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I. Energy conversion models

We derive the evolution equations for some examples of two types of energy conversion models. The results of this section
are used to generate Figure 2 in the main text, as well as Eq. 3.

IA. Donor-acceptor models

As examples of these models, we analyze below two particular donor-acceptor models that use a decay transfer scheme. This
kind of analysis may be expanded to models that include coherent vibronic evolution such as proposed in reference [1].

1) We consider the biological quantum heat engine model proposed in [2] (see in particular Eqs. S34-S37 in reference [2]).
It consists of a four level system coupled to a hot bath, a cold bath, and to the reaction center/circuit (also termed “the load”).
Th(c) is the hot (cold) bath temperature. The different decay rates are shown in Figure S1a. The equations of motion are

ρ̇aa = −γc [(1 + n̄c) ρaa − n̄cραα]− γh [(1 + n̄h) ρaa − n̄hρbb] ,
ρ̇αα = γc [(1 + n̄c) ρaa − n̄cραα]− Γραα,

ρ̇bb = γh [(1 + n̄h) ρaa − n̄hρbb] + Γc
[(

1 + N̄c
)
ρββ − N̄cρbb

]
,

ρaa + ρbb + ραα + ρββ = 1, (S1)

where we have kept the original paper notation. ρii is the level population of state i and n̄i or N̄i are the relevant i- bath mode
population. For details on the derivation of Eq. S1, we refer the reader to the original paper [2]. The free Hamiltonian of the
four level system is

H =
∑

i∈{a,b,α,β}

ωi|i〉〈i|. (S2)

The steady state populations are

ρssaa
ρssαα

=
γcn̄c + Γ

γc(n̄c + 1)
, (S3)

ρssbb
ρssαα

=
Γ [γc (n̄c + 1) + γh (n̄h + 1)] + γhγcn̄c (1 + n̄h)

γhn̄hγc (n̄c + 1)
, (S4)

ρssaa
ρssbb

=
(γcn̄c + Γ) γhn̄h

Γ {γc (n̄c + 1) + γh (n̄h + 1)}+ γhγcn̄c (1 + n̄h)
, (S5)

ρssββ
ρssbb

= e−~(ωβ−ωb)/kBTc +
γhn̄hΓγc (n̄c + 1)(

1 + N̄c
)

Γc [Γ {γc (n̄c + 1) + γh (n̄h + 1)}+ γhγcn̄c (1 + n̄h)]
. (S6)

The evolution induced by the hot bath can be obtained from Eq (S1) by setting γc = Γ = Γc = 0. The evolution induced by
the cold bath is obtained by setting in the same equations γh = Γ = 0. The heat currents at steady state are (see Eq.2 in the main
text) obtained using the induced evolution of each bath and the Hamiltonian (S2),
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Figure S1: Donor-acceptor models: a) Biological quantum heat engine model from [2]; b) Photocell model proposed in reference [4].

Jh = ~(ωa − ωb) (1 + n̄h) γhρ
ss
bb

(
e−~(ωa−ωb)/kBTh − ρssaa

ρssbb

)
=

~ (ωa − ωb) (1 + n̄h) γhρ
ss
bb

Γ [γc (n̄c + 1) + γh (n̄h + 1)] + γhγcn̄c (1 + n̄h)

(
e−~(ωa−ωb)/kBThΓγc(n̄c + 1)

)
, (S7)

Jc = ~ (ωa − ωα) (1 + n̄c) γcρ
ss
αα

(
e−~(ωa−ωα)/kBTc − ρssaa

ρssαα

)
+ ~ (ωβ − ωb)

(
1 + N̄c

)
Γcρ

ss
bb

(
e−~(ωβ−ωb)/kBTc −

ρssββ
ρssbb

)
=

−~ (ωa − ωα) ρssααΓ− ~ (ωβ − ωb) Γc
(
1 + N̄c

)
ρssbb

(
γhn̄hΓγc (n̄c + 1)(

1 + N̄c
)

Γc [Γ {γc (n̄c + 1) + γh (n̄h + 1)}+ γhγcn̄c (1 + n̄h)]

)
=

− ρssbbγhn̄hγc (n̄c + 1) Γ

Γ [γc (n̄c + 1) + γh (n̄h + 1)] + γhγcn̄c (1 + n̄h)
~ [ωa − ωα + ωβ − ωb] , (S8)

− Jc
Jh

=
ωa − ωα + ωβ − ωb

ωa − ωb
= 1 +

ωβ − ωα
ωa − ωb

, (S9)

where ~ωa − ~ωb (~ωα − ~ωβ) is the energy of the absorbed (emitted) quanta from the hot bath (to the RC/circuit). Therefore
they are equivalent to ~ωabs(~ωrc). Using this paper notation,

Jh → Jabs, Jc → Jloss,

~ωβ − ~ωα → −~ωrc, ~ωa − ~ωb → ~ωabs,
Th → Tabs, Tc → Tloss,

we obtain Eq. 3 in the main text. A similar analysis can be done for the coherence-assisted biological quantum heat engine
model proposed also in the same paper and to the model proposed in reference [3].

2) We consider the photocell model proposed in reference [4]. It consists of a five level system coupled to a hot bath, a cold
bath and to the reaction center/circuit (also termed “the load”). Th(c) is the hot (cold) bath temperature. The decay rates are
shown in Figure S1b. For the sake of simplicity we assume there is no acceptor-to-donor recombination (χ = 0, in the original
paper notation). The equations of motion are
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ρ̇αα = γc [(1 + n2c) ρx2x2 − n2cραα]− Γραα,

ρ̇x2x2 = γx [(1 + nx)ρx1x1 − nxρx2x2]− γc [(1 + n2c)ρx2x2 − n2cραα] ,

ρ̇bb = − [γhnh + ΓcNc] ρbb + γh (nh + 1) ρx1x1 + Γc(Nc + 1)ρββ ,

ρ̇x1x1 = −γx [(1 + nx)ρx1x1 − nxρx2x2]− γh [(1 + nh)ρx1x1 − nhρbb] ,
ρx1x1 + ρx2x2 + ρbb + ραα + ρββ = 1. (S10)

where we have kept the original paper notation. ρii is the level population of state i and ni or Ni are the relevant i- bath mode
population. For details on the derivation of Eq. S10, we refer the reader to the original paper [4].

The free Hamiltonian of the five level system is

H =
∑

i∈{x1,x2,b,α,β}

ωi|i〉〈i|. (S11)

The steady state populations are

ρssx2x2

ρssαα
=

Γ + γcn2c

γc (1 + n2c)
, (S12)

ρssx1x1

ρssx2x2

=
γxnx + γc (1 + n2c)− γcn2c

γc(1+n2c)
Γ+γcn2c

γx (1 + nx)
=
γxnx (Γ + γcn2c) + γc (1 + n2c) Γ

γx (1 + nx) (Γ + γcn2c)
, (S13)

ρssx1x1

ρssbb
=

γhnh [γxnx (Γ + γcn2c) + γc(1 + n2c)Γ]

γxγcΓ (1 + nx) (1 + n2c) + γh (1 + nh) [γxnx (Γ + γcn2c) + γc(1 + n2c)Γ]
, (S14)

ρssββ
ρssbb

= e−~(ωβ−ωb)/kBTc +
γhnhγxγcΓ (1 + nx) (1 + n2c)

Γc (1 +Nc) {γxγcΓ (1 + nx) (1 + n2c) + γh (1 + nh) [γxnx (Γ + γcn2c) + γc (1 + n2c) Γ]}
.

(S15)

The evolution induced by the hot bath can be obtained from Eq (S10) by setting γc = Γ = Γc = γx = 0. The evolution
induced by the cold bath is obtained by setting in the same equations γh = Γ = 0. The heat currents at steady state are (see Eq.2
in the main text) obtained using the induced evolution of each bath and the Hamiltonian (S11),

Jh = ~ (ωx1 − ωb) (1 + n̄h) γhρ
ss
bb

(
e−~(ωx1−ωb)/kBTh − ρssx1x1

ρssbb

)
=

~ (ωx1 − ωb)
ρssbbγhnhγxγcΓ (1 + nx) (1 + n2c)

γxγcΓ (1 + nx) (1 + n2c) + γh (1 + nh) [γxnx (Γ + γcn2c) + γc (1 + n2c) Γ]
, (S16)

Jc = ~ (ωx1 − ωx2) (1 + n̄x) γxρ
ss
x2x2

(
e−~(ωx1−ωx2)/kBTc − ρssx1x1

ρssx2x2

)
+

~ (ωx2 − ωα) (1 + n̄2c) γcρ
ss
αα

(
e−~(ωx2−ωα)/kBTc − ρssx2x2

ρssαα

)
+ ~ (ωβ − ωb)

(
1 + N̄c

)
Γcρ

ss
bb

(
e−~(ωβ−ωb)/kBTc −

ρssββ
ρssbb

)
=

− ρssbbγhnhγxγcΓ (1 + nx) (1 + n2c)

γxγcΓ (1 + nx) (1 + n2c) + γh (1 + nh) [γxnx (Γ + γcn2c) + γc (1 + n2c) Γ]
~ (ωx1 + ωβ − ωα − ωb) , (S17)

−Jc
Jh

=
ωx1 + ωβ − ωα − ωb

ωx1 − ωb
= 1 +

ωβ − ωα
ωx1 − ωb

, (S18)

where ~ωx1 − ~ωb (~ωα − ~ωβ) is the energy of the absorbed (emitted) quanta from the hot bath (to the RC/circuit), therefore
equivalent to ~ωabs(~ωrc). Using this paper notation,
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Jh → Jabs, Jc → Jloss,

~ωβ − ~ωα → −~ωrc, ~ωx1 − ~ωb → ~ωabs,
Th → Tabs, Tc → Tloss,

we obtain Eq. 3 in the main text.

IB. Standard FMO models

We use the standard model proposed in reference [5] for the Fenna-Mathews-Olson (FMO) complex of the green sulfur
bacterium Prosthecochloris aestuarii. Its dynamics is governed by the following Hamiltonian,

HFMO = Hsites +HFMO−vib +Hvib +HDec, (S19)

where Hvib is the free Hamiltonian for the vibrational degrees of freedom of the pigments and proteins, which we assume to be
at equilibrium at a temperature Tloss = 300K. Hsites is the exciton Hamiltonian,

Hsites =
∑

m∈FMO

Em|m〉〈m|+
∑

m 6=n∈FMO

Vmn|m〉〈n|, (S20)

where |m〉 is the excited state of them site, and the sum is over all the FMO sites. HFMO−vib represents the interaction between
the excitons and the vibrational bath,

HFMO−vib =
∑

m∈FMO,ξ

kmξ |m〉〈m| ⊗Qξ, (S21)

where Qξ operates on the vibrational degrees of freedom. All the parameters for this Hamiltonian can be found in reference [5].

Transmission of energy to the reaction center

The Hamiltonian HDec governs the transmission of energy to the reaction center and is typically modeled [1, 6–12] as an
irreversible decay term from the FMO site 3 to 8,

HDec =
√

Γ3,8|8〉〈3|. (S22)

We use a typical value for this rate, Γ3,8 = 62.8/1.88 cm−1[6–8, 12].

Thermal radiation

Even though at the surface of the Sun the emitted thermal radiation is at thermal equilibrium with the same temperature as
the Sun, TS , due to geometric considerations, only a small fraction of those photons reaches the Earth. This is quantified by a
geometric factor λ = 2 ∗ 10−5 equal to the angle subtended by the Sun seen from the Earth. If nTS [ω] photons of frequency
ω are emitted from the Sun, only λnTs reach the Earth. This radiation is no longer at thermal equilibrium, but rather is a
non-equilibrium bath at an effective temperature [13–15],

e−~ωant/kBTabs =
λnTS [ωant]

λnTS [ωant] + 1
→ Tabs ∼ 1356K. (S23)

where nTS [ω] = (e~ω/kBTS − 1)−1. The dilution of the photon numbers turns the effective temperature, Tabs, frequency
dependent. Nevertheless, the frequency variation between the antenna and the FMO site is small, therefore we assume the same
Tabs for the antenna and the FMO sites.
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II. Dynamic equations for simple models for the RC/circuit

In this section, we explain the preliminary steps taken for deriving the dynamics of the simple models for the RC/circuit (Eqs.
8 and 12 in the main text).

We consider a three level system (3LS), S, coupled to the reaction center (RC) or electric circuit. The later is a reservoir of
independent quinones/sites, each of them represented by a single two level system (TLS). Its ground state represents an empty
quinone/site and the excited state corresponds to a full quinone/site. Besides, the 3LS is coupled to a photon (hot) bath and a
vibrational (cold) bath (see Figure 3 in the main text). The total Hamiltonian is

HS +HB +HSB , (S24)

where HB = Hphotons +Hphonons is the baths free Hamiltonian. The S-baths coupling Hamiltonian is given by

HSB = S ⊗ (Bh +Bc) =
∑
λ

gh,λ

(
|2〉〈0|aλ + |0〉〈2|a†λ

)
+
∑
λ

gc,λ

(
|2〉〈1|bλ + |1〉〈2|b†λ

)
, (S25)

where aλ,a
†
λ (bλ, b

†
λ) are the annihilation and creation operators of photons (phonons) modes. The S + RC/circuit Hamiltonian

is

HS = H0 +Htrans, H0 = ~ωabs|2〉〈2|+
~ωrc

2
(|1〉〈1| − |0〉〈0|) , (S26)

where H0 is the 3LS free Hamiltonian and Htrans describes the energy transfer to the RC/circuit. We compare between two
possible schemes: i) a decay transfer described by a non-HermitianHtrans; ii) a Hamiltonian transfer, represented by a Hermitian
Htrans.

IIA. Decay transfer

The decay transfer is described by the following non-Hermitian term,

HDec
tranf =

√
Γ|0〉〈1|. (S27)

As a first step we transform the S-bath interaction and the transfer Hamiltonian to the interaction picture

HSB → eiH0tHSBe
−iH0t, HDec

tranf → eiH0tHDec
tranfe

−iH0t. (S28)

HDec
tranf is a fictitious Hamiltonian due to its lack of Hermiticity, therefore cannot form part of the rotation, eiH0t , which has to

be unitary. Besides, we derive the reduced dynamics only for S. The operators in the interaction picture are:

|2〉〈0| [t] = eit~(ωabs+ωrc
2 )|2〉〈0|, |2〉〈1| [t] = eit~(ωabs−ωrc2 )|2〉〈1|, |0〉〈1| [t] = e−it~ωrec |0〉〈1|. (S29)

Using the standard Born-Markov approximation, the Lindblad equation [16] for S is obtained (Eq.8 in the main text). The
steady state populations are

ρss22

ρss11

= 1,
ρss22

ρss00

= e−~ω+/kBTabs − ρss11

ñabsρss00

,
ρss11

ρss00

=
nabsñloss

nlossñabs + ñabs + ñloss
,

ρss11 =
1

1 +
ρss00

ρss11
+

ρss22

ρss11

=
1

1 + 2e~ω+/kBTabs
. (S30)

where nabs(loss) is the photon (vibrational) bath population of mode ω± = ωabs ± ωrc
2 and ñabs(loss) = nabs(loss) + 1.
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IIB. Hamiltonian transfer

Here we explicitly consider the RC/circuit and its coupling to S, by considering Htrans as an Hermitian Hamiltonian. The
RC/circuit is composed of identical and independent TLSs. The S + RC/circuit Hamiltonian is:

HS = ~ωabs|2〉〈2|+
~ωrc

2
(|1〉〈1| − |0〉〈0|) +

j∑
k

√
Γ

2j

(
σk−|1〉〈0|+ σk+|0〉〈1|

)
+ ~ωrc

∑
k

σkz , (S31)

where j is the number of TLSs.
In order to find the energy that is being transferred to the RC/circuit, we start by diagonalizing the S + RC circuit. This is

achieved by first applying the Holstein-Primakoff transformation [17], that consists on the introduction of the following collective
operators:

∑
k

σk− =
(√

2j − c†c
)
c,

∑
k

σk+ = c†
(√

2j − c†c
)
,

∑
k

σkz = c†c− j. (S32)

The new Hamiltonian is

HS = ~ωabs|2〉〈2|+
~ωrc

2
(|1〉〈1| − |0〉〈0|)+

√
Γ

2j

[(√
2j − c†c

)
c|1〉〈0|+ c†

(√
2j − c†c

)
|0〉〈1|

]
+~ωrc

(
c†c− j

)
. (S33)

At this point, the modes are displaced, c→ c−
√
ε,

HS =

~ωabs|2〉〈2|+
~ωrc

2
(|1〉〈1| − |0〉〈0|) +

√
Γkη

2j

(
c|1〉〈0|+ c†|0〉〈1|

)
−

√
Γkηε

2j
(|1〉〈0|+ |0〉〈1|) + ~ωrc

(
c†c−

√
ε(c+ c†) + ε− j

)
,

(S34)

where k = 2j − ε and η = 1 − c†c−
√
ε(c†+c)
k . We assume that the number of TLSs is large, c

†c−
√
ε(c†+c)
k � 1. The physical

interpretation of this approximation is clarified below. Under this assumptions, we expand
√
η ≈ 1 − c†c−

√
ε(c†+c)

2k − ε(c†+c)2

8k2

and keep terms up to order 1√
j
,

HS = ~ωabs|2〉〈2|+
ωrc
2

(|1〉〈1| − |0〉〈0|)−

√
Γkε

2j
(|1〉〈0|+ |0〉〈1|) +

√
Γk

2j

(
c|1〉〈0|+ c†|0〉〈1|

)
−

ε

2

√
Γ

2jk

(
c† + c

)
(|1〉〈0|+ |0〉〈1|) + ~ωrc

(
c†c−

√
ε
(
c+ c†

)
+ ε− j

)
. (S35)

Setting ε = 0, the Hamiltonian is simplified to

HS = ~ωabs|2〉〈2|+
~ωrc

2
(|1〉〈1| − |0〉〈0|) +

√
Γ
(
c|1〉〈0|+ c†|0〉〈1|

)
+ ~ωrc

(
c†c− j

)
(S36)

and the approximation to c†c
2j � 1. Therefore, we are just assuming that the total number of excitations in the RC/circuit is

very small compared to the number of quinones/sites, so energy may always be transferred to the RC/circuit. From Eq. S36, we
derive Eq. 8 in the main text,

HHam
trasns =

√
Γ
(
c|1〉〈0|+ c†|0〉〈1|

)
+ ~ωrc

(
c†c− j

)
. (S37)
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which is an effective equation for a harmonic oscillator (HO) coupled to S. Therefore, from now on we model the RC/circuit as
a HO. Next we diagonalize Eq. S36. The Hamiltonian eigenvectors are

|+, n〉 =
1√
2

(|1, n〉+ |0, n+ 1〉) , |−, n〉 =
1√
2

(|0, n+ 1〉 − |1, n〉) , (S38)

E± = ~ωrc
(
n+

1

2

)
± ~Ωn

2
− j~ωrc, (S39)

HS +HHam
trans = ~ωabs|2, n〉〈2, n|+ ~ωrc

(
c̃†c̃− j

)
+∑

n

~ωrc
2

{(
1 +

Ωn
ωrc

)
|+, n〉 〈+, n|+

(
1− Ωn

ωrc

)
|−, n〉〈−, n|

}
, (S40)

where c̃†(c̃) is the creation (annihilation) operator in the new basis and Ωn = 2
√

Γ(n+ 1). The inverse transformations are

|1, n〉 =
1√
2

(|+, n〉 − |−, n〉) , |0, n+ 1〉 =
1√
2

(|+, n〉+ |−, n〉) . (S41)

Rewriting the S-bath Hamiltonian, Eq. S25 , in the new basis,

|2〉〈0| =
∑
n

1√
2

(|2, n+ 1〉〈+, n|+ |2, n+ 1〉〈−, n|) , |2〉〈1| =
∑
n

1√
2

(|2, n〉〈+, n| − |2, n〉〈−, n|) , (S42)

and transforming to the interaction picture,

HSB → eiHStHSBe
−iHSt,

|2〉〈0| [t] =
∑
n

1√
2

(
eit~(ω+−Ωn

2 )|2, n+ 1〉〈+, n|+ eit~(ω++ Ωn
2 )|2, n+ 1〉〈−, n|

)
,

|2〉〈1| [t] =
∑
n

1√
2

(
eit~(ω−−Ωn

2 )|2, n〉〈+, n| − eit~(ω−+ Ωn
2 )|2, n〉〈−, n|

)
. (S43)

In contrast to the decay transfer scheme (Eq. S28), here HHam
trans is Hermitian and we derive the reduced dynamics for the S +

RC/circuit. Therefore HHam
trans is included in the rotation, eiHSt. Using the standard Born-Markov approximation, the Lindblad

equation [16] for S + RC/circuit is obtained, and from it the evolution equations are derived,

ρ̇+,n =
Γ

2

{
−
(
nabs

[
ω+ −

Ωn
2

]
+ nloss

[
ω− −

Ωn
2

])
ρ+,n + ñloss

[
ω− −

Ωn
2

]
ρ2,n + ñabs

[
ω+ −

Ωn
2

]
ρ2,n+1

}
,

ρ̇−,n =
Γ

2

{
−
(
nabs

[
ω+ +

Ωn
2

]
+ nloss

[
ω− +

Ωn
2

])
ρ−,n + ñloss

[
ω− +

Ωn
2

]
ρ2,n + ñabs

[
ω+ +

Ωn
2

]
ρ2,n+1

}
,

ρ̇2,n =
Γ

2

{
−
(
ñabs

[
ω+ −

Ωn−1

2

]
+ ñabs

[
ω+ +

Ωn−1

2

]
+ ñloss

[
ω− +

Ωn
2

]
+ ñloss

[
ω− −

Ωn
2

])
ρ2,n

nloss

[
ω− −

Ωn
2

]
ρ+,n + nloss

[
ω− +

Ωn
2

]
ρ−,n + nabs

[
ω+ −

Ωn−1

2

]
ρ+,n−1 + nabs

[
ω+ +

Ωn−1

2

]
ρ−,n−1

}
, (S44)

where ρi is the population of the combined state i (S + RC/circuit), Γi and ni [ω] are the decay rate and the ω-mode population
of the i-bath, respectively, and ñi [ω] = ni [ω] + 1. The equations for the off-diagonal terms are decoupled from the populations
and for simplicity we assume that the off-diagonal terms are zero. In order to simplify the evolution equations we assume that
the mode population does not change on shift of the order of Ωn, therefore ni

[
ω± ± Ωn

2

]
≈ ni [ω±]. The resulting equations

are shown in the main text, Eqs. 12.
The 3LS steady state is obtained by summing over n Eqs. 12 in the main text. It is

ρss2
ρss+

=
nabs + nloss
ñabs + ñloss

, ρss+ =
ñabs + ñloss

3ñabs + 3ñloss − 2
, (S45)

where nabs(loss) is the photon (vibrational) bath population of mode ω± = ωabs± ωrc
2 . Using these expressions, we can find the

evolution for the HO excitation energy,
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~ωrc〈ṅ〉 = ~ωrc (s− r) , (S46)

which is equal to−PHam (the used sign convention can be found below Eq. 1 in the main text). Thus, s > r is required in order
to increase the RC/circuit energy. At the 3LS steady state, this implies,

s− r =
Γñlossñabs

3ñabs + 3ñloss − 2

(
e−~ω+/kBTabs − e−~ω−/kBTloss

)
= K1

(
e−~ω+/kBTabs − e−~ω−/kBTloss

)
> 0, (S47)

where K1 = Γñlossñ
3ñh+3ñc−2 > 0 and the energy gain condition is

Tloss
Tabs

<
ω−
ω+

. (S48)
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