Electronic Supplementary Information

Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for highly efficient template-directed synthesis of rotaxanes

Xiaowei Li, ${ }^{a}$ Xiangyang Yuan, ${ }^{a}$ Pengchi Deng, ${ }^{a}$ Lixi Chen, ${ }^{a}$ Yi Ren, ${ }^{a}$ Chengyuan Wang, ${ }^{\text {a }}$ Lixin Wu, ${ }^{\text {b }}$ Wen Feng, ${ }^{\text {a }}$ Bing Gong, ${ }^{\text {c }}$ Lihua Yuan* ${ }^{\text {a }}$
${ }^{a}$ College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Analytical \& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
${ }^{b}$ State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
${ }^{c}$ Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States

E-mail: lhyuan@ scu.edu.cn;
Fax: +86 2885418755

Table of Contents

1. General Methods 3
2. Synthetic Protocols 4
3. Spectroscopic Characterization 18
$3.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Novel Compounds 18
3.2 MALDI-TOF-MS or HRESI-MS Spectra of Novel Compounds 34
4. Host-Guest Complexation of 1 and G1-G4 40
4.1 NMR Spectra of Complexation 40
4.2 2D NMR Spectra of Host-Guest Complexes 45
4.2.1 2D-NOESY Spectra of Host-Guest Complexes 45
4.2.2 2D-DOSY Spectra of Host-Guest Complexes 50
4.3 UV-vis Spectra of $\mathbf{1}_{2} \supset \mathbf{G 1}$ and $\mathbf{1}_{2} \supset \mathbf{G 4}$ 52
4.4 Job Plots of Host-Guest Complexes 53
4.5 Determination of the Stoichiometries and Binding Constants 59
4.6 MALDI-TOF-MS Spectra of Complexes 72
4.7 FT-IR Spectra of Complexes 76
5. Optimization for Synthesis of Rotaxanes 78
6. Stacked NMR Spectra of Rotaxanes 79
6.1 2D NOESY, HSQC and HMBC Spectra of Rotaxanes 81
6.2 2D DOSY Spectra of Rotaxanes 91
7. UV-vis Spectra of Rotaxanes 95
8. Redox-Responsive of Host-Guest Complexes and Rotaxanes 95
9. X-Ray Single Crystal Structures of $\mathbf{3}_{2}$ Ј G1 and [3]CR-C 6 97
10. Molecular Modeling 104

1. General Methods

All chemicals were obtained from commercial suppliers and were used as received unless other-wise noted. All reactions were conducted with oven-dried glassware under atmosphere or nitrogen. Solvents were dried and distilled following usual protocols. Column chromatography was carried out using silica gel (300-400 mesh). Solvents for extraction and chromatography were reagent grade. CDCl_{3} and $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ were from Cambridge Isotope Laboratories (CIL).

Analytical NMR spectra were recorded on Bruker AVANCE AV II-400 MHz or Bruker AVANCE AV II-600 MHz, at a constant temperature of 298 K . Chemical shifts are reported in δ values in ppm using tetramethylsilane (TMS) or residual solvent as internal standard and coupling constants (J) are denoted in Hz . Multiplicities are denoted as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double doublet and $\mathrm{m}=$ multiplet. MALDI-TOF MS spectra were recorded on a Bruker Autoflex III MS spectrometer, matrix is 2,6-dihydroxyacetophenone (DHAP). ESI mass spectra were recorded on a Bruker Daltonics MicroTOF-Q II. ESI-MS were obtained on a Thermo-ITQ. UV-vis spectra were measured by SHIMADZU UV-2450. Fourier transform Infrared (FT-IR) data were collected by a Thermal Nicolet NEXUS 670 FT-IR spectrophotometer. Single crystal X-ray data were measured on a Xcalibur E diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.7107 \AA$). Data collection and structure refinement details can be found in the CIF files or obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

2. Synthetic Protocols

Cyclo[6]aramides 1-3 were prepared according to literature procedures. ${ }^{[1-3]}$

4,6-bis(2-ethylbutoxy)isophthalic acid was synthesized according to an analogous literature procedure. ${ }^{[1]}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.49\left(\mathrm{br}, \mathrm{s}, 2 \mathrm{H}, H_{A}\right), 8.94$ ($\mathrm{s}, 1 \mathrm{H}$, $\left.H_{B}\right), 6.58\left(\mathrm{~s}, 1 \mathrm{H}, H_{C}\right), 4.17\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}, H_{D}\right), 1.82(\mathrm{~m}, 2 \mathrm{H}$, $\left.H_{E}\right), 1.55\left(\mathrm{~m}, 8 \mathrm{H}, H_{F}\right), 0.99\left(\mathrm{~m}, 12 \mathrm{H}, H_{G}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 164.67,162.89,140.22,111.64,96.50,72.45$, 40.77, 23.43, 11.15; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}+\mathrm{H}\right]^{+} 367.2115$; found: 367.2119; $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$389.1935; found: 389.1936.

Synthesis of cyclo[6]aramide 3.

1,5-Dimethoxy-2,4-dinitrobenzene ${ }^{[1]}(500 \mathrm{mg}, 2.19 \mathrm{mmol})$ was hydrogenated in the presence of $20 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ at 0.3 MPa for 10 h at room temperature. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent. The reduced diamine was used for the immediate coupling reaction. 4,6-Bis(2-ethylbutoxy)isophthaloyl dichloride ($761 \mathrm{mg}, 2.19 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and added dropwise to a mixture of the above diamine and $\mathrm{Et}_{3} \mathrm{~N}$ $(1.11 \mathrm{~g}, 10.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ under N_{2} for 4 h . The organic layer was washed with water ($20 \mathrm{~mL} \times 3$) and dried
over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Addition of acetone/ $\mathrm{CH}_{3} \mathrm{OH}$ to the filtrate caused a precipitation, which was filtered to give a white solid $\mathbf{3}(677 \mathrm{mg}, 62 \%)$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.67$ (s, 3H, H_{a}), $9.58\left(\mathrm{~s}, 6 \mathrm{H}, H_{c}\right), 9.20\left(\mathrm{~s}, 3 \mathrm{H}, H_{b}\right), 6.60(\mathrm{~s}, 3 \mathrm{H}$, $\left.H_{d}\right), 6.59\left(\mathrm{~s}, 3 \mathrm{H}, H_{e}\right), 4.18\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 12 \mathrm{H}, H_{f}\right)$, $3.94\left(\mathrm{~s}, 18 \mathrm{H}, H_{g}\right), 2.01\left(\mathrm{~m}, 6 \mathrm{H}, H_{h}\right), 1.62(\mathrm{~m}, 24 \mathrm{H}$, $\left.H_{i}\right), 1.01\left(\mathrm{~m}, 36 \mathrm{H}, H_{j}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 162.65,160.55,146.07,138.60$, $120.10,116.83,115.20,96.16,94.87,72.13,55.93$, 40.48, 23.13, 11.50; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{84} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{18}+\mathrm{H}\right]^{+}$1495.826; found: 1495.889.

Synthesis of heteroditopic cyclo[6]aramides 5 .

Compounds 5a, 5b and $\mathbf{5}$ were synthesized according to analogous literature procedures. ${ }^{[4]} \mathbf{5 a}$ and $\mathbf{5 b}$ were converted into $\mathbf{5 a}$, and $\mathbf{5 b}$ ' by catalytic hydrogenation, respectively. Compounds $\mathbf{5 a}$ ' and $\mathbf{5 b}$ ' were used directly in the subsequent reaction without further purification.
mg) in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=5: 1)$ for 10 h at $40{ }^{\circ} \mathrm{C}$. The solution was filtered in darkness as fast as possible followed by immediate removal of the solvent. The reduced diamine was used for the immediate coupling reaction. DMF (5 uL) was added to a suspension of compound $\mathbf{5 b}(94 \mathrm{mg}, 0.28 \mathrm{mmol})$ and oxalyl chloride (105 $\mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred for 40 min at room temperature. The solvent was evaporated and the resulting acid chloride was dried in vacuum at room temperature for 30 min to get compound $\mathbf{5 b}$ '. Compound $\mathbf{5 b}$ ' was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and added dropwise to a mixture of the above 5a' and $\mathrm{Et}_{3} \mathrm{~N}(162 \mathrm{mg}$, $1.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was stirred under N_{2} for 7 h . The organic layer was washed with water $(20 \mathrm{~mL} \times 3)$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The crude product was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ to provide the product 5 as a light yellow solid $(291 \mathrm{mg}$, $62 \%)$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=10.20\left(\mathrm{~s}, 2 \mathrm{H}, H_{j}\right), 9.42\left(\mathrm{~s}, 2 \mathrm{H}, H_{f}\right), 9.35(\mathrm{~s}$, $\left.2 \mathrm{H}, H_{d}\right), 9.16\left(\mathrm{~s}, 2 \mathrm{H}, H_{c}\right), 9.15\left(\mathrm{~s}, 1 \mathrm{H}, H_{b}\right), 8.49\left(\mathrm{dd}, J_{l}=8.8 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{i}\right)$ $8.20\left(\mathrm{~s}, 3 \mathrm{H}, H_{k}\right.$ and $\left.H_{g}\right), 7.73\left(\mathrm{~s}, 2 \mathrm{H}, H_{l}\right), 7.01\left(\mathrm{~d}, J_{l}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, H_{h}\right), 6.49\left(\mathrm{~s}, 3 \mathrm{H}, H_{a}\right.$ and $\left.H_{e}\right), 5.82\left(\mathrm{~m}, 1 \mathrm{H}, H_{n}\right), 4.95\left(\mathrm{~m}, 2 \mathrm{H}, H_{m}\right), 4.07\left(\mathrm{~m}, 10 \mathrm{H}, H_{o}, H_{p}\right.$ and $\left.H_{q}\right), 3.90(\mathrm{~s}$, $\left.6 \mathrm{H}, H_{z}\right), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, H_{z}\right)^{\prime}, 2.04\left(\mathrm{~m}, 2 \mathrm{H}, H_{t}\right), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, H_{r}\right.$ and $\left.H_{s}\right), 1.54-1.25(\mathrm{~m}$, $\left.78 \mathrm{H}, H_{y 1}-H_{y 22}\right), 0.94-0.84\left(\mathrm{~m}, 24 \mathrm{H}, H_{u}, H_{v}, H_{w}\right.$ and $\left.H_{x}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): \delta 165.02,164.90,163.08,162.40$, 161.48, 160.77, 159.87, 159.62, 159.54, $153.51,146.64,146.59,145.95,139.26,139.21,135.92,135.17,132.72,132.40$, $125.49,124.15,122.15,120.95,119.85,118.01,117.74,116.11,114.09,113.20$, $112.94,94.87,72.59,72.31,68.43,55.89,55.74,38.72,37.95,33.83,31.88,31.85$, 31.04, 30.05, 29.98, 29.62, 29.58, 29.47, 29.42, 29.34, 29.22, 29.16, 29.12, 28.95 , 28.78, 26.70, 26.02, 25.94, 23.04, 23.08, 22.67, 14.09, 10.50. ESI-HRMS (m/z) calcd for $\mathrm{C}_{105} \mathrm{H}_{154} \mathrm{~N}_{6} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}]^{+}$1741.421, found $[\mathrm{M}+\mathrm{H}]^{+} 1741.426$.

Synthesis of Guests G1-G4

Guests G1-G4 ${ }^{[5,6]}$ were prepared according to literature procedures.

G1 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 9.40\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, H^{l}\right), 8.85(\mathrm{~d}$, $\left.J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, H^{2}\right), 4.75\left(\mathrm{~s}, 6 \mathrm{H}, H^{3}\right) ; \mathbf{G} 2{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): δ $9.29\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, H^{4}\right), 8.88\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, H^{5}\right), 8.70\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, H^{6}\right)$, $8.00\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, H^{7}\right), 4.72\left(\mathrm{~s}, 3 \mathrm{H}, H^{8}\right) ; \mathbf{G 3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$, $298 \mathrm{~K}): \delta 9.14\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, H^{9}\right), 8.75\left(\mathrm{~m}, 1 \mathrm{H}, H^{11}\right), 8.29\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, H^{10}\right)$, 4.66 ($\mathrm{s}, 3 \mathrm{H}, H^{12}$); G4 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 9.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $\left.4 \mathrm{H}, H^{13}\right), 8.95\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}, H^{14}\right), 5.16\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}, H^{15}\right), 3.20(\mathrm{~m}, 4 \mathrm{H}$, $\left.H^{16}\right), 2.74\left(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, H^{17}\right)$.

Synthesis of Stopper-N \mathbf{N}_{3}

Stopper- \mathbf{N}_{3} was prepared according to the literature procedure ${ }^{[7]}$.

3,5-Di-(tert-butyl)benzyl bromide (Stopper-Br) ($500 \mathrm{mg}, 1.77 \mathrm{mmol}$) and sodium azide ($172 \mathrm{mg}, 2.65 \mathrm{mmol}$) were mixed with DMSO $(20 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ under N_{2} and the mixture was stirred for 4 h . Water (50 mL) was added to quench the reaction and the organic material was extracted with ether $(3 \times 50 \mathrm{~mL})$, washed with brine $(3 \times 30$ $\mathrm{mL})$ and water $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The colorless oily residue was purified by column chromatography using silica gel ($0-30 \%$ dichloromethane / petroleum ether) to give Stopper- \mathbf{N}_{3} as colorless oil (352 mg , yield of 81%). Stopper- \mathbf{N}_{3}

34.85, 31.42; HRMS (ESI), m / z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3}-\mathrm{N}_{3}\right]^{+}$203.1794; found: 203.1811; $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3}+\mathrm{H}\right]^{+}$246.1965; found: 246.2248.

Synthesis of dumbbell-shaped Axle-1

A solution of guest $\mathbf{G 4}(40 \mathrm{mg}, 0.072 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{MeCN}){ }_{4} \mathrm{PF}_{6}(8 \mathrm{mg}, 0.021 \mathrm{mmol})$ in acetone (8 mL) was added under N_{2} to a sealed CEM vial containing 3,5-di-(tert-butyl)benzyl azide (Stopper-N \mathbf{N}_{3}) ($38 \mathrm{mg}, 0.152 \mathrm{mmol}$) and $\mathrm{NiPr}_{2} \mathrm{Et}(11$ $\mathrm{mg}, 0.086 \mathrm{mmol})$. The orange solution was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed. The solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added. The organic solvent was then evaporated under reduced pressure. The precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$. Then the crude material was purified twice by column chromatography using silica gel (eluent: $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and then $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ with $2 \% \mathrm{NH}_{4} \mathrm{PF}_{6}(\mathrm{~m} / \mathrm{v})$) and the main fraction was collected. Then, $\mathrm{H}_{2} \mathrm{O}$ (200 mL) was added to the residue in order to remove excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$, leaving the product as an orange precipitate. The solid was collected by filtration, further washed with excess $\mathrm{H}_{2} \mathrm{O}$ and dried under high vacuum to afford the Axle-1 as a dark red solid ($69 \mathrm{mg}, 92 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): δ $9.45\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{A}\right), 8.84(\mathrm{~d}, J=$ $\left.6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 7.92\left(\mathrm{~s}, 2 \mathrm{H}, H_{E}\right), 7.46(\mathrm{t}, J$ $\left.=2.0 \mathrm{~Hz}, 2 \mathrm{H}, H_{G}\right), 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.H_{H}\right) 5.56\left(\mathrm{~s}, 4 \mathrm{H}, H_{F}\right), 5.30\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{C}\right), 3.64\left(\mathrm{~m}, 4 \mathrm{H}, H_{D}\right), 1.28\left(\mathrm{~s}, 36 \mathrm{H}, H_{I}\right)$; ${ }^{13}{ }^{1} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 151.28,150.10,146.35,141.92,135.09$, 126.97, 122.95, 122.41, 122.22, 61.13, 53.96, 34.53, 30.79, 26.94; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{2+}$ 376.2621; found: 376.2607 and $\left[\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+} 752.5248$; found: 752.5246.

Synthesis of dumbbell-shaped Axle-2

A mixture of 3,5-di-(tert-butyl)benzyl bromide (Stopper-Br) ($350 \mathrm{mg}, 1.24 \mathrm{mmol}$) and $4,4^{\prime}$-bipyridine ($88 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Then the mixture was stirred under N_{2} for 6 days at $60^{\circ} \mathrm{C}$. Then the diethyl ether was added to the mixture and the precipitate was filtered off. This solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then removed of the solvent of the filtrate to give a light yellow solid. The solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added. The organic solvent was then evaporated under reduced pressure. The precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to yield Axle-2 as a white solid ($239 \mathrm{mg}, 89 \%$, over two steps).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 9.45(\mathrm{~d}, J=$ $\left.6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{A}\right), 8.68\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 7.49(\mathrm{~m}, 6 \mathrm{H}$, H_{D} and $\left.H_{E}\right), 6.01\left(\mathrm{~s}, 4 \mathrm{H}, H_{C}\right), 1.18\left(\mathrm{~s}, 36 \mathrm{H}, H_{F}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 153.31,151.24,146.61$, $133.37,128.45,125.00,124.71,66.50,35.64,31.58$; HRMS (ESI), m/z calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$562.4282; found: 562.4260; $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{~F}_{12} \mathrm{P}_{2}-\mathrm{PF}_{6}\right]^{+} 707.3923$; found: 707.3890.

"Click-capping" approach for the synthesis of [3]rotaxanes or [2]rotaxanes ${ }^{[8]}$

General procedure for [3]CR-C $\mathbf{C}_{\mathbf{n}}(\mathbf{n}=\mathbf{1 6}, \mathbf{1 2}, \mathbf{6})$
Condition A (Entries 1-3, Table 1 in the main text)
A mixture of macrocycle 1-3 (2.0 equiv.), guest $\mathbf{G 4}$ (1.0 equiv.) and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ (0.3 equiv.) was stirred in dry acetone at room temperature for 20 minutes under N_{2}. Then a solution of Stopper- \mathbf{N}_{3} (2.5 equiv.) and N, N-diisopropylethylamine (DIPEA) (1.2 equiv.) was injected. The mixture was further stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h . The resulting solution was washed with 16% aqueous EDTA tetra-sodium saturated ammonia solution $(2 \times 50 \mathrm{~mL})$. The organic layer was retained and the aqueous layer
extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic extracts were combined and washed by water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried in vacuo. Removal of the solvent afforded a red solid and the crude material was purified by flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right.$, v/v) to give the red solid [3]CR-C C_{n} or [2]CR-C C_{n}.
[3]CR-C ${ }_{16}$ was synthesized according to the above general procedure using macrocycle 1 ($100.0 \mathrm{mg}, 0.043 \mathrm{mmol}$), guest $\mathbf{G 4}(12 \mathrm{mg}, 0.021 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(3 \mathrm{mg}, 0.006 \mathrm{mmol})$ Stopper- $\mathrm{N}_{3}(13 \mathrm{mg}, 0.053 \mathrm{mmol})$ and N, N-diisopropylethylamine (DIPEA) ($3 \mathrm{mg}, 0.024 \mathrm{mmol}$) in dry acetone. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ afforded $103 \mathrm{mg}(86 \%$ yield) of [3]rotaxane [3]R-C $\mathbf{C l}_{16}$ as a red solid.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 10.08\left(\mathrm{~s}, 6 \mathrm{H}, H_{a}\right), 9.80\left(\mathrm{~s}, 12 \mathrm{H}, H_{c}\right), 9.59$ (d, $\left.J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{A}\right), 8.95\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 8.64\left(\mathrm{~s}, 6 \mathrm{H}, H_{b}\right), 7.46(\mathrm{~s}, 2 \mathrm{H}$, $\left.H_{C}\right), 7.08\left(\mathrm{~m}, 8 \mathrm{H}, H_{d}\right.$ and $\left.H_{F}\right), 6.77\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}, H_{G}\right), 6.67\left(\mathrm{~m}, 6 \mathrm{H}, H_{e}\right), 5.12(\mathrm{~m}$, $\left.4 \mathrm{H}, H_{D}\right), 5.10\left(\mathrm{~s}, 4 \mathrm{H}, H_{E}\right), 4.73\left(\mathrm{~m}, 24 \mathrm{H}, H_{f}\right), 4.00\left(\mathrm{~s}, 36 \mathrm{H}, H_{g}\right), 3.37\left(\mathrm{~m}, 4 \mathrm{H}, H_{H}\right)$, $2.20\left(\mathrm{~m}, 12 \mathrm{H}, H_{h}\right), 1.62-1.21\left(\mathrm{~m}, 324 \mathrm{H}, H_{I}, H_{i-o}\right.$ and $\left.H_{p-t}\right), 0.92-0.81\left(\mathrm{~m}, 72 \mathrm{H}, H_{u}\right.$ and $\left.H_{v}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 162.54,161.46,151.41,150.74$, $146.88,146.18,145.03,141.59,139.08,136.07,128.95,123.38,123.20,122.30$, $120.94,116.31,115.62,98.25,95.00,73.71,71.57,71.43,63.27,56.16,54.17,38.36$, $35.01,32.75,32.71,32.62,31.55,31.43,31.24,31.17,30.93,30.81,30.63,30.48$, $30.35,30.40,30.07,27.48,26.51,23.52,23.41,23.33,14.51,14.45,14.40$; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{336} \mathrm{H}_{532} \mathrm{~N}_{20} \mathrm{O}_{36} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$5427.051; found: 5427.495.
[3]CR-C $\mathbf{1 2}_{12}$ was synthesized according to the above general procedure using macrocycle 2 ($201 \mathrm{mg}, 0.100 \mathrm{mmol}$), guest G4 ($26 \mathrm{mg}, 0.048 \mathrm{mmol}$),
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(5 \mathrm{mg}, 0.014 \mathrm{mmol})$ Stopper- $\mathbf{N}_{3}(30 \mathrm{mg}, 0.119 \mathrm{mmol})$ and DIPEA ($7 \mathrm{mg}, 0.057 \mathrm{mmol}$) in dry acetone. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ afforded $220 \mathrm{mg}\left(91 \%\right.$ yield) of [3]rotaxane [3]R- $\mathbf{C}_{\mathbf{1 2}}$ as a red solid.

${ }^{1}{ }^{H} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right): \delta 10.17\left(\mathrm{~s}, 6 \mathrm{H}, H_{a}\right), 9.90\left(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}, H_{A}\right)$, 9.57 (br, 4H, $\left.H_{B}\right), 9.43\left(\mathrm{~s}, 12 \mathrm{H}, H_{c}\right), 8.60\left(\mathrm{~s}, 6 \mathrm{H}, H_{b}\right), 7.14\left(\mathrm{~s}, 2 \mathrm{H}, H_{C}\right), 6.70(\mathrm{~s}, 4 \mathrm{H}$, $\left.H_{G}\right), 6.60\left(\mathrm{~m}, \mathrm{br}, 2 \mathrm{H}, H_{F}\right), 6.54\left(\mathrm{~m}, \mathrm{br}, 12 \mathrm{H}, H_{d}\right.$ and $\left.H_{e}\right), 5.22\left(\mathrm{~m}, \mathrm{br}, 4 \mathrm{H}, H_{D}\right), 5.03(\mathrm{~m}$, $\left.\mathrm{br}, 4 \mathrm{H}, H_{E}\right), 4.18-4.07\left(\mathrm{~m}, 24 \mathrm{H}, H_{f}\right), 3.85\left(\mathrm{~s}, 36 \mathrm{H}, H_{g}\right), 3.53$ (partial overlayer, m, br, $\left.4 \mathrm{H}, H_{H}\right), 1.33-1.20\left(\mathrm{~m}, 276 \mathrm{H}, H_{I}\right.$ and $\left.H_{h-q}\right), 1.00-0.83\left(\mathrm{~m}, 36 \mathrm{H}, H_{r}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right): \delta 162.42,160.90,151.52,146.67,145.60,142.24,139.18$, $138.65,136.02,130.44,123.91,122.79,122.46,121.31,116.03,115.49,96.87,94.44$, 83.11, 70.66, 55.87, 35.06, 32.72, 31.55, 30.90, 30.69, 30.56, 30.47, 26.60, 23.38, 14.44; MALDI-TOF-MS, m / z calcd for $\left[\mathrm{C}_{288} \mathrm{H}_{436} \mathrm{~N}_{20} \mathrm{O}_{36} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$4753.296; found: 4753.335 .
[3]CR-C6 was synthesized according to the above general procedure using macrocycle 3 ($200 \mathrm{mg}, 0.133 \mathrm{mmol}$), guest $\mathbf{G 4}(35 \mathrm{mg}, 0.064 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(7 \mathrm{mg}, 0.019 \mathrm{mmol})$ Stopper- $\mathbf{N}_{3}(39 \mathrm{mg}, 0.159 \mathrm{mmol})$ and DIPEA ($10 \mathrm{mg}, 0.076 \mathrm{mmol}$) in dry acetone. The undissolved macrocycle $3(65 \mathrm{mg}$) was collected by filter. The percent conversion of macrocycle 3 achieved 68\%. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right)$ afforded 166 mg (64\% yield) of [3]rotaxane [3]CR-C \mathbf{C}_{6} as a red solid.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 10.10\left(\mathrm{~s}, 6 \mathrm{H}, H_{a}\right), 9.73\left(\mathrm{~s}, 12 \mathrm{H}, H_{c}\right), 9.62$ (d, $\left.J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{A}\right), 9.06\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 8.60\left(\mathrm{~s}, 6 \mathrm{H}, H_{b}\right), 7.59(\mathrm{~s}, 2 \mathrm{H}$, $\left.H_{C}\right), 7.09\left(\mathrm{~m}, 8 \mathrm{H}, H_{d}\right.$ and $\left.H_{F}\right), 6.75\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}, H_{G}\right), 6.67\left(\mathrm{~s}, 6 \mathrm{H}, H_{e}\right)$, 5.12-5.10 (m, 4H, H_{D}), $5.10\left(\mathrm{~s}, 4 \mathrm{H}, H_{E}\right), 4.40-4.36\left(\mathrm{~m}, 12 \mathrm{H}, H_{f}\right), 4.31-4.27(\mathrm{~m}, 12 \mathrm{H}$, H_{f}), $3.99\left(\mathrm{~s}, 36 \mathrm{H}, H_{g}\right), 4.36\left(\mathrm{~m}, 4 \mathrm{H}, H_{H}\right), 2.10\left(\mathrm{~m}, 12 \mathrm{H}, H_{h}\right), 1.73-1.38\left(\mathrm{~m}, 48 \mathrm{H}, H_{i}\right.$ and $\left.H_{I}\right), 0.99\left(\mathrm{~m}, 36 \mathrm{H}, H_{i}\right), 0.91\left(\mathrm{~m}, 72 \mathrm{H}, H_{j}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298$ K): $\delta 161.73,160.62,150.63,150.46,145.97,145.31,138.05,135.23,128.48,122.65$, $122.58,122.30,121.43,120.07,115.45,114.74,97.36,94.21,72.00,62.11,55.25$, $53.13,39.75,34.12,30.50,27.47,22.31,22.08,10.44,9.20$; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{216} \mathrm{H}_{292} \mathrm{~N}_{20} \mathrm{O}_{36} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$3744.178; found: 3744.265.

Condition B (Entry 4, Table 1 in the main text)
A mixture of macrocycle $1(100 \mathrm{mg}, 0.043 \mathrm{mmol})$, guest $\mathbf{G 4}(24 \mathrm{mg}, 0.043 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$ was stirred in dry acetone at room temperature for 20 minutes under N_{2}. Then a solution of Stopper- \mathbf{N}_{3} ($26 \mathrm{mg}, 0.107$ mmol) and N, N-diisopropylethylamine (DIPEA) ($7 \mathrm{mg}, 0.051 \mathrm{mmol}$) was injected. The mixture was further stirred at $40^{\circ} \mathrm{C}$ for 24 h . The resulting solution was washed with 16% aqueous EDTA tetra-sodium saturated ammonia solution $(2 \times 50 \mathrm{~mL})$. The organic layer was retained and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50$ $\mathrm{mL})$. The organic extracts were combined and washed by water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried in vacuo. Removal of the solvent afforded a red solid and the crude material was purified by flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right.$, v / v) to give the red solid [3]CR-C $\mathbf{1 6}_{\mathbf{1 6}} 44 \mathrm{mg}$ (36% yield) and [2]CR-C $\mathbf{1 6}_{16} 49 \mathrm{mg}$ (34% yield). The yield of [2]/[3]rotaxane was calculated based on the macrocycle 1. $[3] C R-C_{16} /[2] C R-C_{16}=53 / 100$.

Condition C (Entry 5, Table 1 in the main text)
A mixture of macrocycle $\mathbf{1}(100 \mathrm{mg}, 0.043 \mathrm{mmol})$, guest $\mathbf{G 4}(12 \mathrm{mg}, 0.021 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(3 \mathrm{mg}, 0.006 \mathrm{mmol})$ was stirred in dry $\mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{CH}_{3} \mathrm{CN}=$ $1: 1(\mathrm{v} / \mathrm{v})$ at room temperature for 20 minutes under N_{2}. Then a solution of Stopper- $\mathbf{N}_{3}(13 \mathrm{mg}, 0.053 \mathrm{mmol})$ and N, N-diisopropylethylamine (DIPEA) (3 mg , 0.024 mmol) was injected. The mixture was further stirred at $40^{\circ} \mathrm{C}$ for 24 h . The resulting solution was washed with 16% aqueous EDTA tetra-sodium saturated ammonia solution $(2 \times 50 \mathrm{~mL})$. The organic layer was retained and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic extracts were combined and washed by water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried in vacuo. Removal of solvents afforded a red solid and the crude material was purified by flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 20: 1\right.$, v/v) to give the red solid [3]CR-C $\mathbf{1 6}_{6} 72 \mathrm{mg}\left(60 \%\right.$ yield) and [2]CR-C $\mathbf{1 6}_{\mathbf{1 6}} 22 \mathrm{mg}$ (18% yield). The yield of [2]/[3]rotaxane based on the guest G4. [3]CR-C $\mathbf{1 6}_{16} /[2] C R-\mathbf{C}_{16}=193 / 100$.

[2]CR-C ${ }_{16}$, red solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 9.97$ (s, $3 \mathrm{H}, H_{a}$), 9.77 (s, 6H, H_{c}), $9.55\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{A}\right), 9.23\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 8.95$ (s, $3 \mathrm{H}, H_{b}$), $7.73\left(\mathrm{~s}, 2 \mathrm{H}, H_{C}\right), 7.33\left(\mathrm{~s}, 2 \mathrm{H}, H_{F}\right), 7.13\left(\mathrm{~s}, 4 \mathrm{H}, H_{G}\right), 6.99\left(\mathrm{~m}, 6 \mathrm{H}, H_{d}\right.$ and $\left.H_{e}\right)$, $5.32\left(\mathrm{~m}, 4 \mathrm{H}, H_{D}\right), 5.25\left(\mathrm{~s}, 4 \mathrm{H}, H_{E}\right), 4.43-4.42\left(\mathrm{~m}, 12 \mathrm{H}, H_{f}\right), 4.08\left(\mathrm{~s}, 18 \mathrm{H}, H_{g}\right), 3.52(\mathrm{~m}$, $\left.4 \mathrm{H}, H_{H}\right), 2.21\left(\mathrm{~m}, 6 \mathrm{H}, H_{h}\right), 1.60-1.16\left(\mathrm{~m}, 180 \mathrm{H}, H_{l}, H_{i-o}\right.$ and $\left.H_{p-t}\right), 0.88-0.82(\mathrm{~m}, 36 \mathrm{H}$, H_{u} and H_{v}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): δ 163.04, 161.74, 152.00, $147.01,146.87,140.19,135.88,135.36,123.56,123.07,121.02,115.77,98.55,96.14$, $73.99,73.15,69.27,65.56,62.01,56.99,54.61,54.30,51.68,48.36,38.58,35.28$, $32.73,32.64,32.58,31.85,31.83,31.60,30.83,30.53,30.48,27.23,23.34,14.41$; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{192} \mathrm{H}_{298} \mathrm{~N}_{14} \mathrm{O}_{18} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$3090.299; found: 3090.275 .

"Facile one-pot" approach for the synthesis of [3]rotaxanes and [2]rotaxanes ${ }^{[9]}$

General procedure for [3]R-C $\mathbf{C}_{\mathbf{n}}$ or [2]R-C \mathbf{n}
A mixture of cyclo[6]aroamide 1-3 (2 equiv.), 3,5-di-tert-butylbenzyl bromide Stopper-Br (2.5 equiv.) and 4,4'-bipyridine (1 equiv.) was stirred in 6 mL $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}(1 / 1, \mathrm{v} / \mathrm{v})()$ under N_{2} at $40{ }^{\circ} \mathrm{C}$ for 48 h . Removal of solvents afforded a pale red solid and the crude compound was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaPF_{6} was added; the organic solvent was then evaporated under reduced pressure. The precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$. Then the crude material was purified by flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 30: 1\right.$, and then $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 10: 1$, v/v) to give the red solid [3]R-C $\mathbf{C}_{\mathbf{n}}$ or $[2] \mathbf{R}-\mathbf{C}_{\mathbf{n}}$.
[3]R-C \mathbf{C}_{16} was synthesized according to the above general procedure using macrocycle $\mathbf{1}(210 \mathrm{mg}, 89.84 \mu \mathrm{~mol})$, Stopper-Br ($30 \mathrm{mg}, 106.95 \mu \mathrm{~mol}$) and 4,4'-bipyridine (6.7 $\mathrm{mg}, 42.78 \mu \mathrm{~mol}$) in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1(\mathrm{v} / \mathrm{v})(6 \mathrm{~mL})$. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 30: 1, \mathrm{v} / \mathrm{v}\right.$ and then $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$, $10: 1, \mathrm{v} / \mathrm{v}$) afforded 191 mg (85% yield, over two steps) of [3]rotaxane [3]R-C $\mathbf{C}_{\mathbf{1 6}}$ as a red solid.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 10.07\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, H_{a}\right), 9.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}$,
$\left.4 \mathrm{H}, H_{A}\right), 9.73\left(\mathrm{~s}, 12 \mathrm{H}, H_{c}\right), 8.95\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 8.77\left(\mathrm{~m}, 6 \mathrm{H}, H_{b}\right), 7.31(\mathrm{~d}, J=$ $\left.1.6 \mathrm{~Hz}, 4 \mathrm{H}, H_{D}\right), 7.16\left(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, H_{C}\right), 7.09\left(\mathrm{~s}, 6 \mathrm{H}, H_{d}\right), 6.64\left(\mathrm{~m}, 6 \mathrm{H}, H_{e}\right), 6.02$ (s, 4H, H_{E}), 4.39-4.33 (m, 24H, H_{f}), $3.98\left(\mathrm{~m}, 36 \mathrm{H}, H_{g}\right), 2.16\left(\mathrm{~m}, 12 \mathrm{H}, H_{h}\right), 1.63-1.21$ $\left(\mathrm{m}, 324 \mathrm{H}, H_{l}, H_{i-o}\right.$ and $\left.H_{p-t}\right), 0.90-0.79\left(\mathrm{~m}, 72 \mathrm{H}, H_{u}\right.$ and $\left.H_{v}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right): \delta 160.85,159.98,150.83,149.75,145.15,144.60,137.98$, $132.36,132.00,130.56,128.20,128.13,127.45,122.79$, 122.51, 119.64, 114.99, $114.39,96.85,93.45,72.33,64.47,54.70,36.95,33.80,31.32,31.28,31.20,30.21$, 29.97, 29.69, 29.51, 29.34, 29.21, 29.02, 28.93, 28.67, 26.15, 25.13, 22.09, 21.98, 21.92, $18.45,13.08,13.04,12.99,12.59$; MALDI-TOF-MS, m / z calcd for $\left[\mathrm{C}_{328} \mathrm{H}_{522} \mathrm{~N}_{14} \mathrm{O}_{36} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$5236.954; found: 5236.883.
[3]R- $\mathbf{C}_{\mathbf{1 2}}$ was synthesized according to the above general procedure using macrocycle $2(200 \mathrm{mg}, 99.96 \mu \mathrm{~mol})$, Stopper-Br ($34 \mathrm{mg}, 119.00 \mu \mathrm{~mol}$) and 4,4'-bipyridine (7.4 $\mathrm{mg}, 47.60 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1(\mathrm{v} / \mathrm{v})(6 \mathrm{~mL})$. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 30: 1\right.$, v/v and then $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 10: 1$, v/v) afforded 196 mg (85% yield, over two steps) of [3]rotaxane [3]R-C \mathbf{C}_{12} as a red solid.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right): \delta 10.02\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{H}, H_{a}\right), 9.96(\mathrm{~d}, \mathrm{br}, \quad J=6.4$ $\left.\mathrm{Hz}, 4 \mathrm{H}, H_{A}\right), 9.73\left(\mathrm{~d}, \mathrm{br}, \quad J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 9.30\left(\mathrm{~s}, 12 \mathrm{H}, H_{c}\right), 8.56\left(\mathrm{~s}, 6 \mathrm{H}, H_{b}\right)$, 7.37 (m, 4H, H_{D}), 7.10 ($\left.\mathrm{s}, 2 \mathrm{H}, H_{C}\right), 6.49$ (s, 6H, H_{d}), 6.39 (s, br, 6H, H_{e}), 6.04 (s, br, $\left.4 \mathrm{H}, H_{E}\right), 4.03-3.96\left(\mathrm{~m}, 24 \mathrm{H}, H_{f}\right), 3.83\left(\mathrm{~s}, 36 \mathrm{H}, H_{g}\right), 1.92\left(\mathrm{~m}, \mathrm{br}, 24 \mathrm{H}, H_{h}\right), 1.32-1.21$ ($\mathrm{m}, 252 \mathrm{H}, H_{F}$ and H_{i-q}) $0.85\left(\mathrm{~m}, 36 \mathrm{H}, H_{r}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 161.23,159.72,151.43,151.15,145.27,144.44,138.50,133.04,130.32,123.69$, $120.61,114.97,114.75,95.66,93.41,69.54,54.87,34.44,34.25,31.88,31.16,30.94$, 30.65, 30.07, 29.86, 29.71, 29.39, 25.77, 22.55, 13.60; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{280} \mathrm{H}_{426} \mathrm{~N}_{14} \mathrm{O}_{36} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$4563.199; found: 4563.225.
[2]R-C \mathbf{C}_{6} was synthesized according to the above general procedure using macrocycle 3 ($200 \mathrm{mg}, 133.70 \mu \mathrm{~mol}$), Stopper-Br ($45 \mathrm{mg}, 159.17 \mu \mathrm{~mol}$) and 4,4'-bipyridine (9.9 $\mathrm{mg}, 63.67 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1(\mathrm{v} / \mathrm{v})(6 \mathrm{~mL})$. The undissolved macrocycle $\mathbf{3}(33 \mathrm{mg})$ was collected by filter. The percent conversion of macrocycle $\mathbf{3}$ achieved 84%. Flash column chromatography using silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 30: 1\right.$, v / v and then $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 10: 1$, v / v) afforded 106 mg (71% yield) of [2]rotaxane [2]R-C \mathbf{C}_{6} as a pale orange solid.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): $\delta 9.91$ (s, $3 \mathrm{H}, H_{a}$), 9.72 (d, overlap, 4 H , $\left.H_{A}\right), 9.70\left(\mathrm{~s}, 6 \mathrm{H}, H_{c}\right), 9.31\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, H_{B}\right), 8.98\left(\mathrm{~s}, 3 \mathrm{H}, H_{b}\right), 7.41(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}$, $\left.H_{D}\right), 7.38\left(\mathrm{~s}, 2 \mathrm{H}, H_{C}\right), 7.12\left(\mathrm{~s}, 3 \mathrm{H}, H_{d}\right), 6.97\left(\mathrm{~s}, 3 \mathrm{H}, H_{e}\right), 6.23\left(\mathrm{~s}, 4 \mathrm{H}, H_{E}\right), 4.40(\mathrm{~d}, J=$ $\left.6.0 \mathrm{~Hz}, 12 \mathrm{H}, H_{f}\right), 4.07\left(\mathrm{~s}, 18 \mathrm{H}, H_{g}\right), 3.13\left(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}, H_{h}\right), 1.64\left(\mathrm{~m}, 24 \mathrm{H}, H_{i}\right), 1.06(\mathrm{~s}$, $36 \mathrm{H}, H_{F}$), 1.04-0.99 (m, 36H, H_{j}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$): δ $162.13,160.09,151.89,150.84,145.91,145.71,138.07,132.65,128.58,123.53$, 120.04, 116.31, 114.80, 97.95, 95.22, 72.26, 65.40, 55.71, 40.30, 34.44, 30.51, 29.75, 22.89, 10.23; MALDI-TOF-MS, m/z calcd for $\left[\mathrm{C}_{124} \mathrm{H}_{168} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~F}_{12} \mathrm{P}_{2}-2 \mathrm{PF}_{6}\right]^{+}$2058.255; found: 2058.365 .

References

[1] Yuan, L.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D.; Guo, H.; Gong, B., J. Am. Chem. Soc. 2004, 126, 11120.
[2] Yang, Y.; Feng, W.; Hu, J.; Zou, S.; Gao, R.; Yamato, K.; Kline, M.; Cai, Z.; Gao, Y.; Wang, Y.;
Li, Y.; Yang, Y.; Yuan, L.; Zeng, X. C.; Gong, B., J. Am. Chem. Soc. 2011, 133, 18590.
[3] Hu, J.; Chen, L.; Ren, Y.; Deng, P.; Li, X.; Wang, Y.; Jia, Y.; Luo, J.; Yang, X.; Feng, W.; Yuan, L., Org. Lett. 2013, 15, 4670.
[4] Hu, J.; Chen, L.; Shen, J.; Luo, J.; Deng, P.; Ren, Y.; Zeng, H.; Feng, W.; Yuan, L. Chem. Commun. 2014, 50, 8024.
[5] Xiao, Y.; Chu, L.; Sanakis, Y.; Liu, P., J. Am. Chem. Soc. 2009, 131, 9931.
[6] Coskun, A.; Saha, S.; Aprahamian, I.; Stoddart, J. F., Org. Lett. 2008, 10, 3187.
[7] Gassensmith, J. J.; Barr, L.; Baumes, J. M.; Paek, A.; Nguyen, A.; Smith, B. D., Org. Lett. 2008, 10, 3343.
[8] (a) Neal, E. A.; Goldup, S., Chem. Sci. 2015, 6, 2398; (b) Winn, J.; Pinczewska, A.; Goldup, S., J. Am. Chem. Soc. 2013, 135, 13318.
[9] (a) Xu, Z.; Jiang, L.; Feng, Y.; Zhang, S.; Liang, J.; Pan, S.; Yang, Y.; Yang, D.; Cai, Y., Org. Biomol. Chem. 2011, 9, 1237; (b) Cheng, P.-N.; Lin, C.-F.; Liu, Y.-H.; Lai, C.-C.; Peng, S.-M.; Chiu, S.-H., Org. Lett. 2006, 8, 435.

3. Spectroscopic Characterization

$3.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Novel Compounds

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum of 4,6-bis(2-ethylbutoxy)isophthalic acid ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$
K).

Figure $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum of 4,6-bis(2-ethylbutoxy)isophthalic acid (100 MHz, $\mathrm{CDCl}_{3}, 298$

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of cyclo[6]aramide $\mathbf{3}$ and additional $\mathbf{E t}_{3} \mathbf{N} \cdot \mathbf{H C l}(\Delta)(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure $\mathbf{S} 4{ }^{13} \mathbf{C}$ NMR spectrum of cyclo[6]aramide $\mathbf{3}$ and additional $\mathbf{E t}_{2} \mathbf{N H} \cdot \mathbf{H C l}(\Delta)(100 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure S5 ${ }^{1} \mathrm{H}$ NMR spectrum of heteroditopic cyclo[6]aramides $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S6 ${ }^{13} \mathrm{C}$ NMR spectrum of heteroditopic cyclo[6] aramides $5\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{G 1}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{G} \mathbf{2}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S9 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{G} \mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S10 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{G 4}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\operatorname{Stopper}-\mathbf{N}_{\mathbf{3}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 1 2}{ }^{13} \mathrm{C}$ NMR spectrum of Stopper- $\mathbf{N}_{\mathbf{3}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure S13 ${ }^{1} \mathrm{H}$ NMR spectrum of Axle-1 $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S14 ${ }^{13} \mathrm{C}$ NMR spectrum of Axle-1 $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S15 ${ }^{1} \mathrm{H}$ NMR spectrum of Axle-2 $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S16 ${ }^{13}$ C NMR spectrum of Axle-2 (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR spectrum of [3]CR-C $\mathbf{C}_{16}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S18 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $[3]$ CR-C $\mathbf{C}_{16}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S19 ${ }^{1} \mathrm{H}$ NMR spectrum of [3]CR-C $\mathbf{1 2}_{\mathbf{2}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S20 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $[3]$ CR-C $\mathbf{C}_{12}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S21 ${ }^{1} \mathrm{H}$ NMR spectrum of [3]CR-C $\mathbf{C}_{\mathbf{6}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S22 ${ }^{13} \mathrm{C}$ NMR spectrum of compound [3]CR-C $\mathbf{6}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 2 3}{ }^{1} \mathrm{H}$ NMR spectrum of [2]CR-C $\mathbf{C}_{16}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 2 4}{ }^{13} \mathrm{C}$ NMR spectrum of compound $[\mathbf{2}] \mathbf{C R}-\mathbf{C}_{\mathbf{1 6}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 2 6}{ }^{13} \mathrm{C}$ NMR spectrum of compound [3]R-C $\mathbf{C l}_{\mathbf{1 6}}-\mathbf{B r}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 2 7}{ }^{1} \mathrm{H}$ NMR spectrum of compound [3]R-C $\mathbf{C}_{16}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S28 ${ }^{13} \mathrm{C}$ NMR spectrum of compound [3]R-C $\mathbf{C}_{16}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S29 ${ }^{1} \mathrm{H}$ NMR spectrum of compound [3]R-C $\mathbf{C}_{12}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S30 ${ }^{13} \mathrm{C}$ NMR spectrum of compound [3]R-C $\mathbf{C}_{12}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure S31 ${ }^{1} \mathrm{H}$ NMR spectrum of compound [2]R-C $\mathbf{C}_{6}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 3 2}{ }^{13} \mathrm{C}$ NMR spectrum of compound [2]R-C $\mathbf{C}_{6}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}\right)$.

3.2 MALDI-TOF-MS or HRESI-MS Spectra of Novel Compounds

Figure S33 HRESI-MS spectrum of compound 5.

Figure S34 HRESI-MS spectrum of Axle-1.

Figure S35 HRESI-MS spectrum of Axle-2.

Figure S36 MALDI-TOF mass spectrum of cyclo[6]aramide $\mathbf{3}$ (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S37 MALDI-TOF mass spectrum of cyclo[6]aramides 5.

Figure S38 MALDI-TOF mass spectrum of [3]CR-C $\mathbf{C l}_{\mathbf{1 6}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S39 MALDI-TOF mass spectrum of [3]CR-C $\mathbf{C l}_{\mathbf{1 2}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S40 MALDI-TOF mass spectrum of [2]CR-C $\mathbf{C}_{\mathbf{1 6}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S41 MALDI-TOF mass spectrum of [3]CR-C \mathbf{C}_{6} (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S42 MALDI-TOF mass spectrum of [3]R-C $\mathbf{C}_{\mathbf{1 6}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S43 MALDI-TOF mass spectrum of [3]R-C $\mathbf{C}_{\mathbf{1 2}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

Figure S44 MALDI-TOF mass spectrum of [2]R-C $\mathbf{C}_{\mathbf{6}}$ (inset: experimental isotope distribution (red) and computer simulation (blue)).

4. Host-Guest Complexation of 1 and G1-G4

4.1 NMR Spectra of Complexation

Figure $\mathbf{S 4 5}$ Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , acetone- d_{6}, 298 K) of (a) $2.0 \mathrm{mM} \mathrm{G1}$, (b) 2.0 mM $\mathbf{1}$ and G1, (c) 4.0 mM 1 and $2.0 \mathrm{mM} \mathrm{G1}$, (d) 2.0 Mm 1.

Figure S46 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G 1}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-3.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S47 Stacked plots of ${ }^{1}$ H NMR spectra of $\mathbf{G 1}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-3.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6} / \mathrm{DMSO}-\mathrm{d}_{6}(9 / 1, \mathrm{v} / \mathrm{v})(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S48 Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , acetone- d_{6}, 298 K) of (a) $1.0 \mathrm{mM} \mathrm{G2}$, (b) 0.5 mM 1 and $1.0 \mathrm{mM} \mathrm{G2}$, (c) 1.0 mM 1 and 1.0 mM G2, (d) 2.0 mM 1 and $1.0 \mathrm{mM} \mathrm{G2}$, (e) 1.0 Mm 1.

Figure S49 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G} 2(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-3.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

(c)

Figure S50 Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , acetone- d_{6}, 298 K) of (a) $1.0 \mathrm{mM} \mathrm{G3}$, (b) 1.0 mM $\mathbf{1}$ and $1.0 \mathrm{mM} \mathrm{G3}$, (c) 1.0 Mm 1.

Figure S51 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G} \mathbf{3}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-2.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure $\mathbf{S 5 2}$ Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , acetone- d_{6}, 298 K) of (a) $1.0 \mathrm{mM} \mathrm{G4}$, (b) 0.5 mM 1 and $1.0 \mathrm{mM} \mathrm{G4}$, (c) 1.0 mM 1 and $1.0 \mathrm{mM} \mathrm{G4}$, (d) 2.0 mM 1 and $1.0 \mathrm{mM} \mathrm{G4}$, (e) 1.0 Mm 1.

Figure S53 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G 4}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-3.0 \mathrm{mM})$ in acetone-d $\mathrm{d}_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S54 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G 4}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-3.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6} / \mathrm{DMSO}-\mathrm{d}_{6}(9 / 1, \mathrm{v} / \mathrm{v})(400 \mathrm{MHz}, 298 \mathrm{~K})$.

4.2 2D NMR Spectra of Host-Guest Complexes

4.2.1 2D-NOESY Spectra of Host-Guest Complexes

NOESY NMR spectroscopic studies were carried out in an effort to elucidate the nature of the host-guest interactions between cyclo[6]aramide $\mathbf{1}$ and pyridinium guests G1-G4 in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ solution. In the resulting spectra of $\mathbf{1}_{2} \supset \mathbf{G 1}$, correlations between $\left(\mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{b}}\right)$ and $\mathrm{H}^{2},\left(\mathrm{H}^{\mathrm{a}}, \mathrm{H}^{\mathrm{b}}\right)$ and H^{3} were observed. In the resulting spectra of $\mathbf{1}$ $\supset \mathbf{G 4}$, correlations between H^{a} and $\left(\mathrm{H}^{13}, \mathrm{H}^{14}, \mathrm{H}^{15}\right), \mathrm{H}^{\mathrm{b}}$ and $\left(\mathrm{H}^{13}, \mathrm{H}^{14}, \mathrm{H}^{15}\right)$, were observed. These spectra are consistent with the guests complexed in the cavities of cyclo[6]aramides and the threaded binding mode shown in Scheme 1 of the main text. Also, in the resulting spectra of $\mathbf{1}_{2} \supset \mathbf{G 2}$, correlations between H^{a} and $\left(\mathrm{H}^{5}, \mathrm{H}^{6}, \mathrm{H}^{7}, \mathrm{H}^{8}\right)$, H^{b} and $\left(\mathrm{H}^{6}, \mathrm{H}^{8}\right)$ were observed. In the resulting spectra of $\mathbf{1} \supset \mathbf{G 3}$, correlations between H^{a} and $\left(\mathrm{H}^{9}, \mathrm{H}^{10}, \mathrm{H}^{12}\right), \mathrm{H}^{\mathrm{b}}$ and H^{12} were observed.

2D-NOESY Spectra of $\mathbf{1}_{2} \supset \mathbf{G 1}$

Figure S55 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 1}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 1}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 1}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S56 Expanded 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 1}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 1}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 1}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

2D-NOESY Spectra of $\mathbf{1}_{2} \supset \mathbf{G 2}$

Figure S57 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 2}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 2}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G} 2=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S58 Expanded 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 2}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 2}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G} 2=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

2D-NOESY Spectra of $\mathbf{1} \boldsymbol{\supset} \mathbf{G} 3$

Figure S59 2D-NOESY spectra of $\mathbf{1} \supset \mathbf{G 3}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 3}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 3}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S60 Expanded 2D-NOESY spectra of $\mathbf{1} \supset \mathbf{G} 3([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G} 3]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G} 3=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S61 Expanded 2D-NOESY spectra of $\mathbf{1} \supset \mathbf{G} 3([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G} 3]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G} 3=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S62 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 4}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 4}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 4}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S63 Expanded 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 4}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 4}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 4}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

Figure S64 Expanded 2D-NOESY spectra of $\mathbf{1}_{2} \supset \mathbf{G 4}([\mathbf{1}]=10 \mathrm{mM},[\mathbf{G 4}]=5 \mathrm{mM}, \mathbf{1}: \mathbf{G 4}=2: 1)$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$, mixing time $\left.=0.4 \mathrm{~s}\right)$.

4.2.2 2D-DOSY Spectra of Host-Guest Complexes

2D-DOSY spectroscopic analyses provided evidence that a stable complex was formed between host cyclo[6]aramide 1 and pyridinium guests G1-G4. For the complexes $\mathbf{1}_{2} \supset \mathbf{G 1}, \mathbf{1}_{2} \supset \mathbf{G} \mathbf{2}$ and $\mathbf{1}_{2} \supset \mathbf{G 4}$, all of the protons except the solvent, including those located on 1 and guests (G1, G2 and G4), showed the same diffusion constants in the representative solution state mixtures. For the complex of $\mathbf{1} \supset \mathbf{G 3}$, all of the protons, including those located on $\mathbf{1}$ and G3 showed the very similar diffusion constants in the representative solution state mixtures.

Figure S65 Expanded view of the 600 MHz 2D-DOSY NMR spectrum of $\mathbf{1}(10.0 \mathrm{mM})$ recorded in the presence of 1 molar equiv. of $\mathbf{G 1}(5.0 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ at 298 K .

Figure S66 Expanded view of the 600 MHz 2D-DOSY NMR spectrum of $\mathbf{1}(10.0 \mathrm{mM})$ recorded in the presence of 1 molar equiv. of $\mathbf{G} \mathbf{2}(5.0 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ at 298 K .

Figure S67 Expanded view of the 600 MHz 2D-DOSY NMR spectrum of $\mathbf{1}(10.0 \mathrm{mM})$ recorded in the presence of 1 molar equiv. of $\mathbf{G 3}(10.0 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ at 298 K .

Figure S68 Expanded view of the 600 MHz 2D-DOSY NMR spectrum of $\mathbf{1}(10.0 \mathrm{mM})$ recorded in the presence of 1 molar equiv. of $\mathbf{G 4}(5.0 \mathrm{mM})$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ at 298 K .

4.3 UV-vis Spectra of $\mathbf{1}_{2} \boldsymbol{\beth}$ G1 and $1_{2} \boldsymbol{\beth} 4$

Figure S69 UV-vis spectra of $\mathbf{1}, \mathbf{G 1}$ and $\mathbf{1}_{2} \supset \mathbf{G 1}(1 \mathrm{mM}$ for each) in acetone. Inserted images show the color change.

Figure S70 UV-vis spectra of $\mathbf{1}, \mathbf{G 4}$ and $\mathbf{1}_{2} \supset \mathbf{G 4}(1 \mathrm{mM}$ for each) in acetone. Inserted images show the color change.

4.4 Job Plots of Host-Guest Complexes

Job plots of $\mathbf{1}_{2} \boldsymbol{\beth}$ G1

Figure S71 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ of $\mathbf{1}_{2} \supset \mathbf{G 1}$ in the presence of the different ratio of $\mathbf{1}$ and $\mathbf{G 1}$ at a fixed total concentration 1.0 mM .

Figure S72 Job plots between $\mathbf{1}_{2} \supset \mathbf{G 1}$ were obtained by plotting the chemical shift changes of the proton a (low-field signal) on cyclo[6]aramide $\mathbf{1}$ indicating a 2:1 stoichiometry.

Job plots of $\mathbf{1}_{\mathbf{2}} \boldsymbol{\beth} \mathbf{G} \mathbf{2}$

Figure S73 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ of $\mathbf{1}_{2} \supset \mathbf{G 2}$ in the presence of the different ratio of $\mathbf{1}$ and $\mathbf{G} \mathbf{2}$ at a fixed total concentration 1.0 mM .

Figure S74 Job plots between $\mathbf{1}_{2} \supset \mathbf{G} 2$ were obtained by plotting the chemical shift changes of the proton \mathbf{d} (low-field signal) on cyclo[6] aramide $\mathbf{1}$ indicating a $2: 1$ stoichiometry.

Job plots of $\mathbf{1} \boldsymbol{\beth} \mathbf{G 3}$

Figure S75 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) of $\mathbf{1} \supset \mathbf{G 3}$ in the presence of the different ratio of $\mathbf{1}$ and $\mathbf{G} \mathbf{3}$ at a fixed total concentration 1.0 mM .

Figure $\mathbf{S 7 6}$ Job plots between $\mathbf{1} \supset \mathbf{G 3}$ were obtained by plotting the chemical shift changes of the proton a on cyclo[6]aramide $\mathbf{1}$ indicating a 1:1 stoichiometry.

Job plots of $\mathbf{1}_{2} \boldsymbol{\beth} \mathbf{G 4}$

Figure S77 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ of $\mathbf{1}_{2} \supset \mathbf{G 4}$ in the presence of the different ratio of $\mathbf{1}$ and $\mathbf{G 4}$ at a fixed total concentration 1.0 mM .

Figure S78 Job plots between $\mathbf{1}_{2} \supset \mathbf{G 4}$ were obtained by plotting the chemical shift changes of the proton \mathbf{d} on cyclo[6]aramide $\mathbf{1}$ indicating a 2:1 stoichiometry.

Job plots of $\mathbf{5}_{2}$ د G1

Figure S79 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ of $\mathbf{5}_{2} \supset \mathbf{G 1}$ in the
presence of the different ratio of $\mathbf{5}$ and $\mathbf{G 1}$ at a fixed total concentration 1.0 mM .

Figure S80 Job plots between $\mathbf{5}_{2} \supset \mathbf{G 1}$ were obtained by plotting the chemical shift changes of the proton l' on heteroditopic cyclo[6]aramide 5 indicating a 2:1 stoichiometry.

Job plots of $\mathbf{5}_{2}$ Ј G4

Figure S81 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) of $\mathbf{5}_{2} \supset \mathbf{G 4}$ in the presence of the different ratio of $\mathbf{5}$ and $\mathbf{G 4}$ at a fixed total concentration 1.0 mM .

Figure $\mathbf{S 8 2}$ Job plots between $\mathbf{5}_{2} \supset \mathbf{G 4}$ were obtained by plotting the chemical shift changes of the proton l' on heteroditopic cyclo[6]aramide $\mathbf{5}$ indicating a 2:1 stoichiometry.

4.5 Determination of the Stoichiometries and Binding Constants

To determine the binding constants (K_{a}) for cyclo[6]aramide $\mathbf{1}$ binding with guests G1-G4, UV-vis titration experiments were done with $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ solutions which had a constant concentration of cyclo[6]aramide $\mathbf{1}$ and varying concentration of guests G1-G4. For each titration, at least 30 data points were collected. Typically wavelength was monitored around the absorption maxima for the complex formed. This gave data sets from which the binding constants were obtained using a custom written global nonlinear regression analysis program within the Matlab 8.1 by Thordarson ${ }^{[1]}$.

From the job plot and molar ratio plot, 2:1 stoichiometries were obtained for $\mathbf{1}_{2} \supset \mathbf{G 1}$, $\mathbf{1}_{2} \supset \mathbf{G} \mathbf{2}$ and $\mathbf{1}_{2} \supset \mathbf{G 4}$. The binding constants (K_{1} and K_{2}) were estimated by a non-linear curve-fitting method with the equation $\mathbf{S}-1:{ }^{[1]}$

$$
\begin{aligned}
& \Delta A=\frac{[G]_{0}\left(\varepsilon_{\Delta H G} K_{1}[H]+2 \varepsilon_{\Delta H_{2} G} K_{1} K_{2}[H]^{2}\right)}{1+K_{1}[H]+K_{1} K_{2}[H]^{2}} \\
& \mathbf{H}+\mathbf{G} \stackrel{\mathrm{K}_{1}}{\longrightarrow} \mathbf{H G} \quad \mathbf{H G}+\mathbf{H} \stackrel{\mathrm{K}_{2}}{\longrightarrow} \mathbf{H}_{\mathbf{2}} \mathbf{G}
\end{aligned}
$$

$$
\begin{gathered}
K_{1}=\frac{[H G]}{[H][G]} \quad K_{2}=\frac{\left[H_{2} G\right]}{[H G][H]}=\frac{\left[H_{2} G\right]}{K_{1}[H]^{2}[G]} \\
{[H]_{0}=[H]+[H G]+2\left[H_{2} G\right] \quad[G]_{0}=[G]+[H G]+\left[H_{2} G\right]}
\end{gathered}
$$

$K_{1} K_{2}[H]^{3}+\left(K_{1}+2 K_{1} K_{2}[G]_{0}-K_{1} K_{2}[H]_{0}\right)[H]^{2}+\left(K_{1}[G]_{0}-K_{1}[H]_{0}+1\right)[H]-[H]_{0}=0$
(S-2)
This cubic equation S-2 is solved directly in Matlab3 and the results put into equation S-1.

Where $[\mathrm{G}]_{0}$ is the concentration of guests ($\mathbf{G 1}, \mathbf{G 2}$ and $\mathbf{G 4}$), $[\mathrm{H}]_{0}$ is the concentration of cyclo[6]aramide $1, \Delta \mathrm{~A}$ is the absorption change of the complex formed, $\varepsilon_{\Delta \mathrm{HG}}$ is the molar extinction coefficient of 1 to 1 host-guest complex, $\varepsilon_{\Delta \mathrm{H}_{2} \mathrm{G}}$ is the molar extinction coefficient of 2 to 1 host-guest complex.

UV-vis titration experiments of $\mathbf{1}_{2} \supset \mathbf{G 1}$

Figure $\mathbf{S 8 3}$ Stacked UV-vis spectra of $\mathbf{1}(20 \mu \mathrm{M})$ titrated with $\mathbf{G 1}$ in acetone from 0 equiv. to 3.5 equiv. at 298 K .

Figure S84 The change of absorption of 1 titrated with G1 at 352 nm in acetone. The red solid line was obtained from the non-linear curve-fitting with Eq. S-1.

Figure S85 Mole ratio plot for the complexation of $\mathbf{1}$ and $\mathbf{G 1}$ in acetone indicating a 2:1 stoichiometry at 352 nm in acetone.

Figure S86 Stacked UV-vis spectra of $\mathbf{1}(20 \mu \mathrm{M})$ titrated with G1 in acetone/DMSO (9/1, v/v) from 0 equiv. to 4.0 equiv. at 298 K .

Figure S87 The change of absorption of $\mathbf{1}$ titrated with $\mathbf{G 1}$ at 353 nm in acetone/DMSO (9/1, v/v). The red solid line was obtained from the non-linear curve-fitting with Eq. S-1.

UV-vis titration experiments of $\mathbf{1}_{2} \boldsymbol{J} \mathbf{G 2}$

Figure S88 Stacked UV-vis spectra of $\mathbf{1}(20 \mu \mathrm{M})$ titrated with $\mathbf{G} \mathbf{2}$ in acetone from 0 equiv. to 3.5 equiv. at 298 K .

Figure S89 The change of absorption of $\mathbf{1}$ titrated with $\mathbf{G 2}$ at 355 nm in acetone. The red solid line was obtained from the non-linear curve-fitting with Eq. S-1.

Figure S90 Mole ratio plot for the complexation of $\mathbf{1}$ and $\mathbf{G} 2$ in acetone indicating a 2:1 stoichiometry at 355 nm in acetone.

UV-vis titration experiments of $\mathbf{1}_{2} \supset \mathbf{G 4}$

Figure S91 Stacked UV-vis spectra of $\mathbf{1}(20 \mu \mathrm{M})$ titrated with G4 in acetone from 0 equiv. to 3.0 equiv. at 298 K .

Figure S92 The change of absorption of $\mathbf{1}$ titrated with $\mathbf{G 4}$ at 350 nm in acetone. The red solid line was obtained from the non-linear curve-fitting with Eq. S-1.

Figure S93 Mole ratio plot for the complexation of $\mathbf{1}$ and $\mathbf{G 4}$ in acetone indicating a 2:1 stoichiometry at 350 nm in acetone.

Figure S94 Stacked UV-vis spectra of $\mathbf{1}(20 \mu \mathrm{M})$ titrated with $\mathbf{G 4}$ in acetone/DMSO (9/1, v/v) from 0 equiv. to 4.0 equiv. at 298 K .

Figure S95 The change of absorption of $\mathbf{1}$ titrated with $\mathbf{G 4}$ at 354 nm in acetone. The red solid line was obtained from the non-linear curve-fitting with Eq. S-1.

From the job plot and molar ratio plot, a 1:1 stoichiometry was obtained for $\mathbf{1} \supset \mathbf{G 3}$.

The binding constant (K_{a}) was estimated by a non-linear curve-fitting method with the equation $\mathbf{S - 3}$ by UV-vis titration experiments: ${ }^{[1]}$

$$
\Delta \mathrm{A}=\varepsilon_{\Delta \mathrm{HG}}\left(0.5\left\{\left([\mathrm{G}]_{0}+[\mathrm{H}]_{0}+1 / K_{a}\right)-\left\{\left([\mathrm{G}]_{0}+[\mathrm{H}]_{0}+1 / K_{a}\right)^{2}+4[\mathrm{H}]_{0}[\mathrm{G}]_{0}\right\}^{0.5}\right\}\right) \quad \text { Eq. S-3 }
$$

Where $[\mathrm{G}]_{0}$ is the concentration of $\mathbf{G 3},[\mathrm{H}]_{0}$ is the concentration of cyclo[6]aramide $\mathbf{1}$, $\Delta \mathrm{A}$ is the absorption change of the complex formed, $\varepsilon_{\Delta H G}$ is the molar extinction coefficient of 1 to 1 host-guest complex.

UV-vis titration experiments of $\mathbf{1} \boldsymbol{\supset}$ G3

Figure S96 Stacked UV-vis spectra of $\mathbf{1}(50 \mu \mathrm{M})$ titrated with $\mathbf{G 3}$ in acetone from 0 to 3.0 equiv. at 298 K.

Figure S97 The change of absorption of $\mathbf{1}$ titrated with G3 at 360 nm in acetone. The red solid line was obtained from the non-linear curve-fitting with Eq. S-3.

Figure S98 Mole ratio plot for the complexation of $\mathbf{1}$ and $\mathbf{G 3}$ in acetone indicating a 1:1 stoichiometry at 355 nm in acetone.

The binding constant of complex $\mathbf{1} \supset \mathbf{G 3}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ was determined by NMR titration experiments with keeping the concentration of $\mathbf{G 3}$ as a constant $(1.0 \mathrm{mM})$ and varying the concentration of $\mathbf{1}(0-2.0 \mathrm{mM})$. The binding constant was determined by plotting the chemical shift of proton H^{10} on $\mathbf{G} \mathbf{3}$ versus the concentration of $\mathbf{1}$ based on
the following equation ${ }^{[2]}$:

$$
\delta_{o b s}=\delta_{f}+\frac{\delta_{b}-\delta_{f}}{2[H]_{0}}\left\{\frac{1}{K_{a}}+[G]_{0}+[H]_{0}-\sqrt{\left(\frac{1}{K_{a}}+[G]_{0}+[H]_{0}\right)^{2}-4[H]_{0}[G]_{0}}\right\}
$$

Eq. S-4
where $\delta_{o b s}$ is the observed chemical shift of proton $\mathrm{H}^{10} ; \delta_{b}$ is the chemical shift of proton H^{10} in complex; δ_{f} is the chemical shift of proton H^{10} in free $\mathbf{G 3}$; $[H]_{0}$ is the total concentration of $\mathbf{1} ;[G]_{0}$ is the total concentration of $\mathbf{G 3} ; K_{a}$ is the binding constant.
The binding constants for $\mathbf{5}_{2} \supset \mathbf{G 4}\left(K_{1}\right.$ and K_{2}) were estimated by a non-linear curve-fitting method with the equation $\mathbf{S}-\mathbf{5}$ and $\mathbf{S}-6:{ }^{[1]}$

$$
\begin{equation*}
\Delta \delta=\left(\delta_{\Delta \mathrm{HG}} K_{l}[\mathrm{G}]_{0}[\mathrm{H}]+2 \delta_{\Delta \mathrm{H} 2 \mathrm{G}} K_{l} K_{2}[\mathrm{G}]_{0}[\mathrm{H}]^{2}\right) /\left([\mathrm{H}]_{0}\left(1+K_{l}[\mathrm{H}]+K_{l} K_{2}[\mathrm{H}]^{2}\right)\right) \tag{Eq.}
\end{equation*}
$$

S-5

$$
[\mathrm{H}]^{3}\left(K_{l} K_{2}\right)+[\mathrm{H}]^{2}\left\{K_{l}\left(2 K_{2}[\mathrm{G}]_{0}-K_{2}[\mathrm{H}]_{0}+1\right)\right\}+[\mathrm{H}]\left\{K_{l}\left([\mathrm{G}]_{0}-[\mathrm{H}]_{0}+1\right)\right\}-[\mathrm{H}]_{0}=0
$$

Eq. S-6

Where $[\mathrm{G}]_{0}$ is the concentration of guest $\mathbf{G 4},[\mathrm{H}]_{0}$ is the concentration of cyclo[6]aramide $\mathbf{5}, \Delta \delta$ is the chemical shift changes of the complex formed, $\delta_{\Delta \mathrm{HG}}$ is the molar extinction coefficient of 1 to 1 host-guest complex, $\delta_{\Delta \mathrm{H}_{2} \mathrm{G}}$ is the molar extinction coefficient of 2 to 1 host-guest complex.

${ }^{1}$ H NMR titration experiments for $\mathbf{1} \boldsymbol{\supset}$ G3

Figure S99 Stacked plots of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{G 3}(1 \mathrm{mM})$ titrated with $\mathbf{1}(0-2.0 \mathrm{mM})$ in acetone- $\mathrm{d}_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S100 Determination of the binding constant of $\mathbf{1} \supset \mathbf{G 3}$ in acetone at 298 K . Fitting result based on H^{10}. Figure 8 Changes of the chemical shift changes of proton l' on 4 with addition of G4 (The red solid line was obtained from the non-linear curve-fitting using above equations)

Figure S101 Partial stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 1 \mathrm{mM}\right)$ of $\mathbf{5}_{2} \supset \mathbf{G 4}$ in the presence of the different concentration of G4 (0-6.0 eq.).

Figure S102 Changes of the chemical shift changes of proton l' on $\mathbf{5}$ with addition of $\mathbf{G 4}$ (The red solid line was obtained from the non-linear curve-fitting using above equations $\mathbf{S - 5}$ and $\mathbf{S - 6}$).

We can quantify the extent of this cooperativity with the interaction parameter a according to Eq. S-5. ${ }^{[1]}$ If $\boldsymbol{\alpha}>1$ the system displays positive cooperativity, if $\boldsymbol{\alpha}<$ 1 it displays negative cooperativity and if $\boldsymbol{\alpha}=1$, the system displays non-cooperative binding.

$$
\alpha=\frac{4 K_{2}}{K_{1}} \quad \text { Eq. S-5 }
$$

References

[1] Thordarson, P., Chem. Soc. Rev. 2011, 40, 1305-1323.
[2] Bisson, A. P.; Carver, F. J.; Eggleston, D. S.; Haltiwanger, R. C.; Hunter, C. A.;. Livingstone, D.
L; McCabe, J. F.; Rotger, C.; Rowan, A. E., J. Am. Chem. Soc., 2000, 122, 8856.

4.6 MALDI-TOF-MS Spectra of Complexes

Matrix-assisted laser ionization time of flight mass spectrometry (MALDI-TOF-MS) analyses of cyclo[6]aramide $\mathbf{1}$ carried in the presence of each of the guests G1-G4 produced several ions consistent with the formation of host-guest complexes.

MALDI-TOF-MS Spectra of $\mathbf{1}_{2} \boldsymbol{\beth}$ G1

Figure S103 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 1}$ (1:1) (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S104 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 1}(2: 1)$.

MALDI-TOF-MS Spectra of $\mathbf{1}_{2} \boldsymbol{\beth} \mathbf{G 2}$

Figure S105 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 2}$ (1:1) (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S106 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 2}(2: 1)$.

MALDI-TOF-MS Spectra of $\mathbf{1} \boldsymbol{\beth} \mathbf{G}$

Figure S107 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1} \supset \mathbf{G 3}$ (1:1) (inset: experimental isotope distribution (blue) and computer simulation (red)).

MALDI-TOF-MS Spectra of $\mathbf{1}_{2}$ د G4

Figure S108 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 4}$ (1:1) (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S109 Partial MALDI-TOF mass spectrum of a mixture of $\mathbf{1}_{2} \supset \mathbf{G 4}(2: 1)$.

4.7 FT-IR Spectra of Complexes

Fourier transform infrared spectrometry (FT-IR) analyses of cyclo[6]aramide $\mathbf{1}$ carried in the presence of each of the guest G1-G4 produced $v_{\mathrm{C}=\mathrm{O}}$ shifts consistent with the formation of solid phase host-guest complexes

FT-IR spectra of $\mathbf{1}_{\mathbf{2}} \supset \mathbf{G 1}$

1

G1

Figure S110 FT-IR spectra of $\mathbf{1}$ in the different equivalent of G1

FT-IR spectra of $\mathbf{1}_{\mathbf{2}} \supset \mathbf{G} \mathbf{2}$

Figure S111 FT-IR spectra of $\mathbf{1}$ in the different equivalent of G2

FT-IR spectra of $\mathbf{1} \supset \mathbf{G} \mathbf{3}$

Figure S112 FT-IR spectra of $\mathbf{1}$ in the different equivalent of G3

FT-IR spectra of $\mathbf{1}_{\mathbf{2}} \supset \mathbf{G 4}$

Figure S113 FT-IR spectra of $\mathbf{1}$ in the different equivalent of G4

Table S1 The infrared wave numbers of $(\mathrm{C}=\mathrm{O})$ shifts $v\left(\mathrm{~cm}^{-1}\right)$ on cyclo[6]aramides $\mathbf{1}$ for the 2:1 or $1: 1$ solution of the complexes $\mathbf{1} \supset \mathbf{G}$ in solid state

Complexes	$v_{\text {free }}$ of $\mathbf{1}\left(\mathrm{cm}^{-1}\right)$	$v_{\text {complex }}\left(\mathrm{cm}^{-1}\right)$	$\Delta v=v_{\text {complex }}-v_{\text {free }}$
$\mathbf{1} \supset \mathbf{G 1}$	1664	1650	14
$\mathbf{1} \supset \mathbf{G 2}$	1664	1652	12
$\mathbf{1} \supset \mathbf{G 3}$	1664	1654	10
$\mathbf{1} \supset \mathbf{G 4}$	1664	1645	19

5. Optimization for Synthesis of Rotaxanes

Table S2 "Click-capping" approach for the synthesis of [3]rotaxanes or [2]rotaxanes

Entry	Macrocycle	Conditions	Product Isolated yield (\%) ${ }^{\text {c }}$	
			[3]Rotaxanes	[2]Rotaxanes
$1^{\text {a }}$	1	$\mathrm{CH}_{3} \mathrm{COCH}_{3}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	86	n.d.
$2^{\text {a }}$	2	$\mathrm{CH}_{3} \mathrm{COCH}_{3}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	91	n.d.
$3^{\text {a }}$	3	$\mathrm{CH}_{3} \mathrm{COCH}_{3}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	64	Trace ${ }^{\text {d }}$
4	1	$\begin{gathered} \mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{CH}_{3} \mathrm{CN}= \\ 1: 1(\mathrm{~V} / \mathrm{V}), 40^{\circ} \mathrm{C}, 24 \mathrm{~h}^{\mathrm{a}} \end{gathered}$	60	18
$5^{\text {b }}$	1	$\mathrm{CH}_{3} \mathrm{COCH}_{3}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	36	34
6	1	$\begin{gathered} \mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{CHCl}_{3}= \\ 1: 1(\mathrm{~V} / \mathrm{V}), 40^{\circ} \mathrm{C}, 48 \mathrm{~h}^{\mathrm{a}} \end{gathered}$	79	n.d.
${ }^{\text {a }} 2.0$ equiv. of macrocycle, 2.5 equiv. of Stopper- $\mathbf{N}_{3}, 1.0$ equiv. of $\mathbf{G 4}, 1.2$ equiv. of $\operatorname{iPr}_{2} \operatorname{EtN}$ and 0.3 equiv. $\mathrm{CuPF}_{6}(\mathrm{MeCN})_{4} .{ }^{\mathrm{b}} 1.0$ equiv. of macrocycle was used. ${ }^{\mathrm{c}}$ Isolated yield of pure material after chromatography. ${ }^{\text {d }}$ Observed by MALDI-TOF-MS.				

Table S3 "Facile one-pot" approach for the synthesis of [3]rotaxanes or [2]rotaxanes

Entry	Macrocycle	Conditions ${ }^{\text {a }}$	Product Isolated yield (\%) ${ }^{\text {b }}$	
			[3]Rotaxane	[2]Rotaxanes
1	1	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}=1: 1(\mathrm{~V} / \mathrm{V}), \\ 40^{\circ} \mathrm{C}, 48 \mathrm{~h} \end{gathered}$	85	n.d.
2	2	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}=1: 1(\mathrm{~V} / \mathrm{V}), \\ 40^{\circ} \mathrm{C}, 48 \mathrm{~h} \end{gathered}$	85	n.d.
3	3	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}=1: 1(\mathrm{~V} / \mathrm{V}), \\ 40^{\circ} \mathrm{C}, 48 \mathrm{~h} \end{gathered}$	n.d.	71
4	1	$\mathrm{CHCl}_{3}, 40^{\circ} \mathrm{C}, 7$ days	77	Not observed
${ }^{\mathrm{a}} 2.0$ equiv. of macrocycle, 2.5 equiv. of Stopper-Br, 1.0 equiv. of 4,4'-Bipyridine. ${ }^{\mathrm{b}}$ Isolated yield over two steps of pure material after chromatography.				

6. Stacked NMR Spectra of Rotaxanes

(a)

Figure S114 Partial ${ }^{1}$ H NMR spectrum of (a) 1, (b) [3]CR-C $\mathbf{C l}_{16}$ and (c) Alxe-1 (400 MHz, $\mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$). The assignments correspond to the lettering shown in main text.

Figure S115 Partial ${ }^{1}$ H NMR spectrum of (a) Alxe-2, (b) [3]R-C $\mathbf{1 6}_{6}$ and (c) $\mathbf{1}$ (400 MHz , $\mathrm{CD}_{3} \mathrm{COCD}_{3}, 298 \mathrm{~K}$). The assignments correspond to the lettering shown in main text.

Figure S116 Partial ${ }^{1}$ H NMR spectra and image of solutions of (a) [2]rotaxane [2]CR-C $\mathbf{C 1 6}_{6}$ and (b)

(e)

(d)

Figure S117 Partial ${ }^{1} \mathrm{H}$ NMR spectra of (a) 1.0 mM Axle-1, (b) 1.0 mM Axle- 1 and 2.0 mM macrocycle 1, (c) 1.0 mM Axle- 1 and 4.0 mM macrocycle 1, (d) 1.0 mM Axle- 1 and 6.0 mM macrocycle 1 after reflux in $\mathrm{CD}_{3} \mathrm{COCD}_{3} / \mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{v} / \mathrm{v}=9: 1$ for 3 hours, (e) 2.0 mM [3]rotaxane [3]CR-C $\mathbf{1 6}_{16}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3} / \mathrm{DMSO}_{6}, \mathrm{~d} / \mathrm{v}=9: 1,298 \mathrm{~K}\right)$.

6.1 2D NOESY, HSQC and HMBC Spectra of Rotaxanes

Figure $\mathbf{S 1 1 8}{ }^{1}{ }^{\mathrm{H}}-{ }^{1} \mathrm{H}$ NOESY spectrum of [3]CR-C $\mathbf{1 0}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S119 Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $[3] \mathrm{CR}-\mathrm{C}_{16}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S120 Expanded ${ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HSQC spectrum of $[3]$ CR- $\mathrm{C}_{16}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S121 ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum of $[\mathbf{3}] \mathbf{C R}-\mathbf{C}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S122 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}\right.$, 298K).

Figure S123 Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S124 Expanded ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC spectrum of $[3] \mathrm{CR}-\mathrm{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 1 2 5}$ Expanded ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S126 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S127 Expanded ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S128 Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $[\mathbf{2}] \mathbf{C R}-\mathbf{C}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S129 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of [3]R-C $\mathbf{C l}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S130 Expanded ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of [3]R-C $\mathbf{C l}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S131 Expanded ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of [3]R-C $\mathbf{C}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S132 Expanded ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of [3]R-C $\mathbf{C}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure $\mathbf{S 1 3 3}{ }^{1} \mathrm{H}-{ }_{-}^{13} \mathrm{C}$ HMBC spectrum of [3]R- $\mathbf{C}_{16}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S134 Expanded ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of [3]R-C $\mathbf{C l}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

6.2 2D DOSY Spectra of Rotaxanes

Figure S135 2D-DOSY NMR spectrum of [3]CR-C $\mathbf{C l}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S136 2D-DOSY NMR spectrum of [3]CR-C $\mathbf{C l}_{\mathbf{1 2}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S137 2D-DOSY NMR spectrum of [3]CR-C $\mathbf{C}_{6}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S138 2D-DOSY NMR spectrum of [2]CR-C $\mathbf{C}_{16}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S139 2D-DOSY NMR spectrum of [3]R-C $\mathbf{C l}_{\mathbf{1 6}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S140 2D-DOSY NMR spectrum of [3]R-C $\mathbf{C}_{\mathbf{1 2}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S141 2D-DOSY NMR spectrum of [2]R-C6 $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

7. UV-vis Spectra of Rotaxanes

 [3]CR-C \mathbf{C}_{16}, Axle-1 and Axle-1 in acetone (concentration of the compound is $5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$).
8. Redox-Responsive of Host-Guest Complexes and Rotaxanes

Figure S143 Graphical cartoon representation of redox control of (a) guest G1 and (b) complex $\mathbf{1}_{2}$ د G1 and photo showing color changes of redox-responsive complexation, solvent is argon-purged acetone.

Figure S144 Graphical cartoon representation of redox control of (a) molecular shuttle [2]R-C \mathbf{C}_{6} and (b) [3]rotaxane [3]R- \mathbf{C}_{16} and photo showing color changes of redox-responsive complexation, solvent is argon-purged acetone.

9. X-Ray Single Crystal Structures of $\mathbf{3}_{2}$ Ј G1 and [3]CR-C 6

Crystallographic data (excluding structure factors) for the structures $\mathbf{3}_{2} \boldsymbol{\supset} \cdot \mathbf{G 1}$ and [3]CR-C \mathbf{C}_{6} reported in this communication have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. $\mathrm{CCDC}-1475246$ and $\mathrm{CCDC}-1475247$. Data collection and structure refinement details can be found in the CIF files or obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Figure S145 X-ray structure of [3]pseudorotaxane $\mathbf{3}_{2} \boldsymbol{\rightharpoonup} \cdot \mathbf{G 1}$: (a) top view and (b) side view; cyclo[6]aramide $\mathbf{3}$ is shown in wire framing representations in cyan and purple, the oxygens in the cavity of macro cycles are shown in red. G1 is shown in space filling representations. $\mathrm{PF}_{6}{ }_{6}$ counterions and hydrogens except the ones involved in hydrogen bonding were omitted for clarity.

Figure S146 X-ray structure packing of [3]pseudorotaxane $\mathbf{3}_{2} \boldsymbol{\supset} \cdot \mathbf{G 1}$, cyclo[6]aramide $\mathbf{3}$ is shown in wire framing representations in cyan and purple, the oxygens in the cavity of macro cycles are shown in red. G1 is shown in space filling representations.

Figure S147 X-ray crystal structure of rotaxane [3]CR-C \mathbf{C}_{6} (a) side and (b) top views. $\mathrm{PF}_{6}{ }_{6}$ counterions and hydrogens except the ones involved in hydrogen bonding were omitted for clarity.

Table S4 C-H---O hydrogen bonds in the crystal structure of rotaxane [3]CR-C 6

No. of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds	$\begin{gathered} \mathrm{H} \cdots \mathrm{O} / \AA \\ \mathrm{C}-\mathrm{H} \cdots \mathrm{O} \text { angles } \end{gathered}$	No. of C-H…O hydrogen bonds	$\begin{gathered} \mathrm{H} \cdots \mathrm{O} / \AA \\ (\mathrm{C}-\mathrm{H} \cdots \mathrm{O} \\ \text { angles }) \end{gathered}$
a	$2.721\left(136.02{ }^{\circ}\right)$	a^{\prime}	2.721 (136.02 ${ }^{\circ}$)
b	$2.174\left(132.31{ }^{\circ}\right)$	b'	$2.174\left(132.31^{\circ}\right)$
c	2.429 (117.87 ${ }^{\circ}$)	c^{\prime}	$2.429\left(117.87^{\circ}\right)$
d	$2.789\left(104.60^{\circ}\right)$	d'	$2.789\left(104.60^{\circ}\right)$
e	$2.457\left(141.76{ }^{\circ}\right)$	e,	$2.457\left(141.76{ }^{\circ}\right)$
f	$2.854\left(134.66^{\circ}\right)$	f'	$2.854\left(134.66^{\circ}\right)$
g	$2.310\left(144.34{ }^{\circ}\right)$	g'	$2.310\left(144.34^{\circ}\right)$
h	$2.233\left(152.01^{\circ}\right)$	h'	$2.233\left(152.01^{\circ}\right)$
1	2.173 (160.49 ${ }^{\circ}$)	i'	2.173 (160.49 ${ }^{\circ}$)
j	$2.683\left(115.24{ }^{\circ}\right)$	j,	$2.683\left(160.49^{\circ}\right)$

Table $\mathbf{S 5} \mathrm{N}^{+} \ldots \mathrm{O}$ interaction in the crystal structure of rotaxane [3]CR-C \mathbf{C}_{6}

No. of $\mathrm{N}^{+} \ldots \mathrm{O}$ interaction	$\mathrm{N}^{+} \ldots \mathrm{O} / \AA$	No. of $\mathrm{N}^{+} \ldots \mathrm{O}$ interaction	$\mathrm{N}^{+} \ldots \mathrm{O} / \AA$
A	3.515	$\mathrm{~A}^{\prime}$	3.515
B	4.125	$\mathrm{~B}^{\prime}$	4.125
C	4.576	C^{\prime}	4.576
D	5.181	D^{\prime}	5.181
E	4.014	E^{\prime}	4.014
F	3.563	$\mathrm{~F}^{\prime}$	3.563

Figure S148 X-ray Crystal structure of rotaxane [3]CR-C6 (a) side and (b) top views. Insets are the space filling models. PF_{6}^{-}counterions and hydrogens except the ones involved in hydrogen bonding were omitted for clarity.

Figure S149 X-ray structure packing of [3] rotaxane [3]CR-C \mathbf{C}_{6}, (a) from the a axle and (b) from the b axle. Cyclo[6]aramide $\mathbf{3}$ is shown in wire framing representations in cyan and purple and Axle-1 is shown in space filling representations in green. PF_{6}^{-}counterions and hydrogens except the ones involved in hydrogen bonding were omitted for clarity.

Figure S150 X-ray structure packing of [3] rotaxane [3]CR-C \mathbf{C}_{6}, (a) from the c axle and (b) from the b^{*} axle. Cyclo[6]aramide $\mathbf{3}$ is shown in wire framing representations in cyan and purple and

Axle-1 is shown in space filling representations in green and oxygens in cavities are showing in red, hydrogens were omitted for clarity. The dashed white lines indicate the weak π-stacking parameters: centroid-centroid distance $(\AA), 4.658$; ring plane-ring plane inclination $\left({ }^{\circ}\right), 2.96$.

Table S6 Crystallographic data for [3]pseudorotaxane $\mathbf{3}_{2} \boldsymbol{J} \cdot \mathbf{G 1}$ and [3] rotaxane [3]CR-C \mathbf{C}_{6}

Identification code	$\mathbf{3}_{2}$ - $\cdot \mathbf{G 1}$	[3]CR-C6
CCDC	1475246	1475247
Empirical formula	$\mathrm{C}_{90} \mathrm{H}_{121} \mathrm{~N}_{7} \mathrm{O}_{18} \mathrm{PF}_{6}$	$\mathrm{C}_{216} \mathrm{H}_{292} \mathrm{~N}_{20} \mathrm{O}_{36} \mathrm{P}_{2} \mathrm{~F}_{12}$
Formula weight	1733.91	4034.64
Temperature/K	123 (2) K	150 (2) K
Wavelength	0.71073 A	0.71073 A
Crystal system	Monoclinic	Monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$	P2 1_{1} n
a/Å	22.630 (8)	22.928 (2)
b/Å	23.529 (9)	25.6042 (12)
c/Å	19.425 (7)	23.2131 (15)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	112.979 (5)	111.030 (9)
$\gamma /{ }^{\circ}$	90	90
Volume/A ${ }^{3}$	9522 (6)	12719.6 (17)
Z	4	2
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.209	1.053
$\mu(\mathrm{Mo} \mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.107	0.089
F(000)	3692	4308
Crystal size/mm ${ }^{3}$	$0.31 \times 0.18 \times 0.18$	$0.28 \times 0.21 \times 0.18$
2Θ range for data collection	0.98 to 25.60°	2.89 to 25.51°
Index ranges	$\begin{gathered} -27 \leq \mathrm{h} \leq 27,-19 \leq \mathrm{k} \leq 28, \\ -23 \leq 1 \leq 23 \end{gathered}$	$\begin{gathered} -27 \leq \mathrm{h} \leq 23,-30 \leq \mathrm{k} \leq 31, \\ -28 \leq 1 \leq 26 \end{gathered}$
Reflections collected	54751	52517
Independent reflections	$17399[\mathrm{R}(\mathrm{int})=0.0938]$	$23345[\mathrm{R}(\mathrm{int})=0.0624]$
Completeness to theta	98.4 \% (25.51 ${ }^{\circ}$)	97.0 \% (25.60°)
Max. and min. transmission	0.9810 and 0.9675	0.9841 and 0.9755
Data/restraints/parameters	17399 / 288 / 1170	23345 / 465 / 1400
Goodness-of-fit on F^{2}	1.262	1.051
Final R indices [$\mathrm{I}>2$ sigma (I)]	$\mathrm{R}^{1}=0.0896, w \mathrm{R}^{2}=0.2339$	$\mathrm{R}^{1}=0.1198, w \mathrm{R}^{2}=0.3108$
R indices (all data)	$\mathrm{R}^{1}=0.1534, w \mathrm{R}^{2}=0.2667$	$\mathrm{R}^{1}=0.1758, w \mathrm{R}^{2}=0.3386$
Largest diff. peak/hole /e \AA^{-3}	0.728 / -0.558	1.055 / -0.622

10. Molecular Modeling

(a)

(b)

(c)

Figure S151 (a) Chemical structure of cyclo[6]aramide and (b) X-ray crystal structure of cyclo[6]aramide core and (c) Geometry optimized by B3PW91/6-31G (d, p) Electrostatic Potential Map of Cyclo[6]aramide $4\left(\right.$ red $=-173 \mathrm{~kJ} \mathrm{~mol}^{-1}$; blue $=+115 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

The structure of compact [3]rotaxane [3]R-C $\mathbf{C}_{\mathbf{1}}$ based on cyclo[6]aramide $\mathbf{4}$ were optimized by the density functional theory (DFT) method at the B3PW91/6-31G (d, p) level by employing the Gaussian09 program. ${ }^{[1]}$ Corresponding atomic coordinates were listed in Table S7 and optimized geometry structures of [3]R-C $\mathbf{C}_{\mathbf{1}}$ were displayed in Figure S152.

Figure S152 Two Side view (a) and (b) of optimized geometry of [3]R-C $\mathbf{C}_{\mathbf{1}}$ at the B3PW91/6-31G (d, p) level $($ green $=$ carbon, white $=$ hydrogen, red $=$ oxygen and blue $=$ nitrogen $)$ and two side view (c) and (d) of optimized geometry of [3]R-C $\mathbf{C}_{\mathbf{1}}$ at the B3PW91/6-31G (d, p) level (green = C, white $=\mathrm{H}$, blue $=\mathrm{N}$ for axle molecule in space filling models, red $=\mathrm{O}$ in the cavity of cyclo[6]aramides, cyclo[6]aramides are shown in cyan or light blue). All side chains are replaced by methyl groups for simplicity and the PF_{6}^{-}counterions are omitted. The dashed orange lines indicate intermolecular H-bonds a-f and $\mathrm{a}^{\prime}-\mathrm{f}^{\prime}\left(\mathrm{a}=2.677 \AA\left(120.42^{\circ}\right), \mathrm{b}=2.280 \AA\left(144.02^{\circ}\right)\right.$, $\mathrm{c}=$ $2.515 \AA\left(155.49^{\circ}\right), d=2.309 \AA\left(162.90^{\circ}\right), e=2.872 \AA\left(169.83^{\circ}\right), f=2.540 \AA\left(156.44^{\circ}\right), a^{\prime}=$ $2.677 \AA\left(117.58^{\circ}\right), b^{\prime}=2.280 \AA\left(144.02^{\circ}\right), c^{\prime}=2.515 \AA\left(155.49^{\circ}\right), d^{\prime}=2.309 \AA\left(162.90^{\circ}\right), e^{\prime}=$ $\left.2.872 \AA\left(169.83^{\circ}\right), \mathrm{f}^{\prime}=2.540 \AA\left(156.44^{\circ}\right)\right)$ the dashed pink lines indicate the $\mathrm{N}^{+} \cdots \mathrm{O}$ interaction A-F and $A^{\prime}-\mathrm{F}^{\prime}(\mathrm{A}=4.365 \AA, \mathrm{~B}=4.808 \AA, \mathrm{C}=4.373 \AA, \mathrm{D}=4.574 \AA, \mathrm{E}=3.675 \AA, \mathrm{~F}=3.924 \AA, \mathrm{~A}$ $=4.365 \AA, \mathrm{~B}=4.808 \AA, \mathrm{C}=4.373 \AA, \mathrm{D}=4.574 \AA, \mathrm{E}=3.675 \AA, \mathrm{~F}=3.924 \AA)$.

Table S7 Atomic coordinates for the optimized structure of the rotaxane [3]R-C $\mathbf{1}_{\mathbf{1}}$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	2.84135	-0.66588	-1.01377
2	1	0	3.45211	-1.408	-1.51551
3	6	0	1.5256	-0.89311	-0.72944
4	1	0	1.13164	-1.861	-1.00849
5	6	0	0.69927	0.09487	-0.11314
6	6	0	1.39421	1.28648	0.25863
7	1	0	0.88929	2.09315	0.77559
8	6	0	2.71831	1.46192	-0.02583
9	1	0	3.26432	2.35487	0.25882
10	6	0	4.87711	0.74098	-0.98038
11	1	0	5.05649	1.8047	-0.80791
12	1	0	5.4656	0.19992	-0.23339
13	7	0	3.44324	0.51523	-0.69064
14	6	0	-2.84136	0.66588	1.01384
15	1	0	-3.45211	1.40799	1.51557
16	6	0	-1.52561	0.89311	0.7295
17	1	0	-1.13165	1.861	1.00854
18	6	0	-0.69927	-0.09487	0.1132
19	6	0	-1.39422	-1.28649	-0.25856
20	1	0	-0.88931	-2.09315	-0.77553
21	6	0	-2.71832	-1.46192	0.02591
22	1	0	-3.26433	-2.35488	-0.25875
23	6	0	-4.87712	-0.74099	0.98046
24	1	0	-5.0565	-1.80472	0.80801
25	1	0	-5.46561	-0.19995	0.23346
26	7	0	-3.44325	-0.51524	0.69071

71	1	0	-3.56886	6.69903	-2.97285
72	1	0	-4.17773	5.10813	-2.42801
73	6	0	-5.18687	0.95419	-3.92835
74	1	0	-5.33075	1.57672	-3.04084
75	1	0	-5.71864	0.01333	-3.79587
76	1	0	-5.55407	1.4775	-4.81871
77	6	0	-0.14966	-2.36101	-3.86598
78	6	0	1.08402	-2.88727	-3.48633
79	1	0	1.94563	-2.23079	-3.52961
80	6	0	1.27433	-4.17772	-2.99402
81	6	0	0.14179	-5.02159	-2.96854
82	6	0	-1.11122	-4.54022	-3.36155
83	1	0	-1.9733	-5.19082	-3.32254
84	6	0	-1.2702	-3.21635	-3.78314
85	6	0	-3.65465	-3.48826	-3.97219
86	1	0	-3.80661	-3.77293	-2.92609
87	1	0	-3.62297	-4.37583	-4.61335
88	6	0	-0.78784	-7.18343	-2.49595
89	1	0	-1.22089	-7.32941	-3.49186
90	1	0	-1.5573	-6.82246	-1.8045
91	6	0	2.64711	-4.44708	-2.43583
92	6	0	6.89373	-3.67963	1.02875
93	6	0	4.12447	-6.12432	-1.38574
94	6	0	4.42902	-7.49778	-1.43975
95	6	0	5.60541	-7.98235	-0.86782
96	1	0	5.84016	-9.03636	-0.92749
97	6	0	6.48543	-7.10735	-0.22775
98	6	0	6.17783	-5.73871	-0.1387
99	6	0	5.00022	-5.26389	-0.72105
100	1	0	4.77007	-4.2119	-0.67196
101	6	0	3.79447	-9.65281	-2.2466
102	1	0	4.71789	-9.79795	-2.82013
103	1	0	2.95762	-10.06914	-2.80858
104	1	0	3.8773	-10.1751	-1.28487
105	6	0	8.0751	-8.83407	0.19677
106	1	0	7.37544	-9.51256	0.70068
107	1	0	9.04965	-8.90939	0.68039
108	1	0	8.1708	-9.12619	-0.85626
109	6	0	8.08235	-2.82062	1.36009
110	6	0	7.81083	-1.46156	1.49578
111	1	0	6.78576	-1.13627	1.37313
112	6	0	8.76451	-0.47887	1.75068
113	6	0	10.09759	-0.91453	1.90605
114	6	0	10.41597	-2.27191	1.7898

115	1	0	11.44044	-2.59227	1.91691
116	6	0	9.42771	-3.2189	1.50426
117	6	0	11.04334	-4.99495	1.49515
118	1	0	11.43411	-4.79356	2.49858
119	1	0	11.69361	-4.53641	0.74187
120	6	0	12.39425	-0.35377	2.33443
121	1	0	12.78887	-0.81622	1.42287
122	1	0	12.51527	-1.03634	3.18274
123	7	0	9.1351	1.94828	1.75054
124	1	0	10.11135	1.70083	1.86384
125	7	0	6.33877	5.72853	0.22101
126	1	0	6.4302	6.68187	-0.11006
127	7	0	0.16587	4.38829	-3.3574
128	1	0	-0.16952	5.34305	-3.30991
129	7	0	-1.33875	-0.22784	-4.13322
130	1	0	-2.17622	-0.79912	-4.06824
131	7	0	2.92488	-5.70632	-1.98931
132	1	0	2.24681	-6.43128	-2.18613
133	7	0	7.13383	-4.89254	0.45739
134	1	0	8.08651	-5.23611	0.48178
135	8	0	7.0109	1.11292	1.75257
136	8	0	4.89488	3.97893	0.44603
137	8	0	11.12054	3.63104	2.15144
138	8	0	8.35913	7.35268	0.65013
139	8	0	4.93854	7.98358	-0.66683
140	8	0	1.0583	7.04358	-3.40684
141	8	0	1.93404	3.02097	-2.91498
142	8	0	0.92645	-0.32329	-4.41683
143	8	0	-2.33464	5.16432	-3.40224
144	8	0	-3.80971	0.61332	-4.09126
145	8	0	-2.47292	-2.70586	-4.13309
146	8	0	0.31976	-6.29695	-2.54171
147	8	0	3.46028	-3.52603	-2.36017
148	8	0	5.75337	-3.24481	1.21757
149	8	0	3.50606	-8.27909	-2.0707
150	8	0	7.67308	-7.48356	0.3271
151	8	0	9.7038	-4.53936	1.36652
152	8	0	11.03527	0.02682	2.17312
153	6	0	-8.23021	-0.9298	-1.77007
154	6	0	-5.15671	-5.10109	0.00353
155	6	0	-8.87862	-3.31427	-1.5376
156	6	0	-9.95919	-4.19898	-1.71761
157	6	0	-9.80902	-5.55791	-1.44128
158	1	0	-10.64266	-6.23229	-1.58125

159	6	0	-8.58965	-6.04678	-0.97406
160	6	0	-7.50246	-5.17353	-0.78941
161	6	0	-7.65656	-3.81731	-1.08764
162	1	0	-6.82211	-3.14631	-0.96931
163	6	0	-12.24904	-4.46522	-2.33481
164	1	0	-12.55369	-4.9427	-1.39532
165	1	0	-13.05345	-3.81695	-2.68374
166	1	0	-12.0586	-5.23574	-3.09182
167	6	0	-9.43656	-8.26629	-0.73831
168	1	0	-9.79868	-8.3613	-1.76933
169	1	0	-9.0463	-9.22996	-0.40917
170	1	0	-10.26694	-7.97222	-0.08481
171	6	0	-4.15921	-5.77244	0.90422
172	6	0	-3.26112	-4.90262	1.51034
173	1	0	-3.37018	-3.84468	1.31949
174	6	0	-2.23386	-5.29069	2.36241
175	6	0	-2.08856	-6.66887	2.61069
176	6	0	-2.99469	-7.58027	2.0526
177	1	0	-2.89549	-8.63443	2.27152
178	6	0	-4.03165	-7.14079	1.21918
179	6	0	-4.89004	-9.36795	0.9806
180	1	0	-3.95214	-9.81986	0.63824
181	1	0	-5.01208	-9.53621	2.05639
182	6	0	-0.91887	-8.40824	3.77556
183	1	0	-1.80505	-8.76426	4.31208
184	1	0	-0.73444	-9.04167	2.90005
185	6	0	-1.44635	-4.14544	2.923
186	6	0	0.13013	0.89695	4.19554
187	6	0	0.79145	-3.4168	3.64436
188	6	0	2.15046	-3.84759	3.62899
189	6	0	3.18235	-2.93259	3.80679
190	1	0	4.21092	-3.2579	3.75111
191	6	0	2.88658	-1.58318	3.98095
192	6	0	1.53065	-1.1393	4.02742
193	6	0	0.50171	-2.07299	3.87654
194	1	0	-0.52079	-1.7358	3.88901
195	6	0	3.66603	-5.64533	3.23324
196	1	0	4.23266	-5.55262	4.16682
197	1	0	3.56886	-6.699	2.97284
198	1	0	4.17769	-5.1081	2.42798
199	6	0	5.18685	-0.95416	3.92831
200	1	0	5.33071	-1.57667	3.04079
201	1	0	5.71862	-0.01329	3.79584
202	1	0	5.55407	-1.47748	4.81866

203	6	0	0.14965	2.36102	3.86601
204	6	0	-1.08404	2.88729	3.48636
205	1	0	-1.94565	2.23082	3.52964
206	6	0	-1.27434	4.17774	2.99403
207	6	0	-0.1418	5.0216	2.96856
208	6	0	1.11121	4.54023	3.36157
209	1	0	1.9733	5.19083	3.32255
210	6	0	1.27019	3.21636	3.78316
211	6	0	3.65464	3.48826	3.97221
212	1	0	3.80661	3.77289	2.92611
213	1	0	3.62296	4.37585	4.61334
214	6	0	0.78785	7.18343	2.49594
215	1	0	1.2209	7.32942	3.49185
216	1	0	1.5573	6.82246	1.80449
217	6	0	-2.64711	4.4471	2.43583
218	6	0	-6.8937	3.67964	-1.02874
219	6	0	-4.12447	6.12435	1.38576
220	6	0	-4.42903	7.4978	1.43978
221	6	0	-5.60542	7.98236	0.86784
222	1	0	-5.84018	9.03637	0.92752
223	6	0	-6.48543	7.10736	0.22775
224	6	0	-6.17783	5.73873	0.1387
225	6	0	-5.00021	5.26391	0.72105
226	1	0	-4.77006	4.21192	0.67195
227	6	0	-3.7945	9.65282	2.24664
228	1	0	-4.71792	9.79795	2.82017
229	1	0	-2.95765	10.06916	2.80863
230	1	0	-3.87732	10.17512	1.28492
231	6	0	-8.07512	8.83407	-0.19675
231	1	0	-7.37545	9.51258	-0.70065
233	1	0	-9.04966	8.90939	-0.68037
234	1	0	-8.17082	9.12618	0.85628
235	6	0	-8.08232	2.82062	-1.36011
236	6	0	-7.81079	1.46156	-1.49578
237	1	0	-6.78572	1.13628	-1.37311
238	6	0	-8.76446	0.47888	-1.75071
239	6	0	-10.09754	0.91453	-1.90611
240	6	0	-10.41592	2.27192	-1.78987
241	1	0	-11.4404	2.59227	-1.91701
242	6	0	-9.42768	3.2189	-1.50431
243	6	0	-11.04331	4.99496	-1.49524
244	1	0	-11.43405	4.79357	-2.49868
245	1	0	-11.69359	4.53642	-0.74198
246	6	0	-12.39419	0.35377	-2.33454

247	1	0	-12.78883	0.81622	-1.42298
248	1	0	-12.51519	1.03634	-3.18285
249	7	0	-9.13505	-1.94828	-1.75058
250	1	0	-10.1113	-1.70083	-1.86391
251	7	0	-6.33872	-5.72852	-0.22105
252	1	0	-6.43013	-6.68188	0.10999
253	7	0	-0.16587	-4.38829	3.35744
254	1	0	0.16953	-5.34304	3.30994
255	7	0	1.33873	0.22786	4.13325
256	1	0	2.1762	0.79913	4.06826
257	7	0	-2.92488	5.70634	1.98932
258	1	0	-2.24682	6.4313	2.18615
259	7	0	-7.13382	4.89255	-0.4574
260	1	0	-8.0865	5.23611	-0.48179
261	8	0	-7.01085	-1.11291	-1.75255
262	8	0	-4.89486	-3.97889	-0.44601
263	8	0	-11.12048	-3.63104	-2.15153
264	8	0	-8.35906	-7.35269	-0.65022
265	8	0	-4.93847	-7.98358	0.66674
266	8	0	-1.05826	-7.04359	3.4068
267	8	0	-1.93408	-3.02099	2.91507
268	8	0	-0.92646	0.3233	4.41686
269	8	0	2.33463	-5.1643	3.40226
270	8	0	3.80969	-0.61329	4.09126
271	8	0	2.4729	2.70587	4.13312
272	8	0	-0.31976	6.29696	2.54171
273	8	0	-3.46028	3.52605	2.36018
274	8	0	-5.75334	3.24483	-1.21756
275	8	0	-3.50608	8.27911	2.07074
276	8	0	-7.67309	7.48357	-0.3271
277	8	0	-9.70377	4.53936	-1.36658
278	8	0	-11.03522	-0.02682	-2.1732
279	6	0	5.29346	0.33709	-2.37491
280	6	0	6.15227	-0.74977	-2.54625
281	6	0	4.85331	1.06232	-3.48722
282	6	0	6.58202	-1.13631	-3.82008
283	1	0	6.47797	-1.29777	-1.66795
284	6	0	5.26659	0.71128	-4.77557
285	1	0	4.17055	1.8925	-3.33542
286	6	0	6.12333	-0.38887	-4.9076
287	1	0	6.44239	-0.6781	-5.90488
288	6	0	-5.29348	-0.3371	2.37498
289	6	0	-6.15231	0.74975	2.54631
290	6	0	-4.85335	-1.06232	3.4873

291	6	0	-6.58209	1.13629	3.82013
292	1	0	-6.47802	1.29774	1.668
293	6	0	-5.26666	-0.71129	4.77564
294	1	0	-4.17059	-1.8925	3.33551
295	6	0	-6.12341	0.38885	4.90766
296	1	0	-6.44251	0.67806	5.90493
297	6	0	-4.80654	-1.4612	6.03395
298	6	0	-7.50237	2.34059	4.06143
299	6	0	-6.0284	-1.88629	6.87101
300	1	0	-5.70048	-2.42813	7.76507
301	1	0	-6.62076	-1.03054	7.20808
302	1	0	-6.68848	-2.5457	6.29758
303	6	0	-4.00528	-2.72373	5.69431
304	1	0	-4.59812	-3.42995	5.10225
305	1	0	-3.09444	-2.49313	5.13625
306	1	0	-3.71197	-3.23018	6.62015
307	6	0	-3.90969	-0.52573	6.86921
308	1	0	-3.56922	-1.03681	7.77735
309	1	0	-3.02995	-0.21646	6.29691
310	1	0	-4.44679	0.37705	7.1773
311	6	0	-8.75987	1.89192	4.83038
312	1	0	-8.51348	1.45484	5.80235
313	1	0	-9.4191	2.74834	5.01219
314	1	0	-9.3226	1.14394	4.26178
315	6	0	-6.73828	3.39471	4.88701
316	1	0	-5.83912	3.72114	4.35552
317	1	0	-7.37184	4.27085	5.06843
318	1	0	-6.42984	3.00013	5.85992
319	6	0	-7.95332	2.9964	2.75096
320	1	0	-7.10447	3.39285	2.18595
321	1	0	-8.5012	2.29526	2.11204
322	1	0	-8.62113	3.83589	2.97214
323	6	0	7.50224	-2.34066	-4.0614
324	6	0	4.80646	1.46119	-6.03387
325	6	0	8.75981	-1.89204	-4.83026
326	1	0	9.41901	-2.74849	-5.01205
327	1	0	8.5135	-1.45491	-5.80223
328	1	0	9.32255	-1.14411	-4.2616
329	6	0	6.02832	1.88629	-6.87093
330	1	0	6.62069	1.03055	-7.20799
331	1	0	5.70038	2.42811	-7.76501
332	1	0	6.68838	2.54572	-6.29751
333	6	0	3.90962	0.52572	-6.86913
334	1	0	3.02987	0.21644	-6.29683

335	1	0	3.56914	1.0368	-7.77727
336	1	0	4.44671	-0.37706	-7.17723
337	6	0	4.00519	2.7237	-5.69422
338	1	0	3.09433	2.49309	-5.13619
339	1	0	4.598	3.42992	-5.10213
340	1	0	3.7119	3.23018	-6.62006
341	6	0	6.73812	-3.39468	-4.88708
342	1	0	7.37163	-4.27085	-5.06852
343	1	0	5.83891	-3.72109	-4.35565
344	1	0	6.42974	-3.00002	-5.85997
345	6	0	7.95307	-2.99658	-2.75094
346	1	0	8.50094	-2.29549	-2.11194
347	1	0	7.10417	-3.39302	-2.186
348	1	0	8.62086	-3.83608	-2.97214
349	1	0	0.05589	8.44967	-4.43971
350	1	0	-11.00589	6.07174	-1.33312
351	1	0	-12.93664	-0.56939	-2.53529
352	1	0	-4.47482	-2.84558	-4.28888
353	1	0	-5.72326	-9.82215	0.44522
354	1	0	-0.3909	-8.13187	-2.13382
355	1	0	11.00593	-6.07174	1.33303
356	1	0	12.9367	0.56939	2.53518
357	1	0	4.4748	2.84558	4.28892
358	1	0.39091	8.13187	2.13381	
359	1	5.72335	9.82215	-0.44536	
360	1	-0.05584	-8.44969	4.43966	

The total electronic energy is calculated to be -9208.29742799 a.u.

References

[1] (S1) Gaussian 09, Revision B.01, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg,J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.J.; Foresman, B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

