Electronic Supplementary Information for:

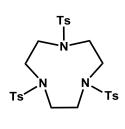
Spin-Crossover and High-Spin Iron(II) Complexes as Chemical Shift ¹⁹F Magnetic Resonance Thermometers

Agnes E. Thorarinsdottir, Alexandra I. Gaudette and T. David Harris*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston IL USA 60208-3113 e-mail: dharris@northwestern.edu

Chemical Science

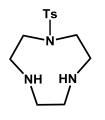
Table of Contents


Experimental Section	S3
Scheme S1: Synthesis of ligands L_x ($x = 1-3$)	S11
Table S1: Crystallographic data for 1a·0.5CH ₃ CN, 1b, 2a, 2b, and 3a	S12
Figure S1: Crystal structure of $[Fe(L_3)]^{2+}$ at 100 K	S13
Figure S2: Variable-temperature UV/Visible spectra of 1a in MeCN	S14
Figure S3: Variable-temperature UV/Visible spectra of 2a in MeCN	S15
Figure S4: Variable-temperature UV/Visible spectra of 3a in MeCN	S16
Figure S5: Variable-temperature UV/Visible spectra of 1b in MeCN	S17
Figure S6: Variable-temperature UV/Visible spectra of 2b in MeCN	S18
Figure S7: Comparison of UV/Visible spectra of 1a, 2a, and 3a in MeCN at -35 °C	S19
Figure S8: Comparison of UV/Visible spectra of 1a, 2a, and 3a in MeCN at 65 °C	S20
Figure S9: UV/Visible spectra of 1a in H ₂ O	S21
Figure S10: UV/Visible spectra of 2a in H ₂ O	S22
Figure S11: UV/Visible spectra of 3a in H ₂ O	S23
Figure S12: UV/Visible spectra of 1b in H ₂ O	S24
Figure S13: UV/Visible spectra of 2b in H ₂ O	S25
Figure S14: Plot of high-spin molar fraction of 1a vs temperature in H ₂ O	S26
Figure S15: Thermodynamic data for the spin transition of 1a in H ₂ O	S27
Figure S16: Comparison of magnetic susceptibility of 1a vs temperature in H ₂ O and MeCN	S28
Figure S17: Comparison of high-spin molar fraction of 1a vs temperature in H ₂ O and MeCN	S29
Figure S18: ¹ H NMR spectrum of L ₁ in CDCl ₃ at 25 °C	S30
Figure S19: ¹ H NMR spectrum of L ₂ in CDCl ₃ at 25 °C	S31
Figure S20: ¹ H NMR spectrum of L ₃ in CDCl ₃ at 25 °C	S32

	~ • •
Figure S21: Variable-temperature ¹ H NMR spectra of 1b in CD ₃ CN	S33
Figure S22: Variable-temperature ¹ H NMR spectra of 2b in CD ₃ CN	S34
Figure S23: Variable-temperature ¹ H NMR spectra of 3a in CD ₃ CN	S35
Figure S24: Variable-temperature ¹ H NMR spectra of 2a in CD ₃ CN	S36
Figure S25: Variable-temperature ¹ H NMR spectra of 1a in CD ₃ CN	S37
Figure S26: Variable-temperature ¹ H NMR spectra of $1a$ in D ₂ O	S38
Figure S27: Plot of the temperature dependence of 19 F NMR chemical shift of TFE in H ₂ O	S39
Table S2: ¹⁹ F NMR chemical shifts of the internal standards TFE and NaF in H ₂ O	S40
Figure S28: Variable-temperature ¹⁹ F NMR spectra of 1b in 2.1 mM TFE(aq)	S41
Figure S29: Variable-temperature ¹⁹ F NMR spectra of 2b in 2.1 mM TFE(aq)	S42
Figure S30: Variable-temperature ¹⁹ F NMR spectra of 2a in 2.1 mM TFE(aq)	S43
Figure S31: Variable-temperature ¹⁹ F NMR spectra of 2a in 2.1 mM TFE(aq) referenced to 2b	S44
Figure S32: Variable-temperature ¹⁹ F NMR spectra of 1a in 2.1 mM TFE(aq)	S45
Figure S33: Variable-temperature ¹⁹ F NMR spectra of 1a in 2.1 mM TFE(aq) referenced to 1b	S46
Table S3: Summary of ¹⁹ F NMR properties of 1a, 1b, 2a, and 2b in 2.1 mM TFE(aq)	S47
Table S4: ¹⁹ F NMR chemical shifts of 1a and 2a in 2.1 mM TFE(aq) referenced to 1b and 2b	S48
Figure S34: Plot of ¹⁹ F NMR chemical shift separation vs temperature for 1a in 2.1 mM TFE(aq)	S49
Figure S35: Variable-temperature ¹⁹ F NMR spectra of a solution of TFE and NaF in H ₂ O	S50
Figure S36: Variable-temperature ¹⁹ F NMR spectra of 1a in FBS	S51
Figure S37: Variable-temperature ¹⁹ F NMR spectra of 2a in FBS	S52
Table S5: Summary of ¹⁹ F NMR properties of 1a and 2a in FBS	S53
Table S6: ¹⁹ F NMR chemical shifts of 1a and 2a in FBS referenced to 1b and 2b	S54
Figure S38: Comparison of ¹⁹ F NMR spectra of 1a in FBS at 25 °C at different times	S55
Figure S39: Comparison of ¹⁹ F NMR spectra of 2a in FBS at 25 °C at different times	S56
Figure S40: Variable-temperature ¹⁹ F NMR spectra of 1a in CD ₃ CN	S57
Figure S41: Variable-temperature ¹⁹ F NMR spectra of 2a in CD ₃ CN	S58
Figure S42: Variable-temperature ¹⁹ F NMR spectra of 1b in CD_3CN	S59
Figure S43: Variable-temperature ¹⁹ F NMR spectra of 2b in CD_3CN	S60
Table S7: Summary of ¹⁹ F NMR properties of 1a , 1b , 2a , and 2b in CD ₃ CN	S61
Figure S44: Plot of ¹⁹ F NMR chemical shift separation vs temperature for 1a in CD ₃ CN	S61
References	S62
	303

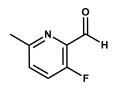
Experimental Section

General Considerations. Unless otherwise specified, the manipulations described below were carried out at ambient atmosphere and temperature. Air- and water-free manipulations were performed under a dinitrogen atmosphere in a Vacuum Atmospheres Nexus II glovebox or using a standard Schlenk line. Glassware was oven-dried at 150 °C for at least 4 h and allowed to cool in an evacuated antechamber prior to use in the glovebox. Acetonitrile (MeCN), dichloromethane (CH₂Cl₂), diethyl ether (Et₂O) and methanol (MeOH) were dried using a commercial solvent purification system from Pure Process Technology and stored over 3 or 4 Å molecular sieves prior to use. Water was obtained from a purification system from EMD Millipore. Elemental analysis was conducted by Midwest Microlab Inc. Deuterated solvents were purchased from Cambridge Isotope Laboratories and stored over 3 or 4 Å molecular sieves prior to use. The compounds Ts₃-dient (*N*,*N'*,*N''*-tri(p-toluenesulfonyl)-diethylenetriamine) and Ts₂-glycol (1,2-di(p-toluenesulfonyloxy)ethane) were synthesized following literature procedures.¹ All other chemicals and solvents were purchased from commercial vendors and used without further purification.


Synthesis of *N*,*N'*,*N''*-tritosyl-1,4,7-triazacyclononane (Ts₃-tacn).

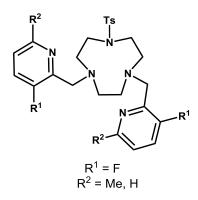
This compound was synthesized following a modified literature procedure.² Ts₃-dient (14.2 g, 25.2 mmol) and cesium carbonate (17.2 g, 52.8 mmol) were stirred vigorously in DMF (135 mL) at 25 °C for 1 h. To this white suspension, a solution of Ts₂-glycol (9.30 g, 25.2 mmol) in DMF (60 mL) was added dropwise. The resulting pale yellow mixture was stirred at ambient temperature for 12 h. After that time the color of the reaction mixture had turned orange. The mixture was filtered and the reddish orange filtrate added slowly to deionized water (800 mL) to give the product as a white precipitate. The solid was collected by vacuum filtration and suspended in DMF/H₂O 1:1 mixture (90 mL) and stirred for 3 h to

wash. The resulting white solid was collected by vacuum filtration, washed thoroughly with deionized water and dried under vacuum for 6 h. The crude product was recrystallized from CH₂Cl₂/ethanol to give the title compound as colorless needles (12.9 g, 87 %). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.70 (d, *J* = 6.6 Hz, 6H), 7.33 (d, *J* = 6.8 Hz, 6H), 3.42 (s, 12 H), 2.43 (s, 9 H).


Synthesis of *N*-monotosyl-1,4,7-triazacyclononane (H₂Ts-tacn).

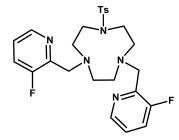
This compound was synthesized following a modified literature procedure.² Ts₃tacn (3.51 g, 5.91 mmol) and phenol (4.56 g, 47.3 mmol) were introduced into a 250 mL round bottom flask connected to a reflux condenser. To this, a solution of 33 % HBr in acetic acid (36 mL) was slowly added. The orange-colored reaction mixture was carefully heated to 90 °C under a dinitrogen atmosphere and stirred for 16 h. During that time a white precipitate of H₂Ts-tacn·2HBr was formed. The orange suspension was cooled to ambient temperature and then filtered through a fritted glass funnel. The white precipitate was washed with glacial acetic acid (10

mL), dissolved in deionized water (50 mL) and basified with 1 M aqueous NaOH solution (50 mL) to give a clear solution. This solution was extracted with $CHCl_3$ (3 × 50 mL) and the colorless extracts were combined, dried over MgSO₄(s) and filtered. The product was collected as a white powder after evaporating the chloroform solvent to dryness (1.11 g, 66 %). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.63 (d, *J* = 7.9 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.13 (br s, 4 H), 3.02 (br s, 4 H), 2.83 (s, 4H), 2.36 (s, 3 H), 1.91 (s, 2H).

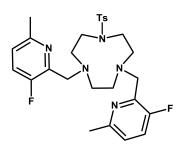

Synthesis of 3-fluoro-2-formyl-6-methylpyridine.

This compound was synthesized following a modified literature procedure.³ Under a dinitrogen atmosphere, 2-bromo-3-fluoro-6-methylpyridine (3.73 g, 19.6 mmol) was dissolved in dry toluene (30 mL) and that colorless solution was added dropwise to a stirred solution of *n*-BuLi (1.6 M in hexanes, 12.3 mL, 19.6 mmol) in dry toluene (30 mL) at -78 °C. The resulting reddish-orange solution was stirred at -78 °C for 1 h and then anhydrous DMF (4.30 g, 58.9 mmol) was slowly added to

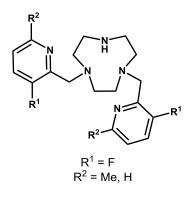
give a bright red solution. That solution was stirred at -78 °C for additional 2 h, then warmed to ambient temperature and quenched with water (50 mL). The bright yellow aqueous layer was extracted with EtOAc (2 × 200 mL), the combined organic layer was washed with saturated aqueous NaCl solution (100 mL), dried over MgSO₄(s) and filtered. Removing the solvent under reduced pressure afforded a red oil which was dissolved in a minimum amount of EtOAc (15 mL) and eluted through a plug of celite. The red-colored solution was concentrated in vacuo and further dried under vacuum for 12 h to afford the product as a reddish crystalline solid (2.23 g, 80 %). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 10.21 (s, 1H), 7.48 (dd, *J* = 7.5, 7.2 Hz, 1H), 7.41 (dd, *J* = 6.9, 3.0 Hz, 1H), 2.66 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ -129.75 (dd, *J* = 9.7, 3.9 Hz).


General procedure for the synthesis of *N*,*N*'-di(2-picolyl)-*N*''-monotosyl-1,4,7-triazacyclononane.

A 50 mL Schlenk flask was charged with 1.0 equivalent of H_2Ts -tacn and a magnetic stir bar. To this, dry CH_2Cl_2 (20 mL) was added to solubilize the ligand precursor completely to give a light yellow solution. Under a dinitrogen atmosphere, 2.5 equivalents of a 2pyridinecarboxaldehyde derivative was added as a solid in a single portion. After stirring the mixture at ambient temperature for 1 h, 5.0 equivalents of sodium triacetoxyborohydride was added and the resulting suspension was heated to 40 °C and refluxed under a dinitrogen atmosphere for 1–3 h. The reaction was monitored by ESI-MS in CH_2Cl_2 solvent. When no remaining starting material was observed, the reaction mixture was cooled to ambient temperature and

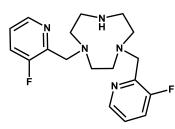

evaporated to dryness under reduced pressure. The crude residue was partioned between 2 M aqueous NaOH solution (20 mL) and CHCl₃ (40 mL), and the organic phase was collected, dried over MgSO₄(s), filtered and concentrated in vacuo. The obtained oil was washed with 6 M aqueous NaOH solution (15 mL) by stirring for 1–2 h at ambient temperature, and then extracted into CHCl₃ (25 mL). The organic phase was dried over MgSO₄(s) and filtered, and the CHCl₃ solvent was removed under reduced pressure to afford the product as an oil or an oily solid which was used in a subsequent step after drying under vacuum for 6 hours.

Synthesis of N,N'-di(3-fluoro-2-picolyl)-N''-monotosyl-1,4,7-triazacyclononane.

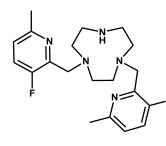

According to the general procedure, *N*,*N*'-di(3-fluoro-2-picolyl)-*N*"monotosyl-1,4,7-triazacyclononane was prepared as a pale yellow oil in near quantitative yield from H₂Ts-tacn (0.361 g, 1.28 mmol), 3-fluoro-2-formylpyridine (0.399 g, 3.19 mmol) and sodium triacetoxyborohydride (1.36 g, 6.40 mmol). ESI-MS m/z: calcd for $C_{25}H_{30}F_2N_5O_2S$ (M+H)⁺ 502.21, found 502.18. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.33 (dd, *J* = 3.7, 1.1 Hz, 2H), 7.63 (d, *J* = 6.6 Hz, 2H), 7.33 (ddd, J = 7.2, 7.2, 1.1 Hz, 2H), 7.26 (d, J = 6.2 Hz, 2H), 7.24– 7.27 (m, 2 H), 7.17–7.20 (m, 2H), 3.88 (d, J = 1.8 Hz, 4H), 3.21–3.24 (m, 4H), 3.07–3.10 (m, 4H), 2.76 (s, 4H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –123.83 (m).

Synthesis of N,N'-di(3-fluoro-6-methyl-2-picolyl)-N''-monotosyl-1,4,7-triazacyclononane.

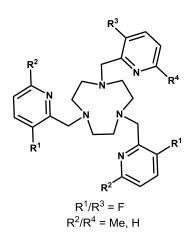
According to the general procedure, *N*,*N*'-di(3-fluoro-6-methyl-2picolyl)-*N*"-monotosyl-1,4,7-triazacyclononane was prepared as a reddish-brown oil in near quantitative yield from H₂Ts-tacn (0.459 g, 1.64 mmol), 3-fluoro-2-formyl-6-methylpyridine (0.570 g, 4.10 mmol) and sodium triacetoxyborohydride (1.74 g, 8.20 mmol). ESI-MS m/z: calcd for C₂₇H₃₄F₂N₅O₂S (M+H)⁺ 530.24, found 530.21. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.26 (dd, *J* = 7.8 Hz, 2H), 7.20 (dd, *J* = 8.4, 8.4 Hz, 2H), 7.00 (dd, *J* = 8.4, 3.7 Hz, 2H), 3.82 (d, *J* = 2.2 Hz, 4H), 3.23–3.27 (m, 4H), 3.05–3.08 (m, 4H), 2.72 (s, 4H), 2.48 (s, 6H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –129.85 (d, *J* = 9.4 Hz).


General procedure for the synthesis of N,N'-di(2-picolyl)-1,4,7-triazacyclononane.

The monotosylated ligand precursor and a magnetic stir bar were introduced into a 25 mL round bottom flask. To this, concentrated sulfuric acid solution (10 mL) was slowly added and the resulting orangish mixture was purged under vacuum for 1 h. Afterwards, the reaction flask was connected to a reflux condenser and the homogeneous light orangish solution was heated to 120 °C under a dinitrogen atmosphere and left stirring at that temperature for 16 h. The resulting black reaction mixture was allowed to reach ambient temperature and then added to stirring cold ethanol (60 mL). Addition of Et_2O (300 mL) resulted in the formation of a whitish suspension, which was filtered to give a greyish oily solid. This compound was dissolved in 2 M aqueous

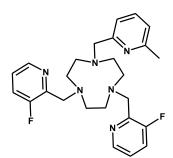

NaOH solution (50 mL), yielding a faint brown-colored solution. The aqueous layer was extracted with CHCl₃ (3×100 mL) and the pale yellow extracts were combined, dried over MgSO₄(s), filtered and concentrated under reduced pressure to afford the product as an oil. The collected oil was dried under vacuum for 6 h before proceeding to the next step.

Synthesis of *N*,*N*′-di(3-fluoro-2-picolyl)-1,4,7-triazacyclononane.

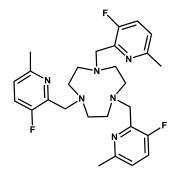

According to the general procedure, *N*,*N*'-di(3-fluoro-2-picolyl)-1,4,7-triazacyclononane was prepared as a yellow-orangish oil (0.328 g) from *N*,*N*'-di(3-fluoro-2-picolyl)-*N*''-monotosyl-1,4,7-triazacyclononane. ESI-MS m/z: calcd for C₁₈H₂₄F₂N₅ (M+H)⁺ 348.20, found 348.18. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.35 (ddd, *J* = 5.0, 1.1 Hz, 2H), 7.36 (dd, *J* = 7.4, 7.4 Hz, 2H), 7.19–7.24 (m, 2 H), 3.91 (d, *J* = 1.6 Hz, 4H), 2.76–2.80 (m, 4H), 2.76 (s, 4H), 2.57–2.61 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –123.93.

Synthesis of *N*,*N*′-di(3-fluoro-6-methyl-2-picolyl)-1,4,7-triazacyclononane.

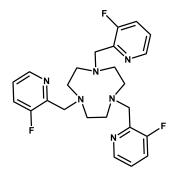
According to the general procedure, *N*,*N*'-di(3-fluoro-6-methyl-2picolyl)-1,4,7-triazacyclononane was prepared as a reddish-brown oil (0.318 g, 59 %) from *N*,*N*'-di(3-fluoro-6-methyl-2-picolyl)-*N*''monotosyl-1,4,7-triazacyclononane (0.762 g, 1.44 mmol). ESI-MS m/z: calcd for C₂₀H₂₈F₂N₅ (M+H)⁺ 376.23, found 376.22. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.20 (dd, *J* = 8.9, 8.9 Hz, 2H), 7.00 (dd, *J* = 8.2, 3.5 Hz, 2 H), 3.84 (d, *J* = 2.0 Hz, 4H), 2.73–2.77 (m, 4H), 2.62 (s, 4H), 2.56–2.61 (m, 4H), 2.50 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ -129.93 (d, *J* = 9.0 Hz).


General procedure for the synthesis of *N*,*N'*,*N''*-tri(2-picolyl)-1,4,7-triazacyclononane.

To a solution of 1.0 equivalent of a N,N'-di(2-picolyl)-1,4,7triazacyclononane derivative in dry CH₂Cl₂ (15 mL), 1.2 equivalents of a 2-pyridinecarboxaldehyde derivative was added as a solid and the resulting mixture was stirred at ambient temperature under an atmosphere of dinitrogen for 1 h. After that time, 3.0 equivalents of sodium triacetoxyborohydride was added and the resulting suspension was heated to 40 °C and refluxed under dinitrogen atmosphere for 1–3 h. When the reaction was complete, as judged by ESI-MS analysis in CH₂Cl₂ solvent, the reaction mixture was allowed to reach ambient temperature and evaporated to dryness under vacuum. The crude residue was partioned between 2 M aqueous NaOH solution (20 mL) and CHCl₃ (40 mL), and the organic phase was collected, dried over MgSO₄(s) and filtered. Removal of the CHCl₃ solvent under reduced pressure afforded


the product as an oil, which was stirred in 8 M aqueous NaOH solution (15 mL) for 1-2 h at ambient temperature to wash. The aqueous emulsion was then extracted with CHCl₃ (25 mL) and the organic phase was collected, dried over MgSO₄(s), filtered and concentrated. Drying under vacuum for 6 h afforded the ligands as oils or oily solids that were used in the metalation steps without further purification.

Synthesis of *N*,*N*'-di(3-fluoro-2-picolyl)-*N*''-mono(6-methyl-2-picolyl)-1,4,7-triazacyclononane (L₁).


According to the general procedure, *N*,*N*'-di(3-fluoro-2-picolyl)-*N*''mono(6-methyl-2-picolyl)-1,4,7-triazacyclononane was prepared as an yellow-orangish oil (0.232 g, 63 %) from *N*,*N*'-di(3-fluoro-2-picolyl)-1,4,7-triazacyclononane (0.192 g, 0.820 mmol), 2-formyl-6-methylpyridine (0.257 g, 2.05 mmol) and sodium triacetoxyborohydride (0.869 g, 4.10 mmol). ESI-MS m/z: calcd for C₂₅H₃₁F₂N₆ (M+H)⁺ 453.26, found 453.25. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.34 (dd, *J* = 3.8, 1.1 Hz, 2H), 7.50 (dd, *J* = 6.1, 6.1 Hz, 1H), 7.33 (ddd, *J* = 7.1, 7.1, 1.1 Hz, 2H), 7.28 (d, *J* = 6.2 Hz, 1 H), 7.16–7.20 (m, 2H), 6.96 (d, *J* = 6.1 Hz, 1 H), 3.84 (d, *J* = 1.7 Hz, 4H), 3.73 (s, 2H), 2.91 (s, 4H), 2.86–2.89 (m, 4H), 2.72–2.76 (m, 4H), 2.50 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃, 25 °C): δ -123.64 (d, *J* = 10.1 Hz). ¹⁹F NMR (470 MHz, CD₃CN, 25 °C): δ -125.49 (s).

Synthesis of N,N',N''-tri(3-fluoro-6-methyl-2-picolyl)-1,4,7-triazacyclononane (L₂).

According to the general procedure, N,N',N''-tri(3-fluoro-6-methyl-2picolyl)-1,4,7-triazacyclononane was prepared as a reddish-brown oily solid (0.247 g, 58 %) from N,N'-di(3-fluoro-6-methyl-2-picolyl)-1,4,7triazacyclononane (0.318 g, 0.850 mmol), 3-fluoro-2-formyl-6-methylpyridine (0.142 g, 1.02 mmol) and sodium triacetoxyborohydride (0.540 g, 2.55 mmol). ESI-MS m/z: calcd for C₂₇H₃₄F₃N₆ (M+H)⁺ 499.28, found 499.25. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 7.20 (dd, J = 8.9, 8.9 Hz, 3H), 6.99 (dd, J = 8.4, 3.6 Hz, 3H), 3.76 (d, J = 2.1 Hz, 6H), 2.82 (s, 12H), 2.49 (s, 9H). ¹⁹F NMR (470 MHz, CDCl₃, 25 °C): δ -129.59 (d, J= 9.4 Hz). ¹⁹F NMR (470 MHz, CD₃CN, 25 °C): δ -131.53 (d, J = 9.2 Hz).

Synthesis of *N*,*N'*,*N''*-tri(3-fluoro-2-picolyl)-1,4,7-triazacyclononane (L₃).

According to the general procedure, *N*,*N*',*N*''-tri(3-fluoro-2-picolyl)-1,4,7-triazacyclononane was prepared as an orange oil (0.204 g, 47 %) from *N*,*N*'-di(3-fluoro-2-picolyl)-1,4,7-triazacyclononane (0.328 g, 0.944 mmol), 3-fluoro-2-formylpyridine (0.142 g, 1.13 mmol) and sodium triacetoxyborohydride (0.600 g, 2.83 mmol). ESI-MS m/z: calcd for C₂₄H₂₈F₃N₆ (M+H)⁺ 457.23, found 457.18. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.34 (dd, *J* = 3.8, 1.1 Hz, 3H), 7.35 (ddd, *J* = 7.2, 7.2, 1.1 Hz, 3H), 7.17–7.23 (m, 3H), 3.82 (d, *J* = 1.7 Hz, 6H), 2.86 (s, 12H). ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –123.70 (dd, *J* = 9.2, 3.4 Hz). ¹⁹F NMR (470 MHz, CD₃CN, 25 °C): δ –125.56 (dd, *J* = 10.6, 1.4 Hz).

[Fe(L₁)][BF₄]₂·0.5CH₃CN (1a·0.5CH₃CN). Under an inert atmosphere of dinitrogen, a pale pink suspension of Fe(BF₄)₂·6H₂O (44.7 mg, 0.130 mmol) in MeCN (1.5 mL) was added dropwise to a stirring orange solution of L₁ (62.9 mg, 0.140 mmol) in MeCN (2.5 mL). During the addition, a color change to dark orange, then red, and finally to dark olive green was observed. The solution was stirred at ambient temperature for 1.5 h and then filtered. Vapor diffusion of Et₂O into the resulting dark olive green solution afforded dark red block-shaped crystals of 1a·0.5CH₃CN (0.036 g, 39%) suitable for single-crystal X-ray diffraction analysis. The compound was placed under vacuum at ambient temperature for 24 h to give desolvated 1a. Anal. Calcd. for C₂₅H₃₀B₂F₁₀FeN₆: C, 44.03%; H, 4.43%; N, 12.32%. Found: C, 43.90%; H, 4.60%; N, 12.39%. UV/Vis absorption spectra (5.9 × 10⁻⁵ M; H₂O, 25 °C): 263 nm (ε = 12400 M⁻¹ cm⁻¹), 436 nm (ε = 5400 M⁻¹ cm⁻¹); (5.5 × 10⁻⁵ M; MeCN, 25 °C): 264 nm (ε = 10700 M⁻¹ cm⁻¹). ESI-MS m/z: calcd for C₂₅H₃₀F₂FeN₆ (M)²⁺ 254.09, found 253.96.

[Zn(L₁)][BF₄]₂ (1b). Under an inert atmosphere of dinitrogen, a colorless solution of Zn(BF₄)₂·5.3H₂O (11.8 mg, 0.035 mmol) in MeCN (1.5 mL) was added dropwise to a stirring dark orange solution of L₁ (16.7 mg, 0.037 mmol) in MeCN (2.5 mL). No distinct color change was observed during the addition of the metal salt, and the light orange solution was stirred at ambient temperature for 3 h and then filtered. Removal of the solvent under reduced pressure afforded a red-brown oily residue which was dissolved in a MeOH/MeCN 3:1 mixture (0.8 mL). Vapor diffusion of Et₂O into this dark red solution afforded a mixture of a polycrystalline colorless solid and a light orange solid that was washed with Et₂O. Colorless plate-shaped crystals of 1b (0.011 g, 45%) suitable for single-crystal X-ray diffraction analysis were

grown from a concentrated dark orange solution of the polycrystalline solid (10 mg/mL) in MeOH/MeCN (2:1). Anal. Calcd. for $C_{25}H_{30}B_2F_{10}N_6Zn$: C, 43.42%; H, 4.37%; N, 12.15%. Found: C, 43.67%; H%, 4.52; N, 12.13%. UV/Vis absorption spectra (7.2 × 10⁻⁵ M; H₂O, 25 °C): 268 nm (ε = 11200 M⁻¹ cm⁻¹); (8.8 × 10⁻⁶ M; MeCN, 25 °C): 268 nm (ε = 30500 M⁻¹ cm⁻¹). ESI-MS m/z: calcd for $C_{25}H_{30}F_2N_6Zn$ (M)²⁺ 258.09, found 257.98.

[Fe(L₂)][BF₄]₂ (2a). Under an inert atmosphere of dinitrogen, a pale pink suspension of Fe(BF₄)₂·6H₂O (41.3 mg, 0.120 mmol) in MeCN (1.5 mL) was added dropwise to a stirring light orange solution of L₂ (64.1 mg, 0.130 mmol) in MeCN (3.5 mL). The resulting dark orange solution was stirred at ambient temperature for 3 h and then filtered. The dark orange filtrate was concentrated under reduced pressure to give a dark yellow solid. Vapor diffusion of Et₂O into a concentrated dark orange solution (10 mg/mL) of this solid in MeOH/MeCN (1:1) gave light yellow plate-shaped crystals of **2a** (0.042 g, 48%) suitable for single-crystal X-ray diffraction analysis. Anal. Calcd. for C₂₇H_{36.2}B₂F₁₁FeN₆O_{1.6} (**2a**·1.6H₂O): C, 42.84%; H, 4.82%; N, 11.10%. Found: C, 43.00%; H, 4.76%; N, 11.00%. UV/Vis absorption spectra (6.9 × 10⁻⁵ M; H₂O, 25 °C): 276 nm (ε = 18800 M⁻¹ cm⁻¹), 369 nm (ε = 1600 M⁻¹ cm⁻¹); (5.5 × 10⁻⁵ M; MeCN, 25 °C): 273 nm (ε = 11100 M⁻¹ cm⁻¹), 371 nm (ε = 800 M⁻¹ cm⁻¹). ESI-MS m/z: calcd for C₂₇H₃₃F₃FeN₆ (M)²⁺ 277.10, found 276.99.

[**Zn**(**L**₂)][**BF**₄]₂ (**2b**). Under an inert atmosphere of dinitrogen, a colorless solution of Zn(BF₄)₂·5.3H₂O (20 mg, 0.059 mmol) in MeCN (1.5 mL) was added dropwise to a stirring light orange solution of L₂ (31 mg, 0.062 mmol) in MeCN (2.5 mL). The resulting light orange solution was stirred at ambient temperature for 3 h, then filtered and concentrated under vacuum to give a light brown oily solid. Colorless block-shaped crystals of **2b** (0.022 g, 51 %) suitable for single-crystal X-ray diffraction analysis were grown from a concentrated light orange solution of the solid (15 mg/mL) in MeOH/MeCN (1:1). Anal. Calcd. for C₂₇H_{34.4}B₂F₁₁N₆O_{0.7}Zn (**2b**·0.7H₂O): C, 43.22%; H, 4.62%; N, 11.20%. Found: C, 43.26%; H, 4.76%; N, 11.20%. UV/Vis absorption spectra (3.0 × 10⁻⁵ M; H₂O, 25 °C): 278 nm (ε = 13400 M⁻¹ cm⁻¹); (2.5 × 10⁻⁵ M; MeCN, 25 °C): 278 nm (ε = 35700 M⁻¹ cm⁻¹). ESI-MS m/z: calcd for C₂₇H₃₃F₃N₆Zn (M)²⁺ 281.10, found 280.97.

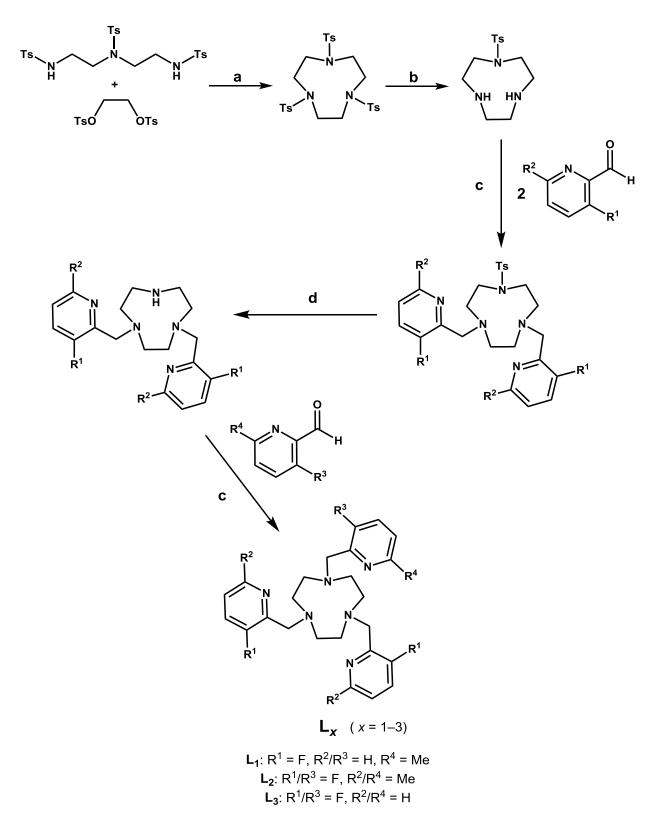
[Fe(L₃)][BF₄]₂ (3a). Under an inert atmosphere of dinitrogen, a pale pink suspension of Fe(BF₄)₂·6H₂O (42.6 mg, 0.126 mmol) in MeCN (1 mL) was added dropwise to a stirring yellow-orange solution of L₃ (63.4 mg, 0.139 mmol) in MeCN (2 mL) to give a dark red solution. This solution was stirred at ambient temperature for 1.5 h and then filtered. Removal of the solvent under reduced pressure yielded a red oily residue. Vapor diffusion of Et₂O into a concentrated dark red solution (10 mg/mL) of this compound in MeOH/MeCN (1:1) gave dark red hexagonal prism-shaped crystals of **3a** (0.046 g, 53%) suitable for single-crystal X-ray diffraction analysis. Anal. Calcd. for C₂₄H₂₇B₂F₁₁FeN₆: C, 42.02%; H, 3.97%; N, 12.25%. Found: C, 41.52%; H, 4.13%; N, 12.39%. UV/Vis absorption spectra (5.1 × 10⁻⁵ M; H₂O, 25 °C): 260 nm (ε = 13900 M⁻¹ cm⁻¹), 437 nm (ε = 7900 M⁻¹ cm⁻¹); (4.0 × 10⁻⁵ M; MeCN, 25 °C): 261 nm (ε = 17700 M⁻¹ cm⁻¹), 436 nm (ε = 10600 M⁻¹ cm⁻¹). ESI-MS m/z: calcd for C₂₄H₂₇F₃FeN₆ (M)²⁺ 256.08, found 255.95.

X-ray structure determination. Single crystals of $1a \cdot 0.5$ CH₃CN, 1b, 2a, 2b, and 3a were directly coated with Paratone-N oil, mounted on a MicroMountsTM rod and frozen under a stream of dinitrogen during data collection. The crystallographic data were collected at 100 K on a Bruker Kappa Apex II diffractometer equipped with an APEX-II detector and MoK α sealed tube source. Raw data were integrated and corrected for Lorentz and polarization effects with *SAINT* v8.34A.⁴ Absorption corrections

were applied using the program SADABS.⁵ Space group assignments were determined by examining systematic absences, E-statistics, and successive refinement of the structures. Structures were solved using direct methods in SHELXT and refined by SHELXL⁶ operated within the OLEX2 interface.⁷ All hydrogen atoms were placed at calculated positions using suitable riding models and refined using isotropic displacement parameters derived from their parent atoms. Thermal parameters for all nonhydrogen atoms were refined anisotropically. Crystallographic data for these compounds at 100 K and the details of data collection are listed in Table S1. Significant disorder of BF₄⁻ counterions was modelled in the crystal structures of $1a \cdot 0.5 CH_3 CN$ and 3a. However, only partial modelling of the disorder was achieved for $1a \cdot 0.5 CH_3 CN$, where the disordered BF₄⁻ ions accounted for the highest peaks in the difference Fourier map. Disordered lattice solvent molecules were present in the void space in the structures of compounds 2a and 2b, these species could not be identified and modelled properly. Therefore, they were treated as a diffuse contribution to the overall scattering without specific atom positions using the solvent masking procedure implemented in OLEX2. One of the two molecules in the asymmetric unit in the crystal structure of 1b was severely disordered and had to be refined using restraints on all atoms. Positional disorder on the 2-picolyl groups was modelled with partial occupancies, where the sum of the occupancies of fluorine atoms was set equal to two, and the sum of methyl substituents was set equal to one.

¹H and ¹⁹F NMR experiments. ¹H and ¹⁹F NMR spectra of ligands L_x (x = 1–3) and ligand precursors were collected at 25 °C on either an Agilent DD2 500 MHz (11.7 T) system, at 500 and 470 MHz frequencies respectively, or on an automated Agilent DD MR 400 MHz (9.40 T) system equipped with Agilent 7600 96-sample autosampler, at 400 and 376 MHz frequencies respectively. Variable-temperature ¹H and ¹⁹F NMR spectra of compounds **1a**, **1b**, **2a**, **2b** and **3a**, were collected on an Agilent DD2 500 MHz (11.7 T) system at 500 and 470 MHz frequencies respectively. A temperature calibration curve for the NMR spectrometer was used to convert the set temperatures on the thermostat to the actual temperatures of the measurements. NMR spectra of samples in 2.1 mM aqueous solutions of trifluoroethanol (TFE), and in 2.1 mM fetal bovine serum (FBS) solutions of NaF, were acquired using gradient autoshimming on the water proton resonance. Chemical shift values (δ) are reported in ppm and referenced to residual proton signals from the deuterated solvents for all ¹H NMR spectra (7.26 ppm for CDCl₃, 4.79 ppm for D₂O/H₂O, and 1.94 ppm for CD₃CN). ¹⁹F NMR chemical shift values for spectra recorded in CDCl₃ and CD₃CN solvents were referenced to trichlorofluoromethane (CFCl₃) at 0 ppm. For spectra of compounds 1a, 1b, 2a, 2b, and 3a in CD_3CN , the ¹⁹F NMR chemical shift of the BF₄⁻ counterions was set to -151.44 ppm at all temperatures to make the comparison between compounds consistent. TFE was used as an internal standard for variable-temperature ¹⁹F NMR measurements of compounds 1a, 1b, 2a, 2b, and 3a, in aqueous solutions. The temperature dependence of the ¹⁹F NMR chemical shift of TFE in a 2.1 mM water solution was determined relative to CFCl₃, and the resulting chemical shift values were used as reference points for the ¹⁹FNMR chemical shifts of compounds **1a**, **1b**, 2a, 2b, and 3a, at each measured temperature (4–61 °C). Variable-temperature ¹⁹F NMR spectra of compounds 1a and 2a in FBS were collected under the same conditions as ¹⁹F NMR spectra of these compounds in aqueous TFE solutions, except NaF (2.1 mM) was used as an internal standard because of potential reactivity of TFE with serum albumin. The ¹⁹F NMR chemical shift of NaF at each recorded temperature was determined with respect to TFE in a separate experiment, conducted in an aqueous solution containing 1.1 mM TFE and 5.2 mM NaF. All coupling constants (J) were measured in Hertz (Hz). The MestReNova 10.0 NMR data processing software was used to analyze and process all recorded NMR spectra.

Magnetic measurements. The magnetic moments of compounds **1a** and **2a** in solutions, were determined using the Evans method⁸ by collecting variable-temperature ¹H NMR spectra using a Varian Inova 400 MHz (9.40 T) spectrometer. For aqueous solution measurements, the compounds **1a** and **2a** were dissolved in a 2.1 mM solution of TFE in H₂O and dimethyl sulfoxide (DMSO) was added as a reference (2 v/v % of DMSO). The resulting solution was placed in a NMR tube containing a sealed capillary with a solution of H₂O and DMSO (2 v/v % of DMSO). For acetonitrile solution measurements, compound **1a** was dissolved in a mixture of CD₃CN and CH₂Cl₂ (2 v/v % of CH₂Cl₂), and the resulting solution was placed in a NMR tube containing a sealed capillary with a solution of CD₃CN and CH₂Cl₂ (2 v/v % of CH₂Cl₂). The average of three measurements afforded the resulting data. All data were corrected for diamagnetic contributions from the core diamagnetism of each sample (estimated using Pascal's constants).⁹ The molar fraction of spin-crossover compound **1a** in high-spin state as a function of temperature was estimated by equation 1:

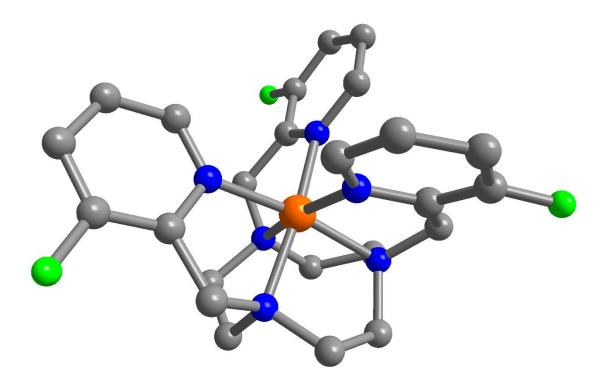

$$\gamma_{\rm HS} = (\chi T_{\rm obs} - \chi T_{\rm LS}) / (\chi T_{\rm HS} - \chi T_{\rm LS}) \approx \chi T_{\rm obs} / \chi T_{\rm HS} \quad (1)$$

 χT for the fully populated S = 0 (low-spin) ground state (χT_{LS}) was approximated to be equal to 0 cm³ K mol⁻¹. An average value of χT for the high-spin compound **2a** (3.63 cm³ K mol⁻¹) in an aqueous solution, over the temperature range studied (278–333 K) was used as the fully populated S = 2 (high-spin) excited state limit (χT_{HS}). The thermodynamic parameters, ΔH and ΔS , associated with the spin transition in solution, as measured by the Evans method, were obtained using the regular solution model:¹⁰

$$\mathbf{R} \cdot \ln(\gamma_{\rm HS} / (1 - \gamma_{\rm HS})) = -\Delta H / T + \Delta S \quad (2)$$

UV/Visible absorption measurements. UV/Visible experiments were carried out on an Agilent Cary 5000 UV/Vis/NIR spectrometer. UV/Visible spectra were collected in the 200–800 nm range in MeCN and H₂O solvents using 9–75 μ M solutions of compounds **1a**, **1b**, **2a**, **2b** and **3a**.

Electrospray ionization mass spectrometry (ESI-MS) measurements. ESI-MS spectra were recorded on a LC-MS Bruker Amazon SL quadrupole ion trap instrument, equipped with a Compass Software 1.3 SR2. All measurements were carried out in a $CH_2Cl_2/MeOH$ (4:1) carrier solvent using positive ionization mode.



Scheme S1 | Synthesis of ligands L_x (x = 1-3). Reagents and solvents: (a) Cs₂CO₃, DMF; (b) HBr/HOAc; (c) Na(OAc)₃BH, CH₂Cl₂; (d) conc. H₂SO₄.

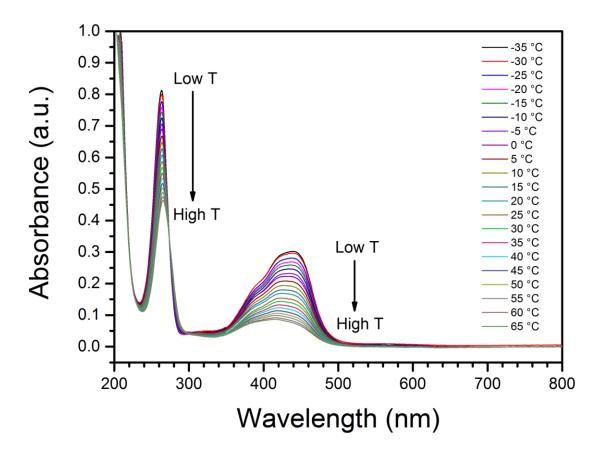
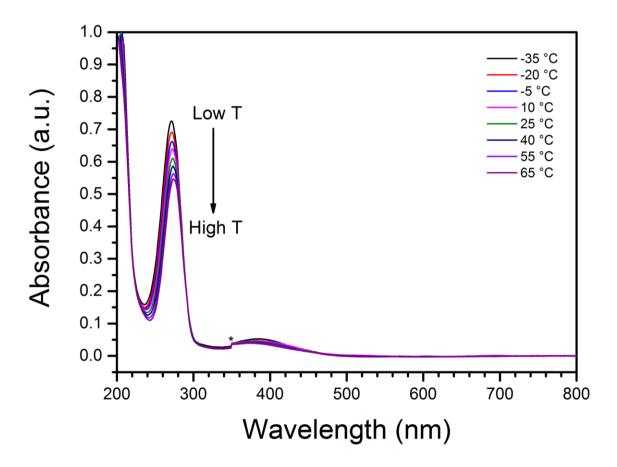
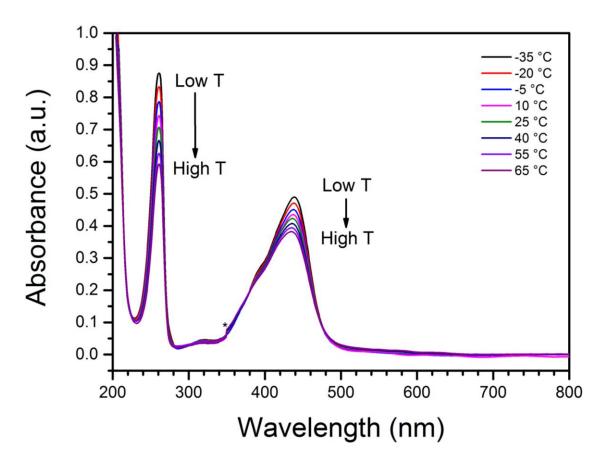
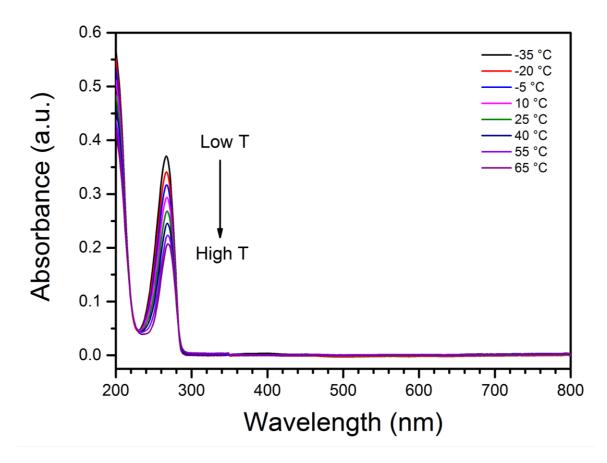

	1a-0.5CH ₃ CN	1b	2a	2b	3 a
Empirical formula	$C_{26}H_{31.5}B_2F_{10}FeN_{6.5}$	$C_{25}H_{30}B_2F_{10}N_6Zn$	$C_{27}H_{33}B_2F_{11}FeN_6$	$C_{27}H_{33}B_2F_{11}N_6Zn$	$C_{24}H_{27}B_2F_{11}FeN_6$
Formula weight, g mol ⁻¹	702.55	691.54	728.06	737.58	685.98
Crystal system	Triclinic	Monoclinic	Cubic	Cubic	Trigonal
Space group	<i>P</i> -1	Рс	<i>F</i> -43c	<i>F</i> -43c	Р3
Wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073
Temperature, K	100	100	100	100	100
<i>a</i> , Å	11.4603(7)	13.6092(4)	29.3374(7)	29.2820(8)	16.8376(5)
b, Å	14.9231(8)	14.5112(4)	29.3374(7)	29.2820(8)	16.8376(5)
c, Å	18.6992(11)	14.1222(4)	29.3374(7)	29.2820(8)	7.8829(3)
α , °	110.254(3)	90	90	90	90
eta, °	106.434(3)	90.875(1)	90	90	90
γ, °	91.133(3)	90	90	90	120
V, Å ³	2853.0(3)	2788.61(14)	25250.2(18)	25107(2)	1935.43(14)
Z	4	4	32	32	3
$ ho_{ m calcd}$, g cm ⁻³	1.636	1.647	1.532	1.561	1.766
μ , mm ⁻¹	0.626	0.977	0.573	0.878	0.694
Reflections coll./unique	126647/16997	80246/16461	448528/5143	274422/4026	115769/12595
R(int)	0.0360	0.0355	0.0574	0.0396	0.0390
$R_1(I>2\sigma(I))^a$	0.0448	0.0429	0.0486	0.0355	0.0365
w $R_2 (all)^b$	0.1153	0.1088	0.1548	0.1030	0.0958
GoF	1.059	1.025	1.049	1.073	1.026

Table S1 | Crystallographic data for compounds 1a·0.5CH₃CN, 1b, 2a, 2b, and 3a.


 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{C}|| / \Sigma |F_{0}|, \ {}^{b}wR_{2} = [\Sigma w(F_{0}{}^{2} - F_{C}{}^{2})^{2} / \Sigma w(F_{0}{}^{2})^{2}]^{1/2}.$


Figure S1 | Crystal structure of $[Fe(L_3)]^{2+}$, as observed in **3a**. Orange, green, blue and gray spheres represent Fe, F, N and C atoms, respectively; H atoms are omitted for clarity.


Figure S2 | Variable-temperature UV/Visible spectra of a 55 μ M solution of **1a** in dry MeCN. Spectra were measured in the temperature range -35-65 °C with 5 °C increments. The temperature of each recorded spectrum is given with the color assignment in the legend.

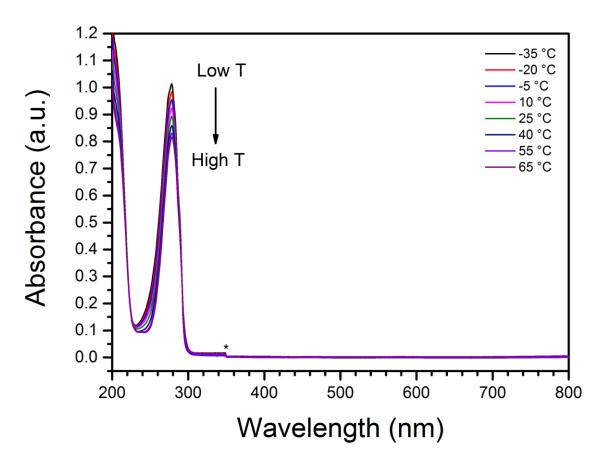

Figure S3 | Variable-temperature UV/Visible spectra of a 55 μ M solution of **2a** in dry MeCN. Spectra were measured in the temperature range -35-65 °C with either 10 or 15 °C increments. The temperature of each recorded spectrum is given with the color assignment in the legend. The asterisk denotes an instrument derived artifact.

Figure S4 | Variable-temperature UV/Visible spectra of a 40 μ M solution of **3a** in dry MeCN. Spectra were measured in the temperature range -35-65 °C with either 10 or 15 °C increments. The temperature of each recorded spectrum is given with the color assignment in the legend. The asterisk denotes an instrument derived artifact.

Figure S5 | Variable-temperature UV/Visible spectra of an 8.8 μ M solution of **1b** in dry MeCN. Spectra were measured in the temperature range -35-65 °C with either 10 or 15 °C increments. The temperature of each recorded spectrum is given with the color assignment in the legend.

Figure S6 | Variable-temperature UV/Visible spectra of a 25 μ M solution of **2b** in dry MeCN. Spectra were measured in the temperature range -35-65 °C with either 10 or 15 °C increments. The temperature of each recorded spectrum is given with the color assignment in the legend. The asterisk denotes an instrument derived artifact.

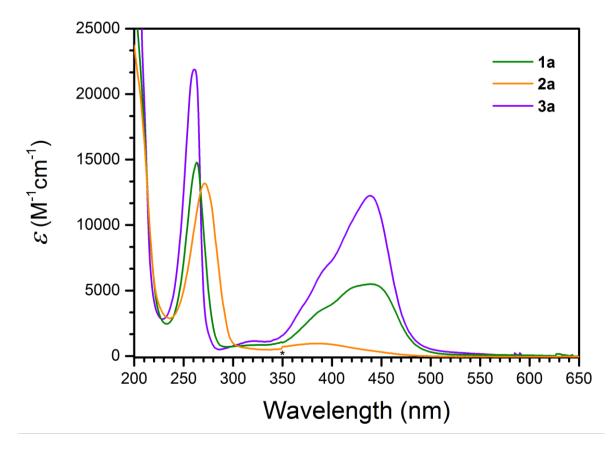
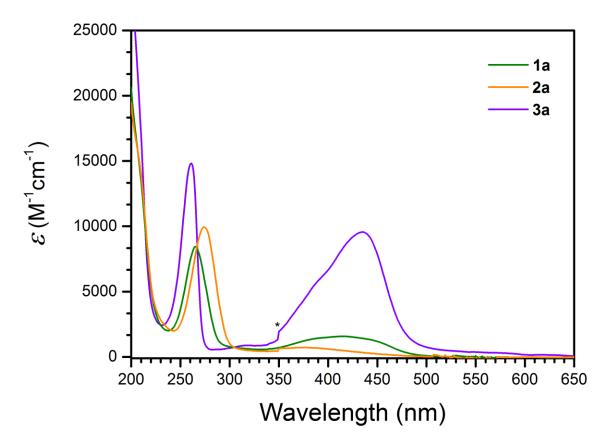
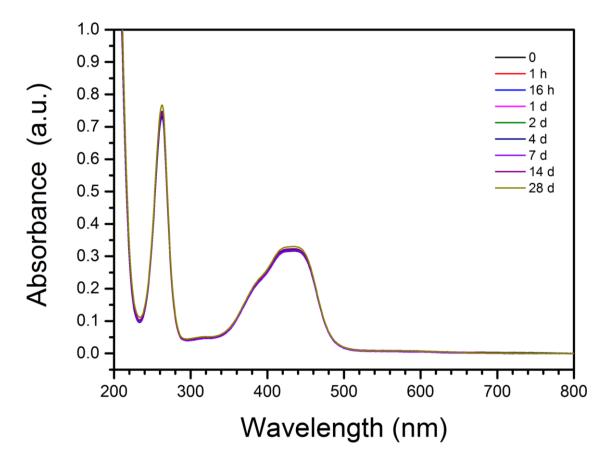
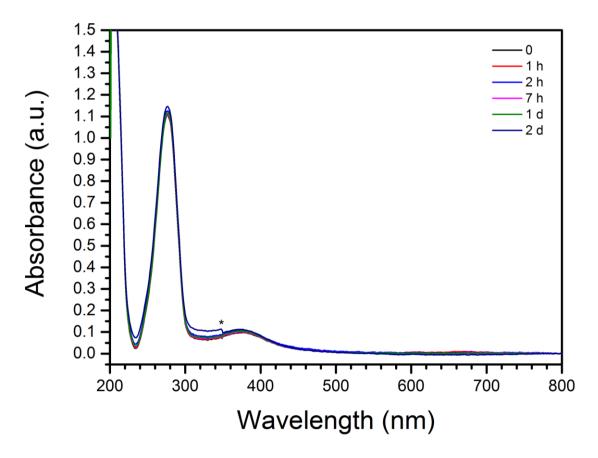
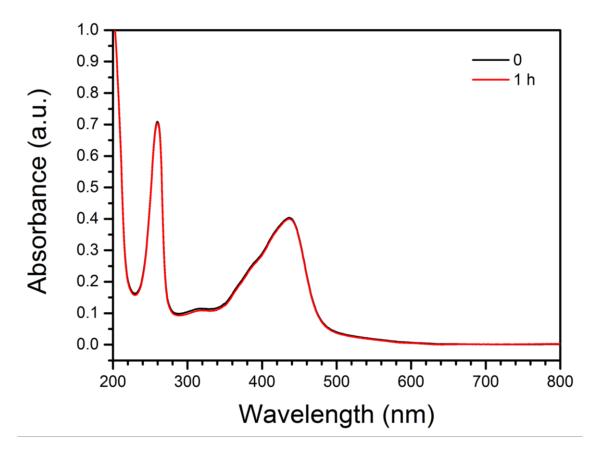
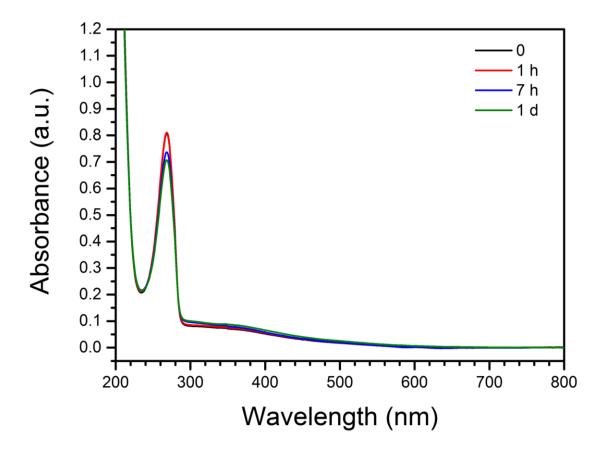
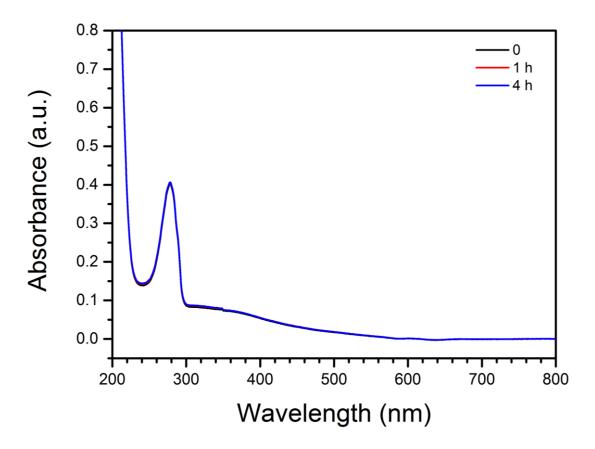


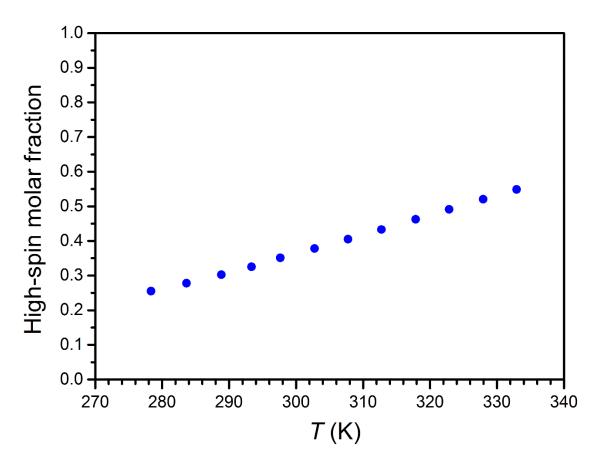
Figure S7 | Comparison of UV/Visible spectra of compounds 1a, 2a and 3a in dry MeCN at -35 °C. Note that the molar absorption coefficient (ε), instead of absorbance, is plotted as a function of wavelength to correct for the different concentrations of samples of 1a, 2a and 3a. The asterisk denotes an instrument derived artifact.

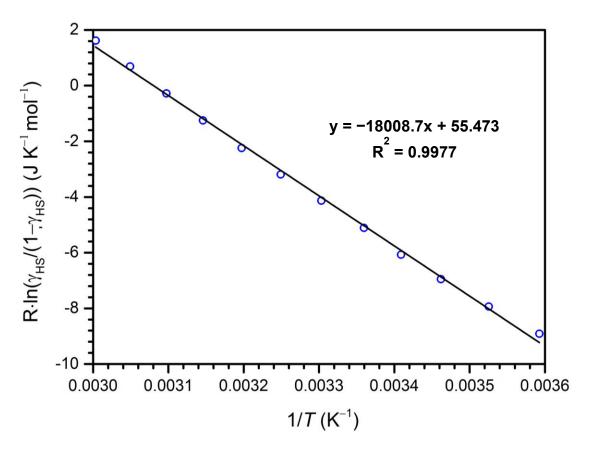




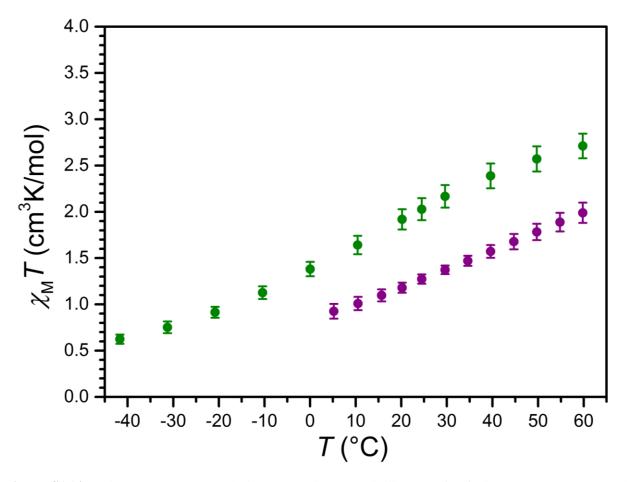

Figure S8 | Comparison of UV/Visible spectra of compounds 1a, 2a and 3a in dry MeCN at 65 °C. Note that the molar absorption coefficient (ε), instead of absorbance, is plotted as a function of wavelength to correct for the different concentrations of samples of 1a, 2a and 3a. The asterisk denotes an instrument derived artifact.

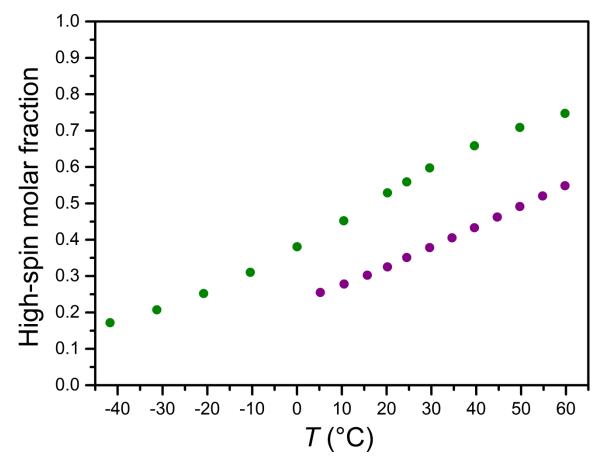

Figure S9 | UV/Visible spectra of a 59 μ M solution of **1a** in deoxygenated water and under aerobic conditions, respectively, at ambient temperature. The color assignment in the legend indicates the time that the sample solution was open to air prior to the measurement was performed.

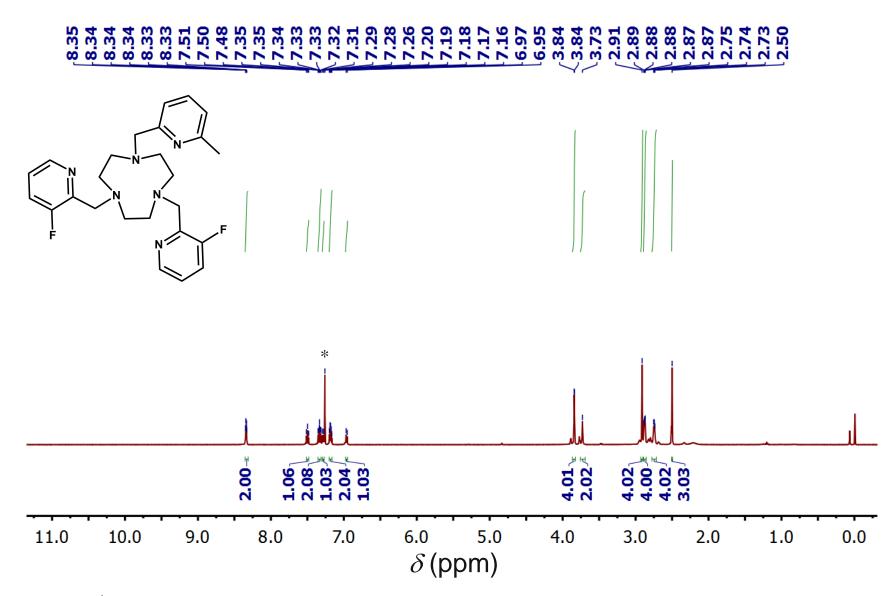

Figure S10 | UV/Visible spectra of a 69 μ M solution of **2a** in deoxygenated water and under aerobic conditions, respectively, at ambient temperature. The color assignment in the legend indicates the time that the sample solution was open to air prior to the measurement was performed. The asterisk denotes an instrument derived artifact.

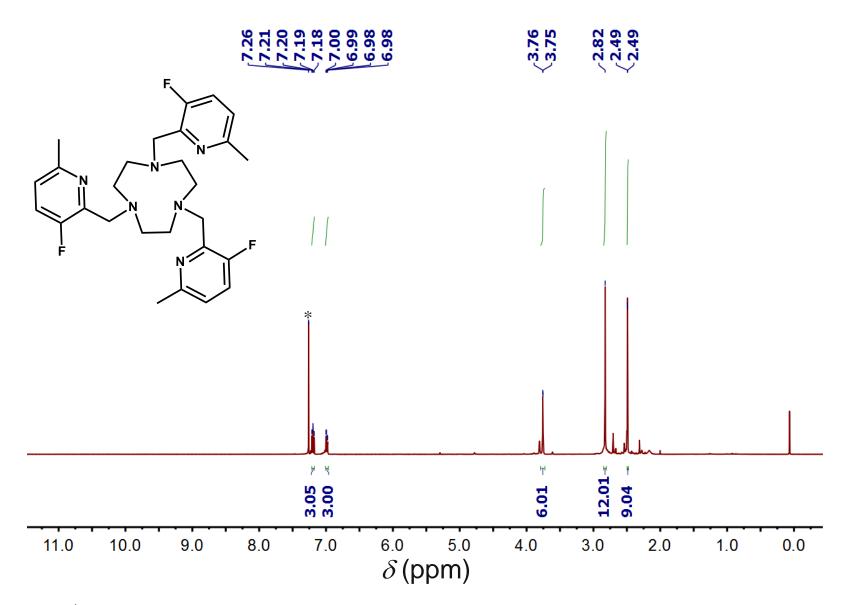

Figure S11 | UV/Visible spectra of a 51 μ M solution of **3a** in deoxygenated water (black curve) and under aerobic conditions (red curve) at ambient temperature. The color assignment in the legend indicates the time that the sample solution was open to air prior to the measurement was performed.


Figure S12 | UV/Visible spectra of a 72 μ M solution of **1b** in deoxygenated water and under aerobic conditions, respectively, at ambient temperature. The color assignment in the legend indicates the time that the sample solution was open to air prior to the measurement was performed. Note that the slight decrease in intensity observed with time in air is attributed to a dilution of the sample solution that took place when the sample was moved back and forth between the cuvette and a sample container.


Figure S13 | UV/Visible spectra of a 30 μ M solution of **2b** in deoxygenated water and under aerobic conditions, respectively, at ambient temperature. The color assignment in the legend indicates the time that the sample solution was open to air prior to the measurement was performed.


Figure S14 | Plot of the molar fraction of **1a** in high-spin state as a function of temperature, obtained using equation 1. A linear fit to the data gives a spin-crossover temperature $(T_{1/2})$ of 325(1) K.


Figure S15 | Thermodynamic data for the spin transition of **1a** in an aqueous solution, as measured by the Evans method, obtained using the regular solution model (equation 2). The solid black line indicates a linear fit to the data, giving the following thermodynamic parameters: $\Delta H = 18.0(3)$ kJ mol⁻¹ and $\Delta S = 55.5(9)$ J K⁻¹ mol⁻¹.


Figure S16 | Variable-temperature solution magnetic susceptibility data for **1a** in aqueous (purple) and acetonitrile (green) solutions, obtained using the Evans method. Error bars represent standard deviations of the measurements.

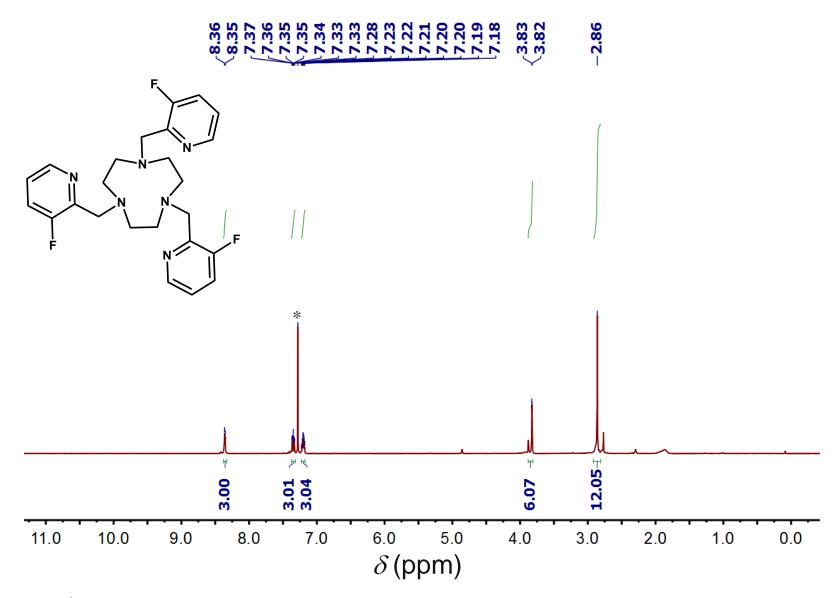

Figure S17 | Comparison of the molar fraction of **1a** in high-spin state as a function of temperature in aqueous (purple) and acetonitrile (green) solutions, obtained using equation 1. Linear fits to the data give a spin-crossover temperature ($T_{1/2}$) of 52(1) and 17(1) °C in aqueous and acetonitrile solutions, respectively.

Figure S18 | ¹H NMR spectrum of N, N'-di(3-fluoro-2-picolyl)-N''-mono(6-methyl-2-picolyl)-1,4,7-triazacyclononane (L₁) in CDCl₃ at 25 °C. The asterisk denotes the residual CHCl₃ solvent peak.

Figure S19 | ¹H NMR spectrum of N, N', N''-tri(3-fluoro-6-methyl-2-picolyl)-1,4,7-triazacyclononane (L₂) in CDCl₃ at 25 °C. The asterisk denotes the residual CHCl₃ solvent peak.

Figure S20 | ¹H NMR spectrum of N, N', N''-tri(3-fluoro-2-picolyl)-1,4,7-triazacyclononane (L₃) in CDCl₃ at 25 °C. The asterisk denotes the residual CHCl₃ solvent peak

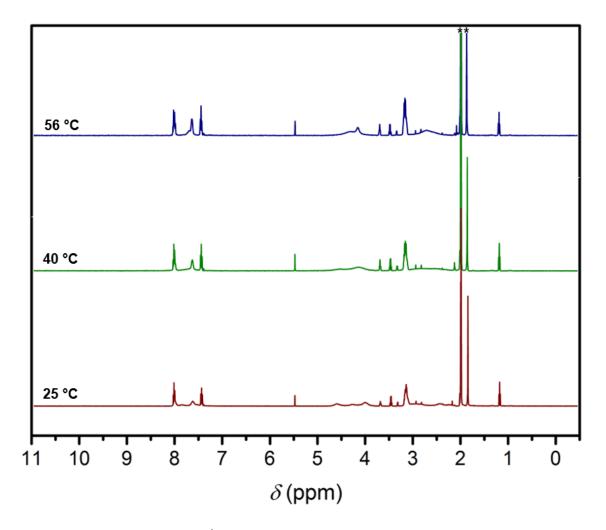
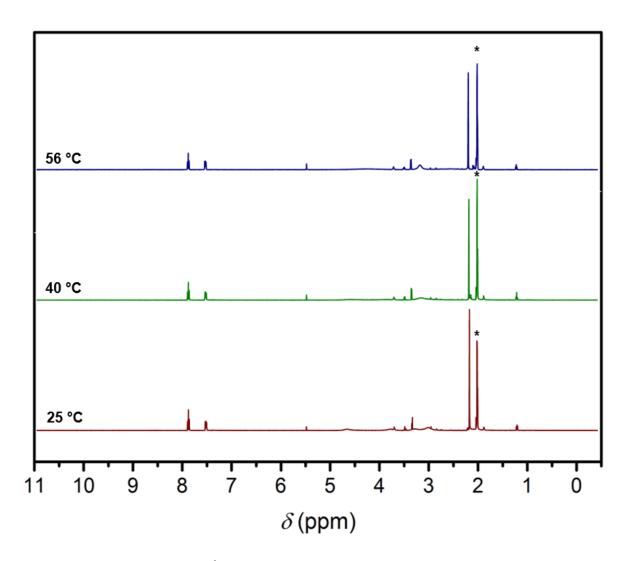



Figure S21 | Variable-temperature ¹H NMR spectra of 1b in CD₃CN at 25 to 56 °C. The asterisks denote residual solvent peaks.

Figure S22 | Variable-temperature ¹H NMR spectra of **2b** in CD₃CN at 25 to 56 °C. The asterisk denotes the residual solvent peak.

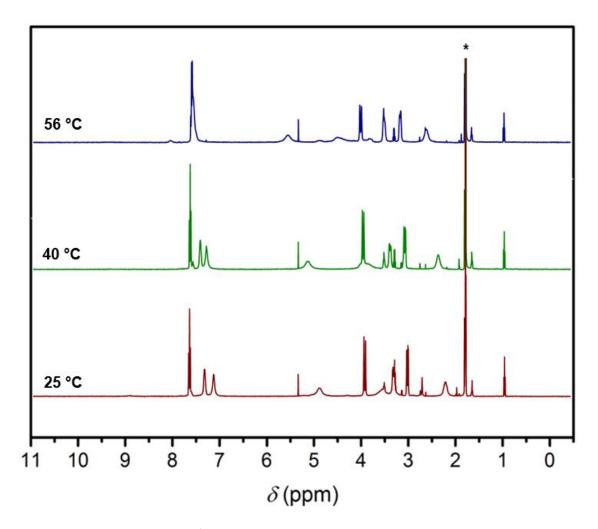


Figure S23 | Variable-temperature ¹H NMR spectra of 3a in CD₃CN at 25 to 56 °C. The asterisk denotes the residual solvent peak.

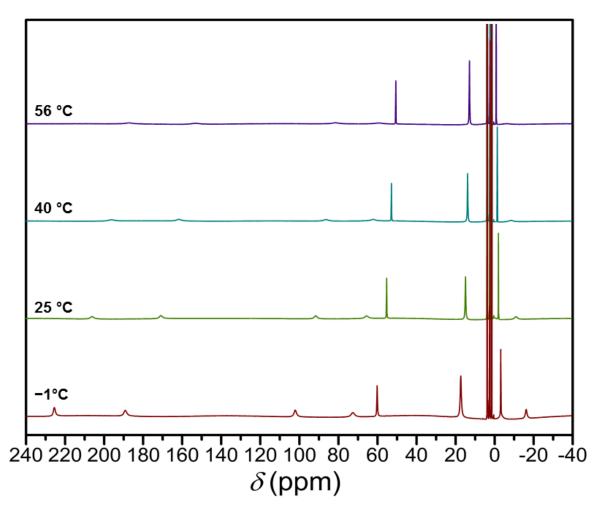


Figure S24 | Variable-temperature ¹H NMR spectra of 2a in CD₃CN at -1 to 56 °C.

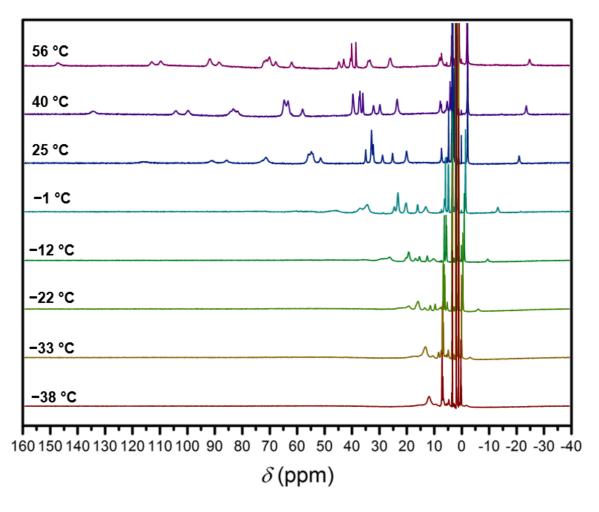


Figure S25 | Variable-temperature ¹H NMR spectra of **1a** in CD₃CN at -38 to 56 °C.

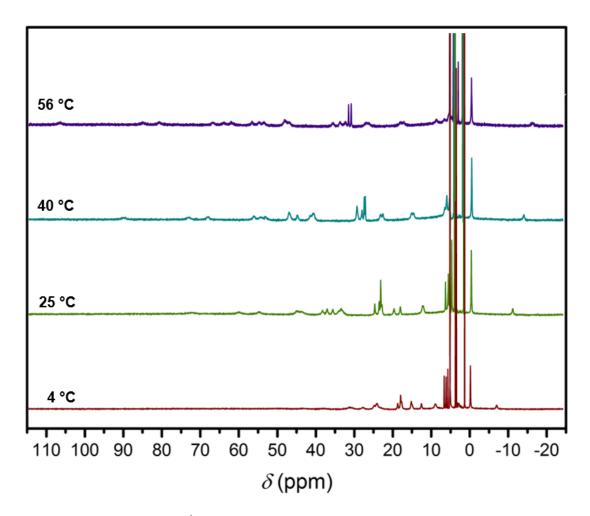
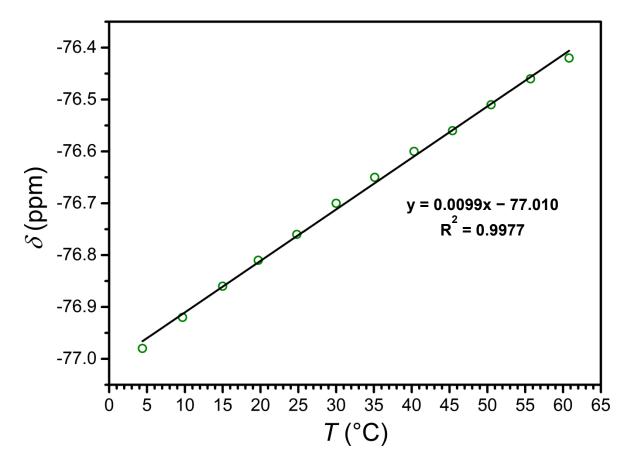



Figure S26 | Variable-temperature ¹H NMR spectra of 1a in D₂O at 4 to 56 °C.

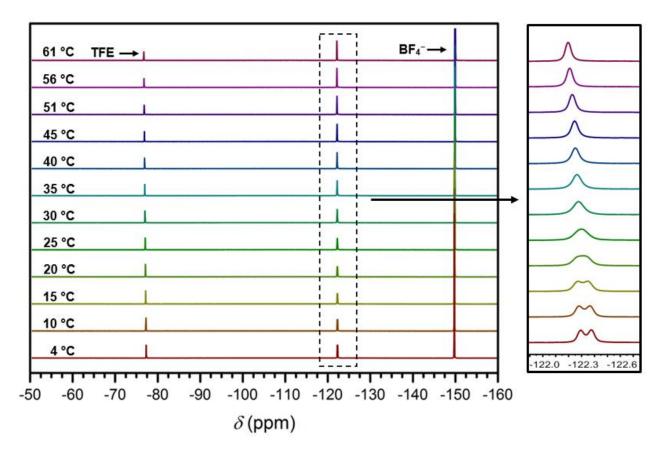


Figure S27 | Plot of the temperature dependence of the ¹⁹F NMR chemical shift of trifluoroethanol (TFE) in 2.1 mM H₂O solution. The chemical shift values are referenced to CFCl₃. TFE was used as an internal standard for ¹⁹F NMR measurements of compounds **1a**, **1b**, **2a**, **2b**, and **3a** in H₂O, where the chemical shift of TFE at each measured temperature was set to the values shown in the graph above and Table S2 below. The black solid line corresponds to a linear fit to the data.

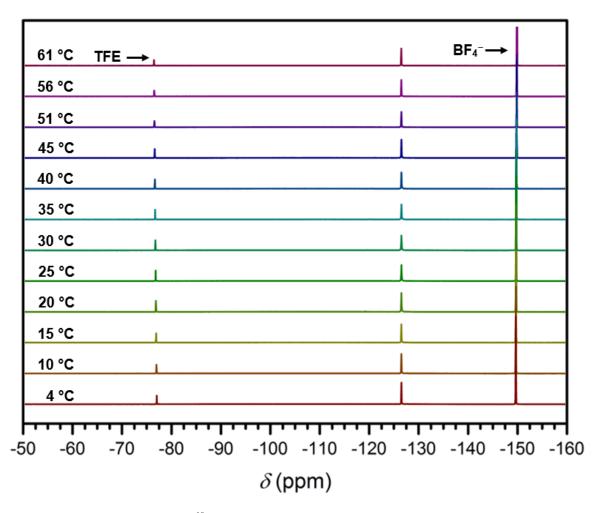
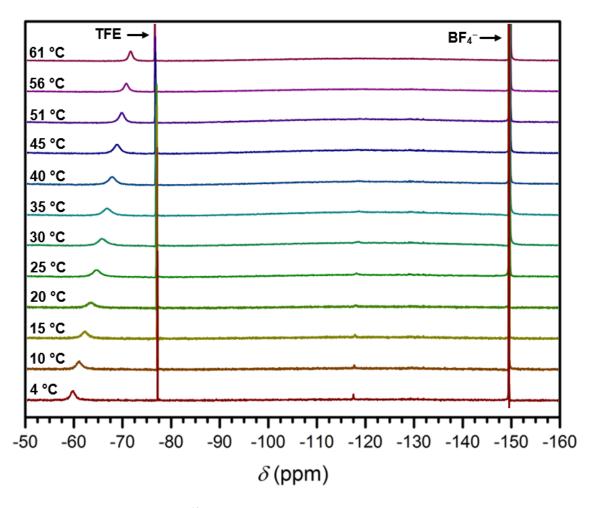
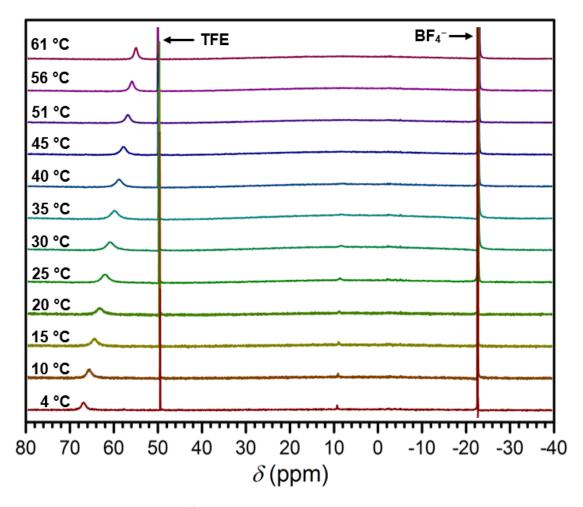
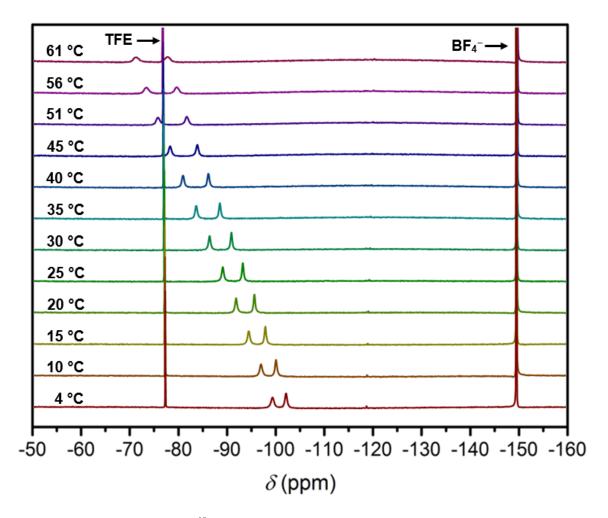

<i>T</i> (°C)	¹⁹ F NMR chemical shift (ppm)		
	TFE	NaF	
4	-76.98	-118.85	
10	-76.92	-118.98	
15	-76.86	-119.11	
20	-76.81	-119.25	
25	-76.76	-119.41	
30	-76.70	-119.55	
35	-76.65	-119.71	
40	-76.60	-119.87	
45	-76.56	-120.03	
51	-76.51	-120.19	
56	-76.46	-120.35	
61	-76.42	-120.52	

Table S2 | Chemical shifts of ¹⁹F NMR resonances of the internal standards used in this study, TFE and NaF, in H_2O .^{*a*}


^a Chemical shift values are referenced to CFCl₃.


Figure S28 | Left: Variable-temperature ¹⁹F NMR spectra of **1b** (7.0 mM) in a 2.1 mM TFE water solution at 4 to 61 °C. Right: Expansion showing the ¹⁹F NMR resonances of **1b**, demonstrating the two overlapping resonances observed at 4 °C and the coalescence of the two peaks upon warming.


Figure S29 | Variable-temperature ¹⁹F NMR spectra of **2b** (10.9 mM) in a 2.1 mM TFE water solution at 4 to 61 °C.

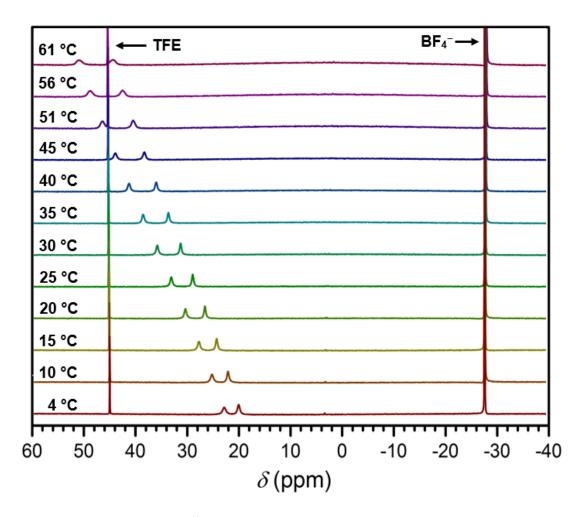

Figure S30 | Variable-temperature ¹⁹F NMR spectra of **2a** (12.9 mM) in a 2.1 mM TFE water solution at 4 to 61 °C.

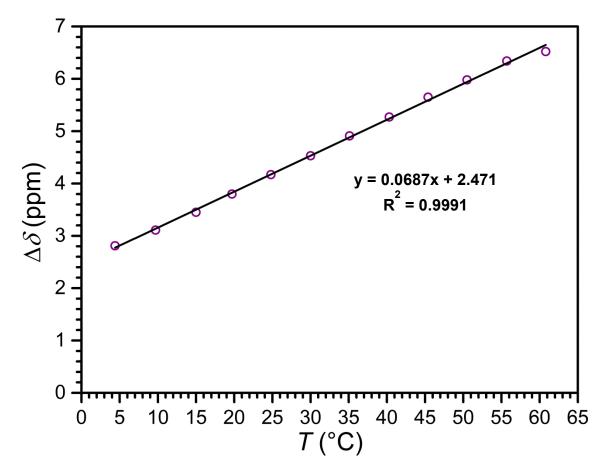
Figure S31 | Variable-temperature ¹⁹F NMR spectra of **2a** (12.9 mM) in a 2.1 mM TFE water solution at 4 to 61 °C referenced to its diamagnetic Zn^{II} analogue **2b** at 0 ppm.

Figure S32 | Variable-temperature ¹⁹F NMR spectra of **1a** (14.4 mM) in a 2.1 mM TFE water solution at 4 to 61 $^{\circ}$ C.

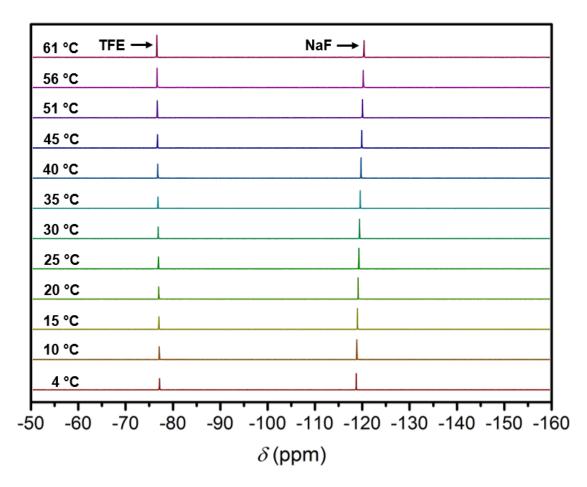
Figure S33 | Variable-temperature ¹⁹F NMR spectra of **1a** (14.4 mM) in a 2.1 mM TFE water solution at 4 to 61 °C referenced to its diamagnetic Zn^{II} analogue **1b** at 0 ppm.

<i>T</i> (°C)	1	a	2a	1b	2b
<i>I</i> (C)	¹⁹ F NMR chemical shift (ppm)				
4	-99.25	-102.06	-59.44	-122.33^{a}	-126.77
10	-96.86	-99.97	-60.71	-122.32^{a}	-126.76
15	-94.31	-97.76	-61.94	-122.32^{a}	-126.76
20	-91.68	-95.48	-63.08	-122.32	-126.76
25	-88.91	-93.08	-64.39	-122.30	-126.77
30	-86.17	-90.70	-65.37	-122.28	-126.76
35	-83.39	-88.30	-66.49	-122.26	-126.77
40	-80.65	-85.92	-67.57	-122.25	-126.77
45	-77.97	-83.62	-68.61	-122.25	-126.77
51	-75.45	-81.43	-69.56	-122.23	-126.76
56	-73.02	-79.36	-70.47	-122.21	-126.75
61	-70.92	-77.44	-71.40	-122.20	-126.74
			$\Delta\delta(\text{ppm})$		
	28.33	24.62	-11.96	0.13	0.03
		Temperature	e coefficient (CT	$(\mathbf{ppm} \circ \mathbf{C}^{-1})^b$	
	0.52(1)	0.45(1)	-0.21(1)	0.002(1)	0.0002(1)
<i>T</i> (°C)		Peak	width in FWHN	A (Hz)	
4	371	266	561	56	25
10	311	235	635	63	28
15	272	210	745	74	32
20	235	189	854	71	36
25	244	192	955	56	41
30	243	196	990	46	42
35	264	214	960	39	42
40	282	243	868	33	38
45	332	298	761	30	30
51	444	365	614	28	27
56	553	501	510	25	28
61	655	634	421	25	26
<i>T</i> (°C)		$ \mathbf{CT} /\mathbf{FWHM} (^{\circ}\mathbf{C}^{-1})^{c}$			
40	0.87	0.87	0.11	0.03	0.002

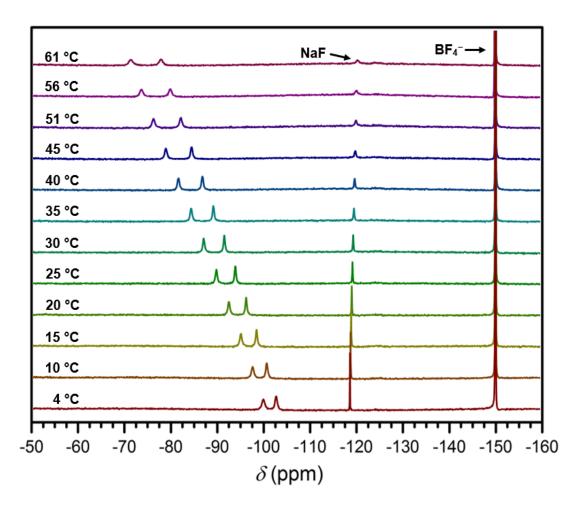
Table S3 | Chemical shifts and peak widths of ¹⁹F NMR resonances of compounds **1a**, **1b**, **2a** and **2b**, in 2.1 mM TFE water solutions as a function of temperature.


^{*a*} Value based on the center of the two overlapping peaks.

^b CT values are given by the slopes of the linear fits to the data of δ vs T plots.


^c Calculated for FWHM (ppm) measured at 40 °C.

<i>T</i> (°C)	1	la	2a
	¹⁹ F NMR hyperfine shift (ppm)		
4	23.08	20.27	67.33
10	25.46	22.35	66.05
15	28.01	24.56	64.82
20	30.64	26.84	63.68
25	33.39	29.22	62.38
30	36.11	31.58	61.39
35	38.87	33.96	60.28
40	41.60	36.33	59.20
45	44.28	38.63	58.16
51	46.78	40.80	57.20
56	49.19	42.85	56.28
61	51.28	44.76	55.34


Table S4 | Chemical shifts of ¹⁹F NMR resonances of Fe^{II} compounds **1a** and **2a** in 2.1 mM TFE water solutions as a function of temperature, referenced to their corresponding Zn^{II} analogues **1b** and **2b**.

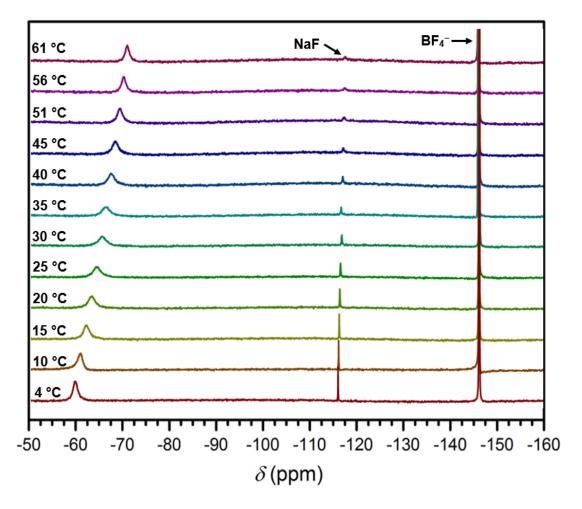
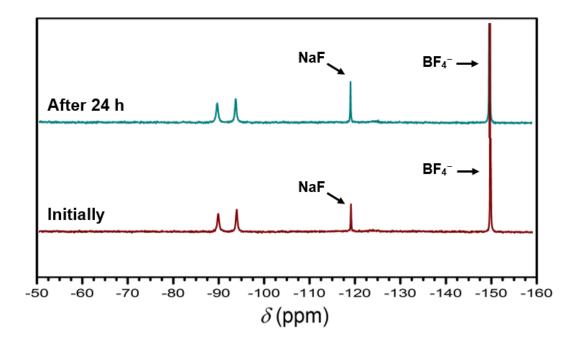

Figure S34 | Plot of the ¹⁹F NMR chemical shift separation between the two ¹⁹F peaks of **1a** in a 2.1 mM TFE water solution as a function of temperature. The black line corresponds to a linear fit to the data.

Figure S35 | Variable-temperature ¹⁹F NMR spectra of 1.1 mM TFE and 5.2 mM NaF in H₂O at 4 to 61 °C. The chemical shift values are referenced to CFCl₃ after being adjusted to the chemical shift of TFE at each measured temperature, as illustrated in Figure S27 and Table S2.

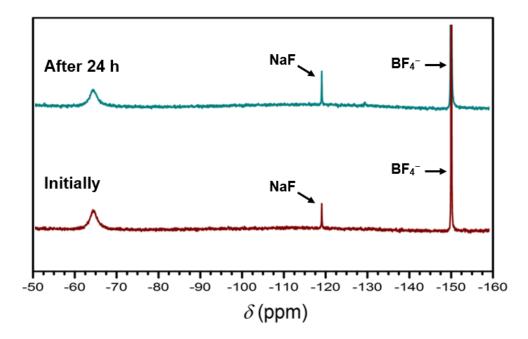
Figure S36 | Variable-temperature ¹⁹F NMR spectra of **1a** (13.4 mM) in a 2.1 mM solution of NaF in FBS at 4 to 61 °C. The chemical shift of NaF was adjusted to the chemical shift of TFE at each measured temperature, as illustrated in Figure S27 and Table S2.

Figure S37 | Variable-temperature ¹⁹F NMR spectra of **2a** (15.0 mM) in a 2.1 mM solution of NaF in FBS at 4 to 61 °C. The chemical shift of NaF was adjusted to the chemical shift of TFE at each measured temperature, as illustrated in Figure S27 and Table S2.

T (°C)	1 a		2a	
<i>T</i> (°C)	¹⁹ F NMR chemical shift (ppm)			
4	-100.03	-102.82	-59.72	
10	-97.70	-100.77	-60.82	
15	-95.16	-98.57	-62.20	
20	-92.55	-96.30	-63.43	
25	-89.84	-93.94	-64.43	
30	-87.08	-91.56	-65.72	
35	-84.35	-89.18	-66.63	
40	-81.59	-86.80	-67.79	
45	-78.85	-84.45	-68.74	
51	-76.17	-82.10	-69.79	
56	-73.56	-79.81	-70.56	
61	-71.23	-77.74	-71.40	
		$\Delta\delta(\text{ppm})$		
	28.80	25.08	-11.68	
	Temperatu	re coefficient (C7	$\Gamma) (\mathbf{ppm} ^{\circ}\mathbf{C}^{-1})^{a}$	
	0.52(1)	0.45(1)	-0.21(1)	
<i>T</i> (°C)	Pea	k width in FWHN	M (Hz)	
4	362	281	582	
10	314	241	675	
15	275	200	767	
20	261	185	869	
25	234	182	972	
30	228	188	957	
35	244	207	1055	
40	251	241	872	
45	272	254	760	
51	342	311	691	
56	394	379	588	
61	515	467	510	
<i>T</i> (°C)		$ \mathbf{CT} /\mathbf{FWHM} (^{\circ}\mathbf{C}^{-1})^{b}$		
40	0.97	0.88	0.11	


Table S5 | Chemical shifts and peak widths of ¹⁹F NMR resonances of Fe^{II} compounds **1a** and **2a**, in 2.1 mM solutions of NaF in FBS as a function of temperature.

^{*a*} CT values are given by the slopes of the linear fits to the data of δ vs T plots.


^{*b*} Calculated for FWHM (ppm) measured at 40 °C.

	1	a	2a	
<i>T</i> (°C)	¹⁹ F NMR hyperfine shift (ppm)			
4	22.30	19.51	67.05	
10	24.62	21.55	65.94	
15	27.16	23.75	64.56	
20	29.77	26.02	63.33	
25	32.46	28.36	62.34	
30	35.20	30.72	61.04	
35	37.91	33.08	60.14	
40	40.66	35.45	58.98	
45	43.40	37.80	58.03	
51	46.06	40.13	56.97	
56	48.65	42.40	56.19	
61	50.97	44.46	55.34	

Table S6 | Chemical shifts of ¹⁹F NMR resonances of Fe^{II} compounds **1a** and **2a** in 2.1 mM solutions of NaF in FBS as a function of temperature, referenced to their corresponding Zn^{II} analogues **1b** and **2b**.

Figure S38 | Comparison of ¹⁹F NMR spectra of **1a** (13.4 mM) in a 2.1 mM solution of NaF in FBS recorded at 25 °C. The lower spectrum corresponds to a ¹⁹F NMR spectrum of a freshly prepared sample, and the upper spectrum corresponds to a ¹⁹F NMR spectrum of the same sample after standing open to air for 24 h at ambient temperature.

Figure S39 | Comparison of ¹⁹F NMR spectra of **2a** (15.0 mM) in a 2.1 mM solution of NaF in FBS recorded at 25 °C. The lower spectrum corresponds to a ¹⁹F NMR spectrum of a freshly prepared sample, and the upper spectrum corresponds to a ¹⁹F NMR spectrum of the same sample after standing open to air for 24 h at ambient temperature.

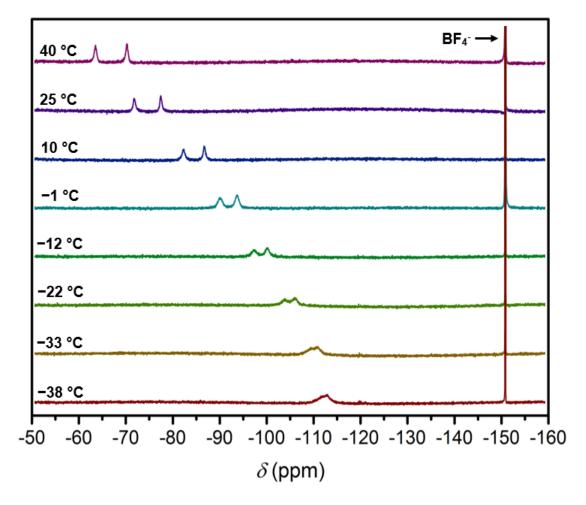


Figure S40 | Variable-temperature ¹⁹F NMR spectra of 1a in CD₃CN at -38 to 40 °C.

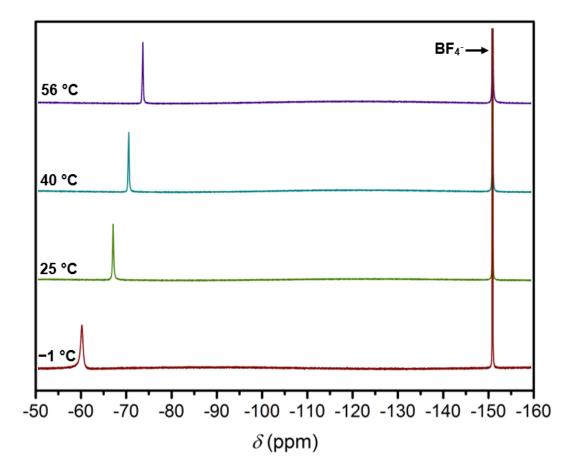
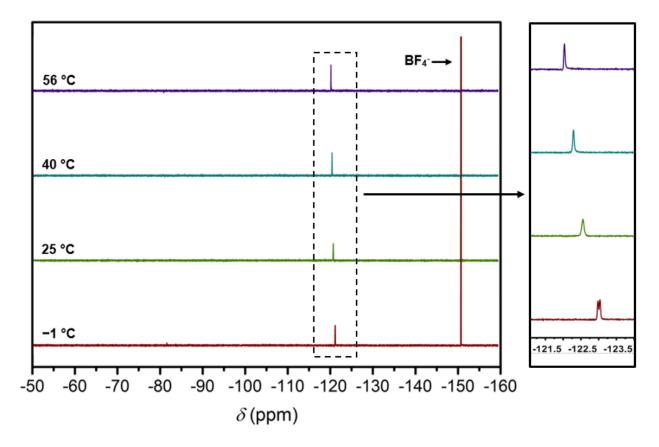



Figure S41 | Variable-temperature ¹⁹F NMR spectra of 2a in CD₃CN at -1 to 56 °C.

Figure S42 | Left: Variable-temperature ¹⁹F NMR spectra of **1b** in CD₃CN at -1 to 56 °C. Right: Expansion showing the ¹⁹F NMR resonances of **1b**, demonstrating the two overlapping resonances observed at -1 °C and the coalescence of the two peaks upon warming.

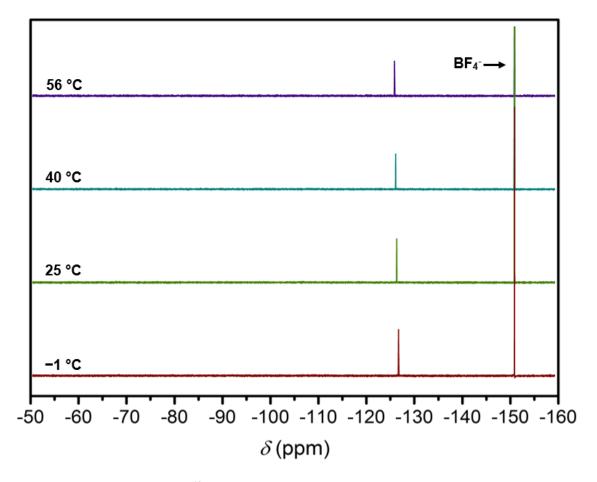
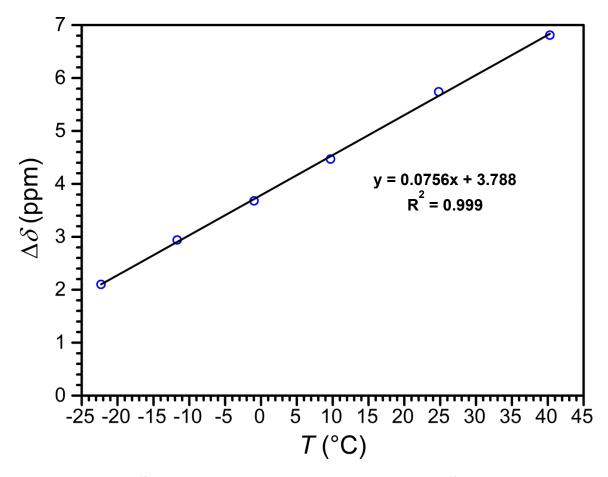


Figure S43 | Variable-temperature ¹⁹F NMR spectra of 2b in CD₃CN at -1 to 56 °C.

T (0 C)	1:	a	2a	1b	2b
<i>T</i> (°C)	¹⁹ F NMR chemical shift (ppm)				
-38	-112.3^{a}		—	_	—
-33	-110.1^{a}		—	—	—
-22	-103.80	-105.90	—	—	—
-12	-97.09	-100.03	—	—	—
-1	-89.78	-93.46	-60.06	-123.01^{b}	-127.02
10	-81.93	-86.40	—	—	—
25	-71.28	-77.02	-67.02	-122.55	-126.63
40	-62.87	-69.68	-70.48	-122.29	-126.39
56	—	—	-73.63	-122.04	-126.16
	$\Delta\delta(\mathrm{ppm})$				
	40.93 ^c	36.22 ^c	-13.57^{d}	0.97^{d}	0.86^{d}
		Temperature of	coefficient (CT)	$(\mathbf{ppm} \ ^{\circ}\mathbf{C}^{-1})^{e}$	
	$0.67(2)^{c}$	0.59(2) ^c	$-0.24(2)^d$	$0.017(1)^d$	$0.015(1)^d$
<i>T</i> (°C)	Peak width in FWHM (Hz)				
-1	624	504	293	38	10
10	381	296	N/A	N/A	N/A
25	302	246	116	32	17
40	287	270	105	21	20
56	N/A	N/A	150	18	15
<i>T</i> (°C)	$ \mathbf{CT} /\mathbf{FWHM} (^{\circ}\mathbf{C}^{-1})^{f}$				
40	1.10	1.03	1.07	0.38	0.35

Table S7 | Chemical shifts and peak widths of ¹⁹F NMR resonances of compounds 1a, 1b, 2a and 2b, in CD₃CN as a function of temperature.


^a Estimated ¹⁹F chemical shift because of broad and overlapping resonances, based on the center of the peak.

^b Value based on the center of the two overlapping peaks. ^c The temperature range from -22 °C to 40 °C was used for calculations.

^{*d*} The temperature range from -1 °C to 56 °C was used for calculations.

^{*e*} CT values are given by the slopes of the linear fits to the data of δ vs T plots.

^f Calculated for FWHM (ppm) measured at 40 °C.

Figure S44 | Plot of the ¹⁹F NMR chemical shift separation between the two ¹⁹F peaks of **1a** in CD₃CN as a function of temperature. The black solid line corresponds to a linear fit to the data.

References

- (1) N. J. Schoenfeldt, A. W. Korinda and J. M. Notestein, Chem. Commun., 2010, 46, 1640.
- (2) D. A. Valyaev, S. Clair, L. Patrone, M. Abel, L. Porte, O. Chuzel and J. L. Parrain, *Chem. Sci.*, 2013, **4**, 2815.
- (3) M. Krishnaiah, C. H. Jin, Y. Y. Sheen and D. K. Kim, *Bioorg. Med. Chem. Lett.*, 2015, 25, 5228.
- (4) *SAINT-8.34A Software for the Integration of CCD Detector System*; Bruker Analytical X-Ray Systems, Inc: Madison, WI, USA, 2013.
- (5) G. M. Sheldrick, SADABS, version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, USA, 2000.
- (6) (a) G. M. Sheldrick, SHELXTL, Version 6.12; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000; (b) G. M. Sheldrich. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.
- (7) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- (8) (a) D. F. Evans, J. Chem. Soc., 1959, 2003; (b) E. M. Schubert, J. Chem. Educ., 1992, 69, 61.
- (9) G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- (10) B. Weber and F. A. Walker, Inorg. Chem., 2007, 46, 6794.