7.35–7.31 (m, 1H), 7.25–7.23 (m, 1H), 6.76–6.74 (m, 2H), 6.61–6.58 (m, 3H), 3.73 (s, 3H), 3.60–3.49 (dd, *J* = 30.8, 12.8 Hz, 2H), 3.16–3.08 (m, 1H), 2.91–2.84 (m, 1H), 2.74–2.69 (m, 1H), 2.27–2.20 (m, 1H), 1.25 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 167.6, 152.3, 144.7, 142.3, 134.4, 131.8, 128.8, 128.0, 126.8, 114.8, 114.5, 59.2, 55.8, 51.6, 51.5, 29.4, 28.5, 26.0 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₃ ([M+Na⁺]) = 403.1998, Found 403.2000.

*N-(tert-*butyl)-1-oxo-2-((o-tolylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carbo Me xamide (5i): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a yellow oil in 96% yield, 98% ee; $[\alpha]_D^{28} = 75.9$ (c = 0.70, CH₂Cl₂). HPLC (Chiralpak IC, NH^tBu

hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) retention time: 14.18 min (minor), 15.60 min (major). ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.06 (m, 1H), 7.54–7.50 (m, 1H), 7.36–7.32 (m, 1H), 7.26–7.24 (m, 1H), 7.11–7.07 (m, 1H), 7.05–7.03 (m, 1H), 6.66–6.59 (m, 3H), 4.19 (s, 1H), 3.63–3.56 (m, 2H), 3.15–3.07 (m, 1H), 2.93–2.86 (m, 1H), 2.81–2.75 (m, 1H), 2.26–2.19 (m, 1H), 2.15 (s, 3H), 1.25 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 167.5, 146.0, 144.8, 134.5, 131.7, 130.1, 128.9, 128.1, 127.1, 126.9, 122.4, 117.1, 109.7, 58.5, 51.6, 49.9, 29.6, 28.5, 26.0, 17.5 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₂ ([M+Na⁺]) = 387.2048, Found 387.2041.

*N-(tert-*butyl)-2-(((2-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal MeO HN HN HN HN HN HN HN HTBU HTBU

7.52–7.47 (m, 1H), 7.34–7.30 (m, 1H), 7.25–7.22 (m, 1H), 6.85–6.81 (m, 1H), 6.75–6.73 (m, 1H), 6.66–6.62 (m, 2H), 6.55 (s, 1H), 4.68 (s, 1H), 3.81 (s, 3H), 3.70–3.66 (m, 1H), 3.61–3.57 (m, 1H), 3.19–3.11 (m, 1H), 2.91–2.85 (m, 1H), 2.80–2.74 (m, 1H), 2.27–2.20 (m, 1H), 1.24 (s, 9H) ppm. 13 C NMR (100 MHz, CDCl₃): δ 200.1, 167.2, 146.9, 144.8, 138.0, 134.3, 131.8, 128.8, 128.0, 126.7, 121.2,

116.7, 110.1, 109.6, 59.4, 55.5, 51.5, 50.1, 29.3, 28.5, 26.1 ppm. HRMS (ESI-TOF) calcd for $C_{23}H_{28}N_2NaO_3$ ([M+Na⁺]) = 403.1998, Found 403.1994.

*N-(tert-*butyl)-1-oxo-2-((phenylamino)methyl)-2,3-dihydro-1H-indene-2-carboxamide (**5k**): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a yellow solid in 99% yield, 55% ee; mp 122–124 °C; $[\alpha]_D^{23} = -4.5$ (c = 0.67, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 7.15 min (major), 7.67 min (minor). ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.67 (d, J = 7.6

Hz, 1H), 7.58–7.54 (t, J = 7.4 Hz, 1H), 7.40–7.38 (d, J = 7.6 Hz, 1H), 7.34–7.30 (t, J = 7.4 Hz, 1H), 7.08–7.04 (t, J = 7.4 Hz, 2H), 6.64–6.60 (t, J = 7.2 Hz, 1H), 6.52–6.50 (d, J = 8.0 Hz, 1H), 4.05 (s, 1H), 3.86–3.82 (d, J = 18.0 Hz, 1H), 3.51–3.46 (m, 1H), 3.37–3.34 (m, 1H), 3.16–3.12 (d, J = 18.0 Hz, 1H), 1.22 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 206.4, 167.5, 153.7, 147.6, 136.2, 134.9, 129.3, 127.7, 126.7, 124.6, 118.0, 113.0, 61.4, 52.0, 51.4, 34.9, 28.5 ppm. HRMS (ESI-TOF) calcd for C₂₁H₂₄N₂NaO₂ ([M+Na⁺]) = 359.1735, Found 359.1736.

	Retention Time	% Area
1	7.154	77.65
2	7.665	22.35

N-(tert-butyl)-5-oxo-6-((phenylamino)methyl)-6,7,8,9-tetrahydro-5H-benzo[7]annule

ne-6-carboxamide (**5**I): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 92% yield, 0% ee; mp 94–95 °C. HPLC (Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) retention time: 7.09 min, 10.20 min. ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.36 (m, 2H), 7.29–7.25 (m, 1H), 7.16–7.12 (m, 3H), 6.75 (s, 1H), 6.71–6.68 (m, 1H), 6.62–6.60 (m, 2H), 4.11

(s, 1H), 3.67–3.62 (m, 1H), 3.55–3.51 (m, 1H), 2.81–2.75 (m, 2H), 2.50–2.44 (m, 1H), 2.34–2.26 (m, 1H), 1.79–1.71 (m, 2H), 1.23 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 212.0, 167.1, 147.8, 139.8, 139.0, 132.4, 129.2, 128.7, 127.9, 126.8, 117.9, 113.3, 62.8, 53.3, 51.4, 31.8, 28.6, 28.4, 23.2 ppm. HRMS (ESI-TOF) calcd for C₂₃H₂₈N₂NaO₂ ([M+Na⁺]) = 387.2048, Found 387.2048.

tert-butyl-1-hydroxy-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-

OH HN O'Bu carboxylate (6): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a white solid in 99% yield, 99% ee; mp 116–118 °C; $[\alpha]_D^{23} = 94.4$ (c = 0.34, CH₂Cl₂). HPLC (Chiralpak IC, hexane/*i*-PrOH = 95:5, flow rate 1.0 mL/min, $\lambda = 254$ nm) retention time: 8.20 min (minor), 8.89 min (major). ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.60 (d, *J* =

7.6 Hz, 1H), 7.25–7.14 (m, 4H), 7.07–7.05 (m, 1H), 6.70–6.63 (m, 3H), 4.77–4.75 (d, J = 9.2 Hz, 1H), 4.63 (s, 1H), 3.70–3.68 (d, J = 10.0 Hz, 1H), 3.59–3.56 (d, J = 12.0 Hz, 1H), 3.38–3.35 (d, J = 12.0 Hz, 1H), 2.88–2.77 (m, 2H), 2.29–2.25 (m, 1H), 1.91–1.84 (m, 1H), 1.32 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 148.4, 138.7, 134.8, 129.2, 128.3, 127.3, 127.1, 126.5, 117.5, 113.1, 82.2, 74.3, 51.3, 51.2, 27.9, 27.9, 26.0 ppm. HRMS (ESI-TOF) calcd for C₂₂H₂₇NNaO₃ ([M+Na⁺]) = 376.1889, Found 376.1883.

tert-butyl 2-(((tert-butoxycarbonyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal

O HN^{-Boc} O^tBu

-ene-2-carboxylate (7): Purified by flash chromatography (petroleum ether: EtOAc = 10:1) to afford a yellow oil in 60% yield, 94% ee; $[\alpha]_D^{23} = 45.5$ (c = 0.45, CH₂Cl₂). HPLC (Chiralpak IA, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) retention time: 5.81 min (minor), 7.06 min (major).

¹H NMR (400 MHz, CDCl₃): δ 8.04–8.02 (d, J = 8.0 Hz, 1H), 7.50–7.46 (m, 1H), 7.34–7.30 (m, 1H), 7.24–7.22 (m, 1H), 6.79 (s, 1H), 3.80–3.75 (m, 1H), 3.49–3.45 (m, 1H), 3.03 (m, 2H), 2.49–2.46 (m, 1H), 2.18–2.13 (m, 1H), 1.42 (s, 9H), 1.37 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 174.6, 148.3, 137.5, 134.9, 129.2, 128.4, 128.0, 127.5, 126.4, 118.1, 113.9, 81.8, 71.6, 50.6, 47.4, 27.9, 26.6, 25.5 ppm. HRMS (ESI-TOF) calcd for C₂₁H₂₉NNaO₅ ([M+Na⁺]) = 398.1943, Found 398.1940.

	Retention Time	% Area
1	5.817	50.14
2	7.080	49.86

8. Copies of NMR spectra for the reaction products

7.1595 7.575 7.575 7.575 7.575 7.575 7.575 6.579 6.593 6.579 6.579 6.579 6.579 6.579 6.579 6.579 6.579 6.579 6.579 6.579 7.262 6.579 6.579 7.262 6.579 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272 7.262 7.272

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

5.0 4.5 f1 (ppm)

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

4.0 3.5 2.5

2.0

1.5

1.0

0.5

0.0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

4.168 3.3940 3.3931 3.3931 3.3528 3.3560 3.3560 3.3560 3.3560 3.3560 3.3528 3.3560 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3528 3.3558 3.2558 3.2558 3.2558 3.2558 3.22553 3.2276 3.22770 3.22553 3.22763 3.22753 3.22753 3.22753 3.22753 3.22753 3.22753 3.22753 3.22753 3.22756 3.222756 3.2

7.1521 7.165 7.1165 7.1146 7.1126 6.639 6.681 6.681 6.633 6.661 6.661

*8.069 *8.069 *8.0017

8.068 8.068 8.068 8.068 8.068 8.068 8.068 8.068 8.068 8.004 8.0688 8.0688 8.0688 8.0688 8.0688 8.06888 8.0688 8.0688 8.0688 8.06888

8.085 8.8085 8.8082 8.8

8.075 8.075 8.055 8.055 8.055 8.055 8.055 8.055 8.055 7.7519 7.747 7.7319 7.7329 7.7319 7.7329 7.7329 7.7319 7.7329 7.7429 7.742

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm)

8.017
8.017
8.017
8.017
8.017
7.1481
7.1481
7.1482
3.1461
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146
3.146</l

9. The NOESY spectra of 6

10. CD information of the products

tert-butyl 1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**4a**):

tert-butyl 5-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal -ene-2-carboxylate (**4b**):

tert-butyl 6-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene -2-carboxylate (**4c**):

tert-butyl 7-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene -2-carboxylate (**4d**):

tert-butyl 7-bromo-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene -2-carboxylate (**4e**):

tert-butyl 5,7-dimethyl-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal -ene-2-carboxylate (**4f**):

tert-butyl 2-(((4-(tert-butyl)phenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal -ene-2-carboxylate (**4g**):

tert-butyl 2-(((4-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal -ene-2-carboxylate (**4h**):

tert-butyl 2-(((4-chlorophenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**4i**):

tert-butyl 1-oxo-2-((o-tolylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**4j**):

tert-butyl 2-(((2-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthalene -2-carboxylate (**4k**):

Adamantan-1-yl 1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (**4l**):

N-(*tert*-butyl)-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carbo xamide (**5a**):

N-(*tert*-butyl)-5-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5b**):

N-(*tert*-butyl)-6-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5c**):

N-(*tert*-butyl)-7-methoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5d**):

N-(*tert*-butyl)-5,7-dimethyl-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronaphth alene-2-carboxamide (**5e**):

N-(*tert*-butyl)-6,7-dimethoxy-1-oxo-2-((phenylamino)methyl)-1,2,3,4-tetrahydronapht halene-2-carboxamide (**5f**):

N-(*tert*-butyl)-2-(((4-(tert-butyl)phenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronapht halene-2-carboxamide (**5g**):

N-(*tert*-butyl)-2-(((4-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5h**):

N-(*tert*-butyl)-1-oxo-2-((o-tolylamino)methyl)-1,2,3,4-tetrahydronaphthalene-2-carbo xamide (**5i**):

N-(*tert*-butyl)-2-(((2-methoxyphenyl)amino)methyl)-1-oxo-1,2,3,4-tetrahydronaphthal ene-2-carboxamide (**5j**):

*N-(tert-*butyl)-1-oxo-2-((phenylamino)methyl)-2,3-dihydro-1H-indene-2-carboxamide (**5**k):