Triflimide-Catalyzed Allylsilane Annulations of Benzylic Alcohols for the Divergent Synthesis of Indanes and Tetralins

Jordan C. T. Reddel, Weiwei Wang, Kalli Koukounas and Regan J. Thomson*
Department of Chemistry, Northwestern University, Evanston, IL 60208
*r-thomson@northwestern.edu

Supporting Information

1. General Methods S1
2. Reaction Development S2
3. Starting Material Experimental Procedures and Characterization Data S3-S12
4. Indane Experimental Procedures and Characterization Data S12-S22
5. Type B Allylsilane Experimental Procedures and Characterization Data S22-S24
6. Type B Indane Experimental Procedures and Characterization Data S24-S25
7. Type C Allylsilanes and Tetralins Experimental Procedures and Characterization Data S26-S30
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra S31-S206
9. General Information. All reactions were carried out under a nitrogen atmosphere in flame-dried glassware with magnetic stirring unless otherwise stated. Methanol, THF and DCM were purified by passage through a bed of activated alumina. ${ }^{1}$ Reagents were purified prior to use unless otherwise stated following the guidelines of Armarego and Chai. ${ }^{2}$ Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 ($230-400$ mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and p-anisaldehyde stain. Germanium ATR infrared spectra were recorded using a Bruker Tensor 37. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Varian Inova $500(500 \mathrm{MHz})$, Inova $400(400 \mathrm{MHz})$ or Bruker Advance III $500(500 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$)$ or tetramethylsilane (0.00 ppm). Two-

[^0]dimensional NMR experiments were run on a Bruker Advance III 500 (500 MHz). Data are reported as $(a p p=$ apparent, obs $=$ obscured, $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $p=$ pentet, $h=$ hextet, sep $=$ septet, $\mathrm{o}=$ octet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad; integration; coupling constant(s) in Hz. Proton-decoupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian Inova $500(125 \mathrm{MHz})$ or Bruker Advance III $500(125 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.00 ppm$)$. Mass spectra data were obtained on an Agilent 6210 Time-of-Flight LC/MS and a Thermo Finnegan Mat 900 XL High Resolution Magnetic Sector.

Scheme S1: Numbering systems for indane and benzhydrol compounds

2. Reaction Development

Table S1: Benzhydrol Optimization Studies ${ }^{[a]}$

	MeO MeO	${ }^{\text {tM }}$ 1d	$\underbrace{\stackrel{\text { Me }}{\text { litions }}}_{2 \mathrm{a}}$		
entry	catalyst (mol \%)	Silane equiv	solvent	temp (${ }^{\circ} \mathrm{C}$)	yield (\%) ${ }^{[b]}$
1	$\mathrm{HNTf}_{2}(20)$	1.5	MeNO_{2}	23	78
2	TMSOTf (20)	1.5	MeNO_{2}	23	55
3	$\mathrm{FeCl}_{3}(15)$	1.5	MeNO_{2}	23	70
4	TFA (50)	1.5	MeNO_{2}	23	$\mathrm{NR}^{[\mathrm{cc}}$
5	$\mathrm{HNTf}_{2}(10)$	1.5	DCM	23	42
6	$\mathrm{HNTf}_{2}(10)$	1.5	DCE	23	23
7	$\mathrm{HNTf}_{2}(10)$	1.5	PhMe	23	19
8	$\mathrm{HNTf}_{2}(10)$	1.5	PhCF_{3}	23	trace
9	HNTf_{2} (10)	1.5	EtOAc	23	trace
10	$\mathrm{HNTf}_{2}(10)$	1.5	MeNO_{2}	0	68
11	HNTf_{2} (10)	1.5	MeNO_{2}	23	74
12	HNTf_{2} (10)	1.5	MeNO_{2}	80	19
13	$\mathrm{HNTf}_{2}(10)$	1.2	MeNO_{2}	23	62

[a] Reaction conditions: 1.5 equiv 2a, $0.1 \mathrm{M}, 2 \mathrm{~h}$. [b] Yields by NMR with durene internal standard. [c] Only uncyclized homoallylic benzhydryl $\mathbf{8 d}$ is observed.

3. Starting Material Experimental Procedures and Characterization Data

General Method A:

Scheme S2: General method A for synthesis of starting materials through a Grignard reaction
General Method A: Aryl aldehyde $\mathbf{S 1}$ (1 equiv) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}$ (0.33 M soln), cooled to 0 ${ }^{\circ} \mathrm{C}$ and allowed to stir under N_{2} atmosphere. Phenylmagnesium chloride (1.8 equiv) was then added dropwise to the stirred solution. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ until all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with EtOAc in hexanes solvent systems.

General Method B:

Scheme S3: General method B for synthesis of starting materials through a lithium-halogen exchange reaction
General Method B: 4-Bromoveratrol (1.6 equiv) was dissolved in dry THF (0.33 M soln) and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of nBuLi in hexanes (1.5 equiv) was added dropwise and the solution was allowed to stir at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere for two hours. Aryl aldehyde or ketone $\mathbf{S 3}$ (1 equiv) was dissolved in dry THF ($1 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 3}$) and added dropwise via cannula to the stirred solution ($1 \mathrm{~mL} /$ $\mathrm{mmol} \mathbf{S 3}$ rinse). The solution was allowed to come to room temperature and stir for 1 hour. At this time, all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with EtOAc in hexanes solvent systems.

3,4,5-Trimethoxybenzhydrol (1a): Synthesized from 3,4,5-trimethoxy benzaldehyde (4.74 mmol) via General Method A ($1.15 \mathrm{~g}, 88 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 153.4, 143.7, 139.6, 137.4, 128.7, 127.9, 126.6, 103.6, 76.5, 61.0, 56.2. All spectroscopic data for this compound agrees with previously reported values. ${ }^{3}$

[^1]

3,5-Dimethoxybenzhydrol (1b): Synthesized from 3,5-dimethoxy agrees with previously reported values. ${ }^{4}$

2,5-Dimethoxybenzhydrol (1c): Synthesized from 2,5-dimethoxybenzaldehyde (5.06 mmol) via General Method A (1.2 g, 97\% yield): IR (Germanium ATR): 3418, 2934, 1591, 1492, 1213, 1038, $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.19$ $(\mathrm{m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,151.1,143.2,133.2,128.3,127.4,126.6$, 114.2, 112.9, 112.0, 72.4, 56.1, 55.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 267.0992$. Found 267.1000.
 144.0, 136.7, 128.6, 127.7, 126.6, 119.1, 111.1, 109.9, 76.2, 56.1, 56.0. All spectroscopic data for this compound agrees with previously reported values. ${ }^{5}$

3,4-Methylenedioxybenzhydrol (1e): Synthesized from piperonal (2.18 mmol)
 via General Method A (497 mg, 99\% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.42-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{q}, J=$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,147.2,143.9,138.1,128.6,127.7,126.5,120.2,108.2$, 107.3, 101.2, 76.2. All spectroscopic data for this compound agrees with previously reported values. ${ }^{6}$

2-Naphthyl(phenyl)methanol (1f): Synthesized from 2-naphthaldehyde (4.95
 mmol) via General Method A (1.2 g, 99\% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,141.3,133.4,133.0,128.7$, $128.5,128.2,127.8,127.8,126.9,126.3,126.1,125.2,124.9,76.5$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{6}$

[^2]

2-(1-Hydroxyphenylmethyl)benzofuran (1g): Synthesized from 2benzofurancarboxaldehyde (4.0 mmol) via General Method A (870 mg , 97% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{dq}, J=8.3,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $(\mathrm{d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,155.2,140.4,128.8,128.6,128.2,126.9$, $124.5,123.0,121.3,111.5,104.2,70.9$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{6}$

3,4'-Dimethoxybenzhydrol (1h): 4-bromoanisole (8 mmol) was dissolved in dry THF (15 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of nBuLi in hexanes (7.5 mmol) was added dropwise and the solution was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for two hours. 3anisaldehyde (5 mmol) was dissolved in dry THF (5 mL) and added dropwise via cannula to the stirred solution (5 mL rinse). The solution was allowed to come to room tempeature and stir for 1 hour. At this time, all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a $30 \% \mathrm{EtOAc}$ in hexanes solvent system (1.2 g , 98% yield): melting point: $33.5-35.8^{\circ} \mathrm{C}$; IR (Germanium ATR): 3415, 3001, 2835, 1609, 1510, 1244, 1029, 833, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~s}, 3 \mathrm{H}), 6.98-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{ddd}, J=8.3,2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 6 \mathrm{H}), 2.17(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,159.2,145.8,136.2,129.6$, $128.0,118.9,114.0,113.0,112.1,75.9,55.4,55.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 267.0992$. Found 267.0998.

$\mathbf{2 , 3}, \mathbf{4} \mathbf{\prime}$-Trimethoxybenzhydrol (1i): Synthesized from 2-anisaldehyde (1.0 mmol) via General Method B ($274 \mathrm{mg}, 99 \%$ yield): melting point: 60.5-68.1 ${ }^{\circ} \mathrm{C}$; IR (Germanium ATR): 3198, 3009, 2835, 1504, 1243, 1153, 1020, 802, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{td}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.9,148.9,148.3,135.9,132.2,128.9,127.9,121.0,119.0,110.9,110.9,110.1,72.2,56.0$, 56.0, 55.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 275.1278$. Found 275.1285.

$\mathbf{3 , 4 , 4}$-Trimethoxybenzhydrol ($\mathbf{1} \mathbf{j}$): Synthesized from 4-anisaldehyde (5.0 mmol) via General Method B ($961 \mathrm{mg}, 70 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.13,149.13,148.49,136.87,136.34,127.91,118.89,113.96,111.03,109.77$, $75.68,56.05,55.98,55.41$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{7}$

[^3]

3,3, $\mathbf{, 4 , 4}$ '-Tetramethoxybenzhydrol ($\mathbf{1 k}$ and 15): Synthesized from veratraldehyde (5.0 mmol) via General Method B ($1.46 \mathrm{~g}, 96 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=$ $8.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,148.6,136.7,119.0,111.0,109.8,75.9,56.1,56.0$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{8}$

4-(N-Acetamide)-3', ${ }^{\prime}$ '-dimethoxybenzhydrol (11): $\quad \mathrm{N}$-(4bromophenyl)acetamide (8 mmol) was dissolved in dry THF (15 mL) and cooled to $-78^{\circ} \mathrm{C}$. A solution of nBuLi in hexanes (15 mmol) was added dropwise and the solution was allowed to stir at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere for 20 min . Veratraldehyde (5 mmol) was dissolved in dry THF (5 mL) and added dropwise via cannula to the stirred solution (5 mL rinse). The solution was allowed to come to room tempeature and stir for 30 min . At this time, all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{EtOAc}\left(3 \times 30 \mathrm{~mL}\right.$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a 30% to 50% EtOAc in hexanes gradient solvent system ($393 \mathrm{mg}, 27 \%$ yield): IR (Germanium ATR): $3333,3197,3066,2959,2935,1602,1512,1232,1137 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=$ $8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,149.2,148.6,140.0,137.3,136.6,127.3,120.0,119.1$, $111.1,109.8,75.7,56.1,56.0,24.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 302.1387$. Found 302.1399.

4-fluoro-3',4'-dimethoxybenzhydrol (1m): Synthesized from 4-fluoro benzaldehyde (6.18 mmol) via General Method A ($1.4 \mathrm{~g}, 86 \%$ yield): IR (Germanium ATR): 3464, 3005, 1603, 1507, 1464, 1419, 1260, 1223, 1138, 1030, 841, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ - 7.31 (m, $2 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3(\mathrm{~d}, J=245.7 \mathrm{~Hz}), 149.3,148.7,139.7$ (d, $J=3.1 \mathrm{~Hz}$), 136.5, $128.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 119.0,115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 111.1,109.8,75.5,56.1$, 56.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 285.0884$. Found 285.0899.

4-Trifluoromethyl-3',4'-dimethoxybenzhydrol (1n): Synthesized from 4-trifluoromethylbenzaldehyde (5.0 mmol) via General Method A ($1.0 \mathrm{~g}, 66 \%$ yield): melting point: $77.6-81.3^{\circ} \mathrm{C}$; IR (Germanium ATR): 3549, 3187, 3003, 2842, 1517, 1328, 1103, 1068, 1016, $812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.26$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.4,149.0,147.7,136.0,129.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right)$, $126.7(2 \mathrm{C}), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.0 \mathrm{~Hz}\right), 119.3,111.2,109.8,75.7,56.1,56.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 335.0866$. Found 335.0877.

[^4]

4-Bromo-3',4'-dimethoxybenzhydrol (10): Synthesized from 4-bromo benzaldehyde (5.0 mmol) via General Method A ($1.0 \mathrm{~g}, 62 \%$ yield): IR (Germanium ATR): 3456, 3000, 2834, 1592, 1511, 1256, 1136, 1008, $800,600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.77(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס 149.3, 148.9, 142.9, 136.2, 131.6, 128.3, 121.5, 119.1, 111.1, 109.8, 75.6, 56.1, 56.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 345.0097$. Found 345.0107.

3,4-Methylenedioxy-3',4'-dimethoxybenzhydrol (1p): Synthesized from piperonal (1.0 mmol) via General Method B ($242 \mathrm{mg}, 84 \%$ yield): melting point: $101.5-103.5^{\circ} \mathrm{C}$; IR (Germanium ATR): 3338, 2992, 2837, 1594, 1505, 1235, 1140, 1021, 874, $810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,148.6,147.9$, 147.1, 138.2, 136.6, 120.0, 118.8, 111.1, 109.7, 108.2, 107.3, 101.2, 75.9, 56.1, 56.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 311.0890$. Found 311.0899.

Benzo[b]furan-2-yl-(3,4-dimethoxyphenyl)carbinol (1q): Synthesized from 2-benzofurancarboxaldehyde (2.0 mmol) via General Method B ($475 \mathrm{mg}, 83 \%$ yield): IR (Germanium ATR): 3453, 3002, 2836, 1512, $1453,1254,1136,1024,809,742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.52 (ddd, $J=7.8,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{ddd}, J=$ $8.3,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=7.5,7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (ddd, $J=8.3$, $2.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,155.2,149.3,149.3$, $133.0,128.2,124.4,123.0,121.3,119.4,111.5,111.1,110.0,104.0,70.7,56.1,56.1$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 307.0941$. Found 307.0951.

3,3',4-Trimethoxybenzhydrol (1r): Synthesized from 3-anisaldehyde
 $(5.0 \mathrm{mmol})$ via General Method B ($1.0 \mathrm{~g}, 74 \%$ yield): melting point: $113.5-115.2^{\circ} \mathrm{C}$; IR (Germanium ATR): 3392, 3089, 2841, 1520, 1261, $1134,1025,798,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ - 7.23 $(\mathrm{m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-$ $6.79(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9$, 149.2, 148.7, 145.7, 136.5, 129.6, 119.1, 118.9, 113.0, $112.2,111.1,109.9,76.1,56.1,56.0,55.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 297.1097. Found 297.1107.

(3,4-Dimethoxyphenyl)(2-naphthyl)methanol (1s): Synthesized from 2-naphthaldehyde (3.0 mmol) via General Method B (608 mg , 69% yield): melting point: $84.9-86.1^{\circ} \mathrm{C}$; IR (Germanium ATR): 3334, 3053, 2837, 1591, 1511, 1232, 1135, 1021, $725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,148.7,141.3,136.5,133.4,133.0,128.4,128.2,127.8$, $126.3,126.1,125.0,124.9,119.3,111.1,110.0,76.2,56.0,56.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 317.1148$. Found 317.1158.

1-(3,4-Dimethoxyphenyl)pentan-1-ol (1t): Veratraldehyde (3 mmol) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. A solution of nBuLi in hexanes (3.0 mmol) was added dropwise. The solution was slowly allowed to warm to room tempeature and stir for 12 hours. At this time, all starting material was consumed as determined by TLC and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 6 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting oil was purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system ($673 \mathrm{mg}, 67 \%$ yield): IR (Germanium ATR): 3403, 3003, 2932, 1516, 1463, $1259,1138,1027,808 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=8.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=7.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.85-$ $1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,148.5,137.8,118.3,111.0,109.1,74.7,56.1,56.0,38.9,28.2$, 22.8, 14.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 247.1305$. Found 247.1315.

1-(3,4-Dimethoxyphenyl)-2-methyl-1-propanol (1u): Veratraldehyde (2 mmol) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and allowed to stir under N_{2} atmosphere. A solution of isopropylmagnesium chloride (3 mmol) was then added dropwise to the stirred solution. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min , at which point all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system (383 mg , 91% yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.88(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78$ $(\mathrm{s}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,148.5$, $136.5,119.1,110.8,109.6,80.2,56.1,56.0,35.5,19.2,18.7$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{9}$

1-Cyclohexyl-1-(3,4-dimethoxyphenyl)methanol (1v): Synthesized from cyclohexanecarboxaldehyde (1.0 mmol) via General Method B ($186 \mathrm{mg}, 74 \%$ yield): melting point: $91.7-93.2^{\circ} \mathrm{C}$; IR (Germanium ATR): 3497, 3002, 2922, 2850, 1593, 1258, 1138, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{dtd}, J=12.9,4.5,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.36$ (ddq, $J=12.6,3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{tdd}, J=12.7,11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{qd}, J$ $=12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,148.5,136.5,119.1,110.8,109.7,79.5$, $56.1,56.0,45.1,29.5,29.3,26.6,26.2,26.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 273.1461. Found 273.1473.

[^5]

3,4-Dimethoxy-(1'-hydroxy-1'-methylethyl)benzene (1w): Synthesized from acetone (5.0 mmol) via General Method B ($721 \mathrm{mg}, 73 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8,147.9,142.1,116.5,110.9,108.4,72.5,56.1,56.0$, 32.0. All spectroscopic data for this compound agrees with previously reported values. ${ }^{10}$

2-(3,4-Dimethoxyphenyl)haxan-2-ol (1x): Synthesized from 2-hexanone (5.0 mmol) via General Method B ($1.0 \mathrm{~g}, 85 \%$ yield): IR (Germanium ATR): 3499, 2933, 1591, 1509, 1463, 1255, 1140, 1026, $806 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.09$ $(\mathrm{m}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7,147.7,141.1,117.0,110.8$, 108.7, 74.7, 56.0, 56.0, 44.1, 30.2, 26.4, 23.2, 14.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 261.1461$. Found 261.1474.

1-(3,4-Dimethoxyphenyl)cyclohexanol (1y): Synthesized from cyclohexanone (5.0 mmol) via General Method B ($1.2 \mathrm{~g}, 85 \%$ yield): melting point: 92.1-94.0 ${ }^{\circ} \mathrm{C}$; IR (Germanium ATR): 3518, 2997, 2928, 2833, 1583, 1515, 1463, 1256, $1143,1026,975,799,764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11$ (d, $J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.8,147.9,142.5,116.7,110.9,108.6,73.1,56.1,56.0,39.1,25.7,22.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 259.1305$. Found 259.1314.

3,3',4,4’-Tetramethoxy-7-methylbenzhydrol (1z): 3,3',4,4’tetramethoxybenzhydrol (15) (0.617 mmol) was dissolved in dry THF $(3 \mathrm{~mL})$ at room temperature. Manganese (IV) oxide (4.01 mmol) was then added portionwise. Starting material was consumed after 36 h , as determined by TLC. The solution was filtered through a pad of Celite and concentrated. A portion of the resulting benzhydryl ketone (0.474 mmol) was dissolved in dry THF (5 mL), cooled to $0^{\circ} \mathrm{C}$ and allowed to stir under N_{2} atmosphere. A solution of methylmagnesium bromide (0.947 mmol) was then added dropwise to the stirred solution. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 1 hour, at which point all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a $50 \% \mathrm{EtOAc}$ in hexanes solvent system ($139 \mathrm{mg}, 92 \%$ yield over two steps): melting point: $129.3-130.3^{\circ} \mathrm{C}$; IR (Germanium ATR): 3513, 3001, 2934, 1596, 1511, 1462, 1253, 1138, 1024, $811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.7,148.1,141.0$, $118.2,110.6,109.7,76.2,56.0,56.0,31.5$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$, 341.1359. Found 341.1372.

[^6]

1-(3,4-Dimethoxyphenyl)ethanol (1aa): Veratraldehyde (5 mmol) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and allowed to stir under N_{2} atmosphere. A solution of methylmagnesium bromide (7.5 mmol) was then added dropwise to the stirred solution. The reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 15 min , at which point all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 15 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system ($659 \mathrm{mg}, 72 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95$ (d, J=1.9 $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{bs}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,148.5$, 138.7, 117.7, 111.1, 108.8, 70.4, 56.1, 56.0, 25.2. All spectroscopic data for this compound agrees with previously reported values. ${ }^{11}$

4,4'-Diisopropoxy-3,3'-dimethoxybenzhydrol (16): 4-bromo-1-isopropoxy-2-methoxy-benzene (10.0 mmol) was dissolved in dry THF $(20 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of nBuLi in hexanes $(10.0$ mmol) was added dropwise and the solution was allowed to stir at -78 ${ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for one hour. Freshly distilled ethyl formate $(5.0 \mathrm{mmol})$ was added dropwise to the stirred solution. The solution was allowed to come to room temperature and stir for 5 hours. At this time, all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a $30 \% \mathrm{EtOAc}$ in hexanes solvent system ($1.21 \mathrm{~g}, 67 \%$ yield): IR (Germanium ATR): 3511, 2981, 1605, 1506, 1465, 1419, 1260, 1225, 1136, 1036, $953 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 4 \mathrm{H})$, $5.74(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{hept}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,146.9,137.0,119.1,115.6,110.7,76.0,71.6$, 56.1, 22.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 383.1829$. Found 383.1832.

5-bromo-1,3-dimethoxy-2-isopropoxybenzene (S5): 4-bromo-2,6dimethoxyphenol (17.16 mmol) was dissolved in dry DMF (20 mL) followed by the addition of 2-bromopropane (34.32 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(25.74 \mathrm{mmol})$. The solution was heated to $90{ }^{\circ} \mathrm{C}$ and allowed to stir under N_{2} atmosphere for 6 hours. The reaction was then cooled down to room temperature and allowed to stir overnight. Starting material was still present as determined by TLC, therefore more 2-bromopropane (34.32 mmol) was added and the reaction was stirred overnight. At this time, all starting material was consumed and the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{HCl}(0.5 \mathrm{M}, 100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford the product ($4.63 \mathrm{~g}, 98 \%$ yield). IR (Germanium ATR): 2972, 2933, 1585, 1491, 1404, 1303, 1224, 1124, $930 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~s}, 2 \mathrm{H}), 4.31$ (hept, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,135.5,115.8,109.0,75.5,56.4,22.5$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}, 297.0097$. Found 297.0097.

[^7]

4,4'-Diisopropoxy-3,3'-dimethoxy-5,5'-dimethoxybenzhydrol (19): 5-bromo-1,3-dimethoxy-2-isopropoxybenzene ($\mathbf{S 5}, 2.49 \mathrm{mmol}$) was dissolved in dry THF (4 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of nBuLi in hexanes (2.49 mmol) was added dropwise and the solution was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for one hour. Freshly distilled ethyl formate (1.24 mmol) was added dropwise to the stirred solution. The solution was allowed to come to room temperature and stir overnight. At this time, all starting material was consumed as determined by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting material was purified by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system ($210.7 \mathrm{mg}, 40 \%$ yield): IR (Germanium ATR): $3449,2974,2935,1593,1462,1418,1325,1228,1123,930 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~s}, 4 \mathrm{H}), 5.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{hept}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 12 \mathrm{H}), 2.21$ $(\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.0,138.8,135.7$, 104.0, 76.6, 75.4, 56.3, 22.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}, 443.204$. Found 443.2054 .

3,4-Methylenedioxy-4'-methoxybenzhydrol (22): Synthesized from piperonal (8.2 mmol) with 4-bromoanisole $(9.6 \mathrm{mmol})$ rather than 4 bromoveratrol via General Method B ($2.34 \mathrm{~g}, 99 \%$ yield): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.74$ $(\mathrm{m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,147.9,147.0,138.4,136.3,127.8,120.0,114.0$, $108.2,107.2,101.2,77.2,75.7,55.4$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{12}$

1-(Trimethylsilyl)-2-methyl-2-butene (2b): Followed same procedure as Yamamoto and co workers ${ }^{13}(185 \mathrm{mmol}$ scale, 11.7 g , 44% yield after distillation, 3.3:1 d.r.): Major Isomer ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.00(\mathrm{qq}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{q}, J=1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.56(\mathrm{dq}, J=6.7,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}),-0.01$ (s, 9H); Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.5,116.9$, $30.0,18.5,13.7,-1.1$; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{p}, J=$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.49(\mathrm{~m}, 5 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.1$, $115.9,26.4,23.0,14.1,-0.5$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{13}$

1-(Trimethylsilyl)-2-ethyl-2-butene (2c): Followed same procedure as Yamamoto and co workers ${ }^{13}$ (46 mmol scale, 10.22 $\mathrm{g}, 33 \%$ yield after distillation, $4: 1$ d.r.): Major Isomer ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.97(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{q}, J=7.7 \mathrm{~Hz}$,

[^8]$2 \mathrm{H}), 1.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,115.8,26.5,25.0,13.3,12.8,-1.0$; Minor Isomer ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.09(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 5 \mathrm{H}), 0.98(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,113.9,32.0,21.2,14.1$, $13.0,-0.5$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{13}$

2-Phenyl-3-(trimethylsilyl)-1-propene (2d): Followed same procedure as Ferraris and co workers ${ }^{13}$ (40 mmol scale, $2.47 \mathrm{~g}, 31 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=6.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,142.9,128.2,127.3,126.5,110.2,26.3,-1.3$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{14}$

4. Indane Experimental Procedures and Characterization Data

General Method C:

Scheme S4: General method for synthesis of indanes
General Method C (standard indane reaction): Benzhydryl or benzyl alcohol 1 (1 equiv) was dissolved in $\mathrm{MeNO}_{2}\left(0.1 \mathrm{M}\right.$ soln) and allowed to stir under N_{2} atmosphere. Alkyl silane 2 (1.5 equiv) was added, followed by a solution of triflimide in DCM ($10 \mathrm{~mol} \%$). The reaction was allowed to stir at room temperature for 2 hours before being quenched with sat. NaHCO_{3} solution. The biphasic solution was extracted with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired indane.

General Method D:

1

2

8

Scheme S5: General method for synthesis of indanes at elevated temperature
General Method D (indane reaction at elevated temperature): Benzhydryl or benzyl alcohol $\mathbf{1}$ (1 equiv) was dissolved in $\mathrm{MeNO}_{2}\left(0.1 \mathrm{M}\right.$ soln) and allowed to stir while warming to $50{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Alkyl silane 2 (1.5 equiv) was added, followed by a solution of triflimide in DCM (10 $\mathrm{mol} \%)$. The reaction was allowed to stir at $50^{\circ} \mathrm{C}$ for 2 hours before being quenched with sat. NaHCO_{3} solution. The biphasic solution was extracted with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired indane.

[^9]

5,6,7-Trimethoxy-1,1-dimethyl-3-phenylindane (8a): Synthesized from 3,4,5trimethoxybenzhydrol ($\mathbf{1 a}, 0.200 \mathrm{mmol}$) and silane 2a via General Method C (50 $\mathrm{mg}, 80 \%$ yield): IR (Germanium ATR): (Germanium ATR): 2937, 1605, 1479, 1411, 1327, 1226, 1201, 1104, 1029, $933 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, J $=10.3,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=$ $12.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=12.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2,150.4,145.2,141.4,141.2,136.4,128.6,128.5,126.5,103.9$, $61.0,60.8,56.3,53.9,49.8,44.1,29.1,27.7$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 313.1798. Found 313.1811.

5,7-Dimethoxy-1,1-dimethyl-3-phenylindane (8b): Synthesized from 3,5dimethoxybenzhydrol ($\mathbf{1 b}, 0.308 \mathrm{mmol}$) and silane 2a via General Method D (58 $\mathrm{mg}, 66 \%$ yield): IR (Germanium ATR): 2999, 2834, 1597, 1486, 1454, 1300, $1203,1155,1074,1045,933,752,717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ $-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{dd}, J=2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=$ $2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, J=$ $12.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (dd, $J=12.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (s, 3H), 1.30 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,157.3,148.1,145.4,131.6,128.6,126.4,101.0,97.7,55.6,55.2$, 53.8, 50.0, 43.6, 28.8, 26.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 283.1693$. Found 283.1701.

4,7-Dimethoxy-1,1-dimethyl-3-phenylindane (8c): Synthesized from 2,5dimethoxybenzhydrol ($\mathbf{1 c}, 0.620 \mathrm{mmol}$) and silane 2a via General Method D (105 $\mathrm{mg}, 60 \%$ yield): IR (Germanium ATR): 3029, 1601, 1491, 1462, 1358, 1255, 1215, $1064,842,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=9.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=13.0,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92(\mathrm{dd}, J=13.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.1,150.9,146.8,141.4,133.9,128.1,127.5,125.6,110.5,110.0,55.9,55.7,53.0,47.2$, 45.1, 28.5, 28.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 283.1693. Found 283.1678.

5,6-Dimethoxy-1,1-dimethyl-3-phenylindane (8d): Synthesized from 3,4dimethoxybenzhydrol ($\mathbf{1 d}, 0.368 \mathrm{mmol}$) and silane 2a via General Method C (86 $\mathrm{mg}, 82 \%$ yield): IR (Germanium ATR): 2951, 2859, 1605, 1500, 1464, 1453, 1291, 1212, 1069, 1029, 995, 855, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35$ - $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.32(\mathrm{~m}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J=12.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=$ $12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.8, 148.4, 145.7, 144.9, 136.7, 128.6, 128.4, 126.4, 108.1, 105.1, 56.2, 56.2, 53.5, 49.1, 43.3, 29.3, 29.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 283.1693. Found 283.1702.

5,6-Methylenedioxy-1,1-dimethyl-3-phenylindane (8e): Synthesized from 3,4methylenedioxybenzhydrol ($\mathbf{1 e}, 0.189 \mathrm{mmol}$) and silane $\mathbf{2 a}$ via General Method C ($39 \mathrm{mg}, 77 \%$ yield): IR (Germanium ATR): 2954, 1603, 1495, 1476, 1357, 1268, 1234, 1072, 1042, $979 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{dd}, J=12.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 147.1,146.7,146.2,145.4,138.2,128.6,128.4,126.5,105.6,102.6,101.1,53.2,48.9,43.1$, 29.2, 29.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 267.138. Found 267.1369.

1,1-Dimethyl-3-phenyl-2,3-dihydro-1H-cyclopenta[a]naphthalene
(8f):
Synthesized from 2-naphthyl(phenyl)methanol (1f, 0.560 mmol) silane 2a via General Method C ($95 \mathrm{mg}, 62 \%$ yield): IR (Germanium ATR): 3052, 3025, 2958, $2863,1601,1513,1495,1363,1029,817,762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.25 (dd, $J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51$ (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (ddd, $J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{dd}, J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=12.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2,145.8,142.9,134.0,130.0,129.4,128.6,128.6,128.0,126.5,125.7$, $124.8,124.1,123.8,54.6,49.4,45.4,30.3,27.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{20}[\mathrm{M}+\mathrm{H}]^{+}$, 273.1638. Found 273.1644.

1,1-Dimethyl-3-phenyl-2,3-dihydro-1H-cyclopenta[b]benzofuran
Synthesized from 2-(1-Hydroxyphenylmethyl)benzofuran ($\mathbf{1 g}, 0.259 \mathrm{mmol}$) and silane 2a via General Method C (49 mg, 72\% yield): IR (Germanium ATR): 3061, 3028, 2955, 2864, 1630, 1604, 1497, 1444, 1363, 1205, 1054, 1009, $826 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=13.0,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{dd}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,160.5,143.0,130.8,128.8,127.6,126.9,125.6,123.1,122.6,118.9,112.3$, 56.0, 44.0, 37.9, 29.7, 28.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}, 263.143$. Found 263.1424 .

5-Methoxy-3-(4-methoxyphenyl)-1,1-dimethylindane (8h): Synthesized from 3,4'-dimethoxybenzhydrol ($\mathbf{1 h}, 0.650 \mathrm{mmol}$) and silane 2a via General Method C (111 mg, 60\% yield): IR (Germanium ATR): 2997, 2952, 2861, $1609,1584,1512,1487,1249,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ $-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.77$ (ddd, $J=$ $8.3,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10.3,7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.81 (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (dd, $J=12.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (dd, J $=12.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,158.3,147.3,145.1,137.1,129.5,122.6,114.0,113.1,110.1,55.6,55.4,53.4,48.4,42.5$, 29.3, 29.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 283.1693. Found 283.1712.

5,6-Dimethoxy-3-(2-methoxyphenyl)-1,1-dimethylindane (8i): Synthesized from 2,3', $\mathbf{4}^{\prime}$-trimethoxybenzhydrol ($\mathbf{1}, 0.187 \mathrm{mmol}$) and silane 2a via General Method C (42 mg, 72\% yield): IR (Germanium ATR): 2950, 1599, 1491, 1238, 1211, 1068, 1029, 855, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ (ddd, $J=$ $8.2,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=8.8,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91$ (s, 3H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 2.43 (dd, $J=12.4,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84(\mathrm{dd}, J=12.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,148.6$, $148.3,145.1,136.3,134.3,128.4,127.2,120.8,110.5,108.3,105.3,56.2,56.2,55.6,51.4,43.3,41.4$, 29.6, 29.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 313.1798$. Found 313.1806.

5,6-Dimethoxy-3-(4-methoxyphenyl)-1,1-dimethylindane (8j): Synthesized from $3,4,4^{\prime}$ 'trimethoxybenzhydrol ($\mathbf{1} \mathbf{j}, 0.295 \mathrm{mmol}$) and silane $\mathbf{2 a}$ via General Method C ($60 \mathrm{mg}, 65 \%$ yield): IR (Germanium ATR): 3005, 2948, 2833, 1604, 1499, 1462, 1178, 1038, 997, 870, $821 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.39$ ($\mathrm{s}, 1 \mathrm{H}$), 4.29 (ddd, $J=9.8,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73$ ($\mathrm{s}, 3 \mathrm{H}$), $2.37(\mathrm{dd}, J=12.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38$ ($\mathrm{s}, 17 \mathrm{H}$), $1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,148.7$, 148.4, 144.7, 137.6, 137.0, 129.3, 114.0, 108.1, 105.1, 56.2, 56.2, 55.4, 53.6, 48.2, 43.2, 29.2, 29.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 313.1798$. Found 313.1803.

5,6-Dimethoxy-3-(3,4-dimethoxyphenyl)-1,1-dimethylindane
(8k): Synthesized from 3, ${ }^{\prime}$, 4, $\mathbf{4}^{\prime}$ 'tetramethoxybenzhydrol ($\mathbf{1 k}, 0.302 \mathrm{mmol}$) and silane 2a via General Method C ($88 \mathrm{mg}, 85 \%$ yield): IR (Germanium ATR): 2996, 2950, 2860, 1500, 1211, 1138, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=9.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{dd}, J=12.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90(\mathrm{dd}, J=12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,148.7,148.4,147.6,144.7,138.1,136.8,120.4$, $111.4,111.3,108.0,105.1,56.2,56.2,56.0,56.0,53.5,48.7,43.1,29.1,29.1$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 343.1904$. Found 343.1904.

N-(4-(5,6-Dimethoxy-3,3-dimethylindan-1-yl)phenyl)acetamide (81): 4(N -acetamide) - $3^{\prime}, 4^{\prime}$ '-dimethoxybenzhydrol ($\mathbf{1 1}, 0.201 \mathrm{mmol}$) was dissolved in $\mathrm{MeNO}_{2}\left(0.1 \mathrm{M}\right.$ soln) and allowed to stir while warming to $80{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Silane 2a (1.5 equiv) was added, followed by a solution of triflimide in DCM ($10 \mathrm{~mol} \%$). The reaction was allowed to stir at $80^{\circ} \mathrm{C}$ for 2 hours before being quenched with sat. NaHCO_{3} solution. The biphasic solution was extracted with DCM and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired indane (64 mg , 95% yield): IR (Germanium ATR): 3310, 3000, 2953, 1666, 1602, 1513, 1500, 1210, $1068,909 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $6.37(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=9.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=12.4$,
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, J=12.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,148.8,148.4,144.8,141.8,136.7,136.1,129.0,120.3$, 108.0, 105.2, 56.2, 56.2, 53.4, 48.5, 43.3, 29.2, 29.1, 24.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 340.1907$. Found 340.1919.

3-(4-Fluorophenyl)-5,6-dimethoxy-1,1-dimethylindane (8m): Synthesized from 4-fluoro-3', 4'-dimethoxybenzhydrol ($\mathbf{1 m}, 0.320 \mathrm{mmol}$) and silane $\mathbf{2 a}$ via General Method C ($65 \mathrm{mg}, 67 \%$ yield): IR (Germanium ATR): 2952, 2861, 1604, 1502, 1290, 1212, 1068, 856, $832 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.20-7.14$ (m, 2H), $7.03-6.97$ (m, 2H), 6.71 (s, 1H), 6.36 (s, 1H), 4.32 (dd, J $=9.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88(\mathrm{dd}, J=12.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.7\left(\mathrm{~d}, J_{\mathrm{CF}}=243.9 \mathrm{~Hz}\right), 148.9,148.5,144.8,141.3\left(\mathrm{~d}, J_{\mathrm{CF}}=3.1 \mathrm{~Hz}\right)$, $136.6,129.8\left(\mathrm{~d}, J_{\mathrm{CF}}=7.8 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{CF}}=21.1 \mathrm{~Hz}, 2 \mathrm{C}\right), 108.0,105.2,56.2,56.2,53.6,48.3$, 43.3, 29.2, 29.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 323.1418. Found 323.1422.

5,6-Dimethoxy-1,1-dimethyl-3-(4-(trifluoromethyl)phenyl)-indane
(8n):
Synthesized from 4-trifluoromethyl-3', 4'-dimethoxybenzhydrol (1n, 0.570 mmol) and silane 2a via General Method C ($164 \mathrm{mg}, 82 \%$ yield): IR (Germanium ATR): 2953, 2863, 1618, 1500, 1461, 1322, 1128, 1068, 858, $840 \mathrm{~cm} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{dd}, J=12.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=12.5,9.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.39 (s, 3H), 1.24 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0$, $149.0,148.6,145.0,135.7,128.7(2 \mathrm{C}), 128.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 124.5(\mathrm{q}$, $J_{\text {CF }}=272.1 \mathrm{~Hz}$), 107.9, 105.2, $56.2(2 \mathrm{C}), 53.4,49.0,43.5,29.3,29.1$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 351.1566$. Found 351.1572.

3-(4-Bromophenyl)-5,6-dimethoxy-1,1-dimethylindane (80): Synthesized from 4-bromo-3', 4'-dimethoxybenzhydrol ($\mathbf{1 0}, 0.400 \mathrm{mmol}$) and silane 2a via General Method C ($119 \mathrm{mg}, 82 \%$ yield): IR (Germanium ATR): 3019, 2952, $1604,1500,1292,1211,1069,1009,855,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.36$ $(\mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=9.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=$ $12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=12.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 148.9,148.5,144.9,144.8,136.1,131.7,130.2$, 120.1, 107.9, 105.2, 56.2, 56.2, 53.4, 48.6, 43.4, 29.2, 29.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 383.0617$. Found 383.0617.

Major Isomer ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{CDCl}) \delta 676(\mathrm{~d}, J=$ $1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=5.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=9.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 148.8,148.4,147.9,146.1,144.8,139.6,136.7,121.5,108.6$, $108.2,108.0,105.1,101.0,56.2,56.2,53.5,48.8,43.2,29.3,29.1$; Minor Isomer ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}$, $1 \mathrm{H}), 5.90(\mathrm{dd}, J=15.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (dd, $J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=12.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,147.7,147.1,146.7,146.1,138.3,137.8,120.4,111.5,111.3$, 105.5, 102.6, 101.1, 56.1, 56.1, 53.3, 48.6, 43.0, 29.1, 29.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 349.141$. Found 349.142.

2-(5,6-Dimethoxy-3,3-dimethylindan-1-yl) benzofuran (8 q major) and 3-(3,4-Dimethoxyphenyl) -1,1-dimethyl-2,3-dihydro-1H-cyclopenta[b] benzofuran (8q minor): Synthesized from benzo[b]furan-2-yl-(3,4-dimethoxyphenyl) carbinol ($\mathbf{1 q}, 0.30 \mathrm{mmol}$) and silane 2a via General Method C ($50 \mathrm{mg}, 3.3: 1$ cyclization isomer ratio, 51% yield): IR (Germanium ATR): 3059, 2996, 2862, 1605, 1502, $1454,1295,1254,1214,1070,1028,855,755 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (dd, $J=12.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (s, 3H); Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ - 7.49 (m, 1H), 7.46 - 7.41 (m, 1H), 7.26 $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=12.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,155.1,149.3,148.5,144.4,133.2,128.9,123.5$, $122.6,120.6,111.2,107.8,105.5,102.5,56.3,56.2,48.3,43.5,42.5,29.4,29.4$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 160.7,160.6,149.3,148.0,135.5,130.6,125.6,123.1,122.7,119.5,118.9$, $112.4,111.5,110.8,56.1,56.1,56.0,43.7,37.8,29.8,28.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 323.1462$. Found 323.1653.

5,6-Dimethoxy-3-(3-methoxyphenyl)-1,1dimethylindane (8 r major) and 5-Methoxy-3-(3,4dimethoxy phenyl)-1,1-dimethylindane (8r minor): Synthesized from 3,3',4trimethoxybenzhydrol ($\mathbf{1 r}, 0.322 \mathrm{mmol}$) and silane 2a via General Method C ($56 \mathrm{mg}, 3.8: 1$ cyclization isomer ratio, 55\% yield): IR (Germanium ATR): 2998, 2950, 2860, 2832, 1607, 1500, 1464, 1314, 1236, 1212, 1139, 1069, 1030, 996, 855, $767 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{td}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.71$ (s, 1H), $6.43(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 2.39 (dd, $J=12.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (dd, $J=12.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23$ (s, 3H); Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,148.8,148.4,147.4,144.9,136.5,129.5,120.9,114.2$, $111.6,108.1,105.1,56.2$ (2C), $55.3,53.3,49.1,43.3,29.3,29.1$; Minor Isomer ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.35-$ $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0$, 149.1, 147.7, 147.1, 145.1, 137.5, 122.6, 120.6, 113.2, 111.6, 111.3, 110.1, 56.1, 56.1, 55.6, 53.3, 48.9, 42.5, 29.2, 29.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 313.1798$. Found 313.1805.

8.3 (8 s major)

2-(5,6-Dimethoxy-3,3-dimethylindan-1yl)naphthalene (8s major) and 3-(3,4-Dimethoxyphenyl)-1,1-dimethyl-2,3-dihydro-1Hcyclopenta[a]naphthalene (8s minor): Synthesized from (3,4-dimethoxyphenyl)(2-naphthyl)methanol (1s, 0.418 mmol) and silane 2a via General Method C (96 $\mathrm{mg}, 8.3: 1$ cyclization isomer ratio, 69% yield): IR (Germanium ATR): 2999, 2955, 2859, 2829, 1603, $1500,1463,1236,1213,1139,1029,889,819,754 \mathrm{~cm}^{-}$ ${ }^{1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ $7.78(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}$, $J=12.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8$, $148.5,144.9,143.0,136.7,133.7,132.5,128.3,127.8,127.7,126.9$ (2C), 126.1, 125.5, 108.1, 105.2, 56.2, 56.7, 53.3, 49.3, 43.4, 29.4, 29.2; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ (dd, $J=8.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=$ $9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}, J=12.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=12.6,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,147.7,146.1$, $143.0,138.3,134.0,130.0,129.4,128.0,125.7,124.8,124.1,123.8,120.6,111.6,111.3,56.1,56.0$, 54.7, 49.0, 45.3, 30.3, 27.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 333.1849$. Found 333.1855.

3-Butyl-5,6-dimethoxy-1,1-dimethylindane (8t): Synthesized from 1-(3,4-dimethoxyphenyl)pentan-1-ol ($\mathbf{1 t}, 0.156 \mathrm{mmol}$) and silane 2a via General Method C ($33 \mathrm{mg}, 84 \%$ yield): IR (Germanium ATR): 2952, 2856, 1606, 1499, 1464, 1212, $1065 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.70(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.14(\mathrm{dd}, J=12.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=12.3,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.98-0.92(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4$, 148.2, 144.3, 138.0, 106.8, 105.5, 56.2, 56.2, 49.1, 42.9, $42.0,35.3,30.2,29.7,29.5,23.1,14.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 285.1825 . Found 285.1842.

3-Isopropyl-5,6-dimethoxy-1,1-dimethylindane (8u): Synthesized from 1-(3,4-dimethoxyphenyl)-2-methyl-1-propanol ($\mathbf{1 u}, 0.209 \mathrm{mmol}$) and silane 2a via General Method C (39 mg , 76\% yield): IR (Germanium ATR): 2951, 1605, $1499,1463,1289,1211,1073,852 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67$ $(\mathrm{d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dddd}, J=9.1$, $7.7,4.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{pd}, J=6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=12.5,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{dd}, J=12.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,148.1,145.0,136.5,107.3,105.4,56.3,56.1,48.0$, $42.5,42.3,30.1,29.4,29.4,21.6,17.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 271.1669. Found 271.1683.

3-Cyclohexyl-5,6-dimethoxy-1,1-dimethylindane (8v): Synthesized from 1-cyclohexyl-1-(3,4-dimethoxyphenyl)methanol ($\mathbf{1 v}, 0.408 \mathrm{mmol}$) and silane 2a via General Method C (86 mg, 73\% yield): IR (Germanium ATR): 2993, 2922, 2849, 1605, 1500, 1448, 1317, 1288, 1212, 1070, $993 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{td}, J=8.4$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=12.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.38-1.08(\mathrm{~m}, 10 \mathrm{H}), 1.02-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.4,148.0,145.0,136.1,107.5,105.5,56.4,56.1,47.6,43.5,42.6,40.3,32.3,30.1,29.5$, 27.8, 27.2, 26.9, 26.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 311.1982. Found 311.1996.

5,6-Dimethoxy-1,1,3,3-tetramethylindane (8w): Synthesized from 3,4-dimethoxy-(1'-hydroxy-1'-methylethyl)benzene ($\mathbf{1 w}, 0.400 \mathrm{mmol}$) and silane 2a via General Method C (75 mg , 79\% yield): IR (Germanium ATR): 3008, 2860, 1602, 1502, 1464, 1290, 1213, 1059, $852 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.62(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.6,142.8,105.6,57.1,56.2,42.6,31.7$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 257.1512$. Found 257.1532.

1-Butyl-5,6-dimethoxy-1,3,3-trimethylindane (8x): Synthesized from 2-(3,4-dimethoxyphenyl)haxan-2-ol ($\mathbf{1 x}, 0.600 \mathrm{mmol}$) and silane 2a via General Method C (157 mg, 94\% yield): IR (Germanium ATR): 2952, 2859, 1605, 1502, $1464,1288,1212,1149,1057,852 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J$
$=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5$, $148.4,143.1,142.3,105.9,105.5,56.2,56.1,53.8,45.9,43.3,42.5,32.3,31.5,29.8,27.5,23.6,14.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 294.2428. Found 294.2441.

5',6'-Dimethoxy-3',3'-dimethylspiro[cyclohexane-1,1'-indane]

(8y):
Synthesized from 1-(3,4-dimethoxyphenyl)cyclohexanol ($\mathbf{1 y}, 0.301 \mathrm{mmol}$) and silane 2a via General Method C ($62 \mathrm{mg}, 85 \%$ yield): IR (Germanium ATR): 2952, 2852, 1604, 1503, 1464, 1289, 1214, 1032, 974, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}$, $2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H})$, 1.33 - $1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7$, 148.5, 143.0, 143.0, 105.8, 105.6, 56.1, $56.1,51.6,46.9,42.7,40.2,32.2,26.1,23.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 292.2271. Found 292.2273.

1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1,3,3-trimethylindane (8z):

Synthesized from 3,3',4,4'-tetramethoxy-7-methylbenzhydrol (1z, 0.102 mmol) and silane 2a via General Method C ($21 \mathrm{mg}, 58 \%$ yield): IR (Germanium ATR): 2995, 2953, 1604, 1502, 1463, 1253, 1145, 1028 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.0,148.5,148.5,147.0,144.2,144.1,140.4,118.8,110.6,110.6,107.6,105.3,59.9,56.3$, $56.1,56.0,55.9,50.5,42.9,31.0,31.0,30.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 374.2326 . Found 374.2336.

anti-5,6-Dimethoxy-1,1,2,3-tetramethylindane (8aa major) and syn-5,6-Dimethoxy-1,1,2,3tetramethylindane (8aa minor): Synthesized from 1-(3,4-dimethoxyphenyl)ethanol (1aa, 0.268 mmol$)$ and silane 2b via General Method C (56 mg, 3.2:1 d.r., 89% yield): IR (Germanium ATR): 2954, 2867, $1608,1501,1464,1405,1288,1212,1049,853,766 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{ddt}, J=10.1,7.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,148.2,144.7,138.1,106.5,105.7,56.3,56.2,54.6,44.7,43.2,26.9,23.7$, 17.3, 11.9; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 3.14(\mathrm{p}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{p}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ $(\mathrm{s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,148.2,143.8$, 138.9, 107.3, 105.9, 56.2, 56.2, 47.7, 45.6, 41.2, 28.9, 26.3, 17.1, 10.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 257.1512$. Found 257.1512.

2.8 (8bb major)

1 (8bb minor)
anti-3-Butyl-5,6-dimethoxy-1,1,2-trimethylindane (8bb major) and syn-3-Butyl-5,6-dimethoxy-1,1,2trimethylindane ($\mathbf{8 b b}$ minor): Synthesized from 1-(3,4-dimethoxyphenyl)pentan-1-ol ($\mathbf{1 t}, 0.143 \mathrm{mmol}$) and silane 2b via General Method C (34 mg, 2.9:1 d.r., 87% yield): IR (Germanium ATR): 2953, 2927, 2858, 1606, 1498, 1209, 1058, $982 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72(\mathrm{~s}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.33(\mathrm{~m}, 5 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,148.0,144.9,137.0,107.0,105.6,56.3,56.2,51.0,48.4,44.7,31.8,29.3,27.2$, 23.9, 23.5, 14.3, 12.8; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.33$ $(\mathrm{m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3$, 147.7, 144.0, 137.5, 108.1, 106.0, 56.2, 56.2, 48.0, 46.3, 45.3, 30.9, 30.3, 28.8, 25.5, 23.3, 14.3, 10.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 299.1982 . Found 299.1991.

2.2 (8cc major)

1 (8cc minor)
anti-3-Isopropyl-5,6-dimethoxy-1,1,2-trimethyl indane (8cc major) and syn-3-Isopropyl-5,6-dimethoxy-1,1,2-trimethylindane (8cc minor): Synthesized from 1-(3,4-dimethoxyphenyl)-2-methyl-1-propanol ($\mathbf{1 u}, 0.216 \mathrm{mmol}$) and silane $\mathbf{2 b}$ via General Method C ($51 \mathrm{mg}, 2.2: 1$ d.r., 90% yield): IR (Germanium ATR): 2954, 2870, 1605, $1499,1464,1211,1060,987,851,773 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{ddd}, J=7.3,7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dq}, J=$ $7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,147.3$, $144.8,135.9,109.5,105.8,56.3,56.1,53.0,48.7,45.2,29.0,28.1,25.1,24.1,22.1,11.3$; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.68$ (ddd, $J=9.6,2.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{pd}, J=7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dq}, J=9.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,147.8,145.3,135.3,107.6,105.5,56.3,56.1,54.9,47.0$, $44.8,29.0,27.5,24.4,20.3,20.1,14.4$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 263.2006. Found 263.2008.

anti-3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1,1,2-trimethylindane
(8dd): Synthesized from 3,3',4,4'-tetramethoxybenzhydrol (15, 0.204 mmol) and silane 2b via General Method C (69 mg , 95% yield): IR (Germanium ATR): 2999, 2955, 2869, 2831, 1605, 1514, 1499, 1463, 1247, 1208, 1030, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (s, $3 \mathrm{H}), 3.69(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dq}, J=10.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}$,
$3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,148.6,148.2,147.8$, 145.1, 136.5, 136.4, 121.2, 111.6, 111.1, 108.0, 105.3, 56.6, 56.2 (3C), 56.1, 56.0, 44.7, 26.8, 23.6, 11.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 357.206$. Found 357.2059.

(1RS,2SR,3RS)-3-(3,4-Dimethoxyphenyl)-1-ethyl-5,6-dimethoxy-1,2dimethylindane (8ee): Synthesized from 3,3', 4, ', tetramethoxybenzhydrol ($\mathbf{1 5}, 0.174 \mathrm{mmol}$) and silane 2c via General Method C ($71 \mathrm{mg}, 1.8: 1$ d.r., 97% yield): IR (Germanium ATR): 2995, 2956, 2831, 1605, 1512, 1503, 1464, 1249, 1205, 1069, 1030, 853, 762 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{dq}, J=10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dq}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dq}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.02(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0$, $148.6,148.2,147.8,143.3,137.1,137.1,121.1,111.7,111.2,107.9,105.7,56.4,56.3,56.1,56.0,56.0$, $51.0,48.3,31.0,23.6,12.4,9.3$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 393.2036 . Found 393.2045.

anti-3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1-methyl-1phenylindane (8ff): Synthesized from $3,3^{\prime}, 4,4$ '-tetramethoxybenzhydrol ($\mathbf{1 5}, 0.234 \mathrm{mmol}$) and silane $\mathbf{2 d}$ ($0.217 \mathrm{mmol}, 0.9$ equiv) via General Method C ($94 \mathrm{mg}, 2.5: 1$ d.r., 99% yield): IR (Germanium ATR): 2999, 2830, 1605, 1514, 1463, 1282, 1210, 1139, 1077, 1029, $855 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13$ - $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=12.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}$, $J=12.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,149.0,148.8,148.7$, 147.7, 141.9, 138.7, 137.2, 128.3 (2C), 126.6 (2C), 126.0, 120.5, 111.6, 111.4, 107.8, 107.0, 56.2 (2C), 56.1 (2C), 56.0, 51.1, 48.6, 28.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 422.2326$. Found 422.2335 .

5. Type B Allylsilane Experimental Procedures and Characterization Data

TMS -O
(Trimethylsilyl)ethylene oxide (14): A modified version of Croudace's procedure was used ${ }^{15}$: A solution of m CPBA ($77 \%, 50.3 \mathrm{~g}, 224 \mathrm{mmol}$) in chloroform (370 mL) was added dropwise to a solution of vinyltrimethylsilane ($15 \mathrm{~g}, 150 \mathrm{mmol}$) in chloroform (40 mL) at $0^{\circ} \mathrm{C}$. The mixture was then gradually warmed to room temperature and allowed to stir overnight. The cloudy white reaction was neutralized by careful treatment with 5% aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The organic layer was washed repetitively with $5 \% \mathrm{NaHCO}_{3}(2 \mathrm{~L})$ until $m \mathrm{CPBA}$ was no longer present as monitored by TLC. The organic layer was then dried over magnesium sulfate and concentrated under reduced pressure. The crude material was distilled at atmospheric pressure and $110{ }^{\circ} \mathrm{C}$ to afford the title compound as a clear oil (74% yield): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.91(\mathrm{dd}, J=5.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.56(\mathrm{dd}, J=5.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=5.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz ,

[^10]$\left.\mathrm{CDCl}_{3}\right) \delta 44.8,44.3,-3.7$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{16}$

Scheme S6: General method for the synthesis of 3a and 3b allylsilanes
General Method E: A solution of vinyl bromide Grignard in THF ($0.5 \mathrm{M}, 2$ equiv) was charged in a round bottom flask with dry THF (0.1 M total solution volume) and cooled to $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. A solution of copper(I) bromide dimethyl sulfide complex (1 equiv) in dimethyl sulfide (0.5 M soln) was added dropwise to the suspension. The mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 hr . (Trimethylsilyl)ethylene oxide (1 equiv) was added dropwise to the reaction. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hr then warmed up to room temperature and stirred overnight. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ soln and stirred for 20 min before being filtered through Celite. The organic layer was washed with additional $\mathrm{NH}_{4} \mathrm{Cl}$ soln. The aqueous layer was extracted with diethyl ether three times, dried over magnesium sulfate and concentrated under reduced pressure. The crude material was purified by flash column chromatography on silica gel with 30% ether/pentanes solvent system to afford the desired allylsilane.

2-(Trimethylsilyl)but-3-en-1-ol (3a): Synthesized from vinyl cuprate via General Method E (10.5 mmol scale, 64% yield): IR (Germanium ATR): 3379, 3077, 2953, $1628,1248,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70(\mathrm{ddd}, J=17.1,10.3,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07(\mathrm{ddd}, J=10.4,1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{ddd}, J=17.2,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H})$, $3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=10.7,9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.2,115.2,62.4,40.2,-2.9$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{OSi}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 167.0863$. Found 167.0869.

2-(Trimethylsilyl)pent-3-en-1-ol (3b): Synthesized from 1propenyl cuprate via General Method E (15.0 mmol scale, 1.7:1 Z: E ratio, 73\% yield): IR (Germanium ATR): 3354, 3008, 2954, $1648,1251,1095,1049,965,861,833,749 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.64(\mathrm{dqd}, J=10.8,6.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.21(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (ddd, J $=10.6,8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{tdd}, J=11.2,4.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=6.8$, $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $129.0,125.8,63.5,33.7,13.5,-2.7$; Minor Isomer ${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44$ (dqd, $J=15.2$, $6.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.21(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{ddd}, J=10.7,8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 1.81$ $(\mathrm{td}, J=10.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=6.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 129.1, 126.6, 62.7, 38.6, 18.4, -2.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 181.1019. Found 181.102.

[^11]

3-methyl-2-(Trimethylsilyl)but-3-en-1-ol (3c): A solution of copper(I) bromide dimethyl sulfide complex (1 equiv) in dimethyl sulfide (0.5 M soln) was charged in a round bottom flask with dry THF (0.1 M total solution volume) and cooled to $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. A solution of vinyl bromide Grignard in THF ($0.5 \mathrm{M}, 2$ equiv) was added dropwise to the suspension. The mixture was slowly warmed up to $-30^{\circ} \mathrm{C}$ and stirred for 10 min , then cooled back to $-78{ }^{\circ} \mathrm{C}$. (Trimethylsilyl)ethylene oxide (1 equiv) was added dropwise to the reaction. The mixture was then warmed up to room temperature and allowed to stir overnight. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ soln and stirred for 20 min before being filtered through Celite. The organic layer was washed with additional $\mathrm{NH}_{4} \mathrm{Cl}$ soln. The aqueous layer was extracted with diethyl ether, dried over magnesium sulfate and concentrated under reduced pressure. The crude material was purified by flash column chromatography on silica gel with 30% ether/pentanes solvent system to afford the desired allylsilane (5.0 mmol scale, 51% yield): IR (Germanium ATR): 3329, 3008, 2955, 2880, 1437, 1248, 1095, 1049, 862, $834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{td}, J=11.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=11.4,8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=11.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.03$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,110.2,61.8,43.0,23.8,-2.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{OSi}[\mathrm{M}+\mathrm{Na}]^{+}, 181.1019$. Found 181.1022.

6. Type B Indane Experimental Procedures and Characterization Data

Scheme S7: General method for synthesis of indanes with Type B allylsilanes

General Method F: Benzhydrol 1 (1 equiv) was dissolved in $\mathrm{MeNO}_{2}(0.1 \mathrm{M})$ and allowed to stir under N_{2} atmosphere. Alkyl silane 3 (1.5 equiv) was added, followed by a solution of triflimide in DCM ($10 \mathrm{~mol} \%$). The reaction was allowed to stir at room temperature for 15 hours before being quenched with saturated aqueous NaHCO_{3} solution. The biphasic solution was extracted with DCM and the combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired indane.

syn-1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-3vinylindane (9a major) and anti-1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-3-vinylindane (9a minor): Synthesized from 3,3',4,4'tetramethoxybenzhydrol ($\mathbf{1 5}, 0.291 \mathrm{mmol}$) and 2-(trimethylsilyl)but-3-en-1-ol (3a) via General Method F ($54 \mathrm{mg}, 2: 1$ d.r., 54% yield): IR (Germanium ATR): 3072, 2950, 1639, 1604, 1501, 1463, 1211, 1028, 915, $855 \mathrm{~cm}^{-1}$; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$6.84(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.83$ $(\mathrm{m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=16.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, \mathrm{J}=10.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=10.5,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dt}, \mathrm{J}=12.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (dt, J = 12.4, 10.2 Hz, 1H); Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,148.7,148.6,147.8$, $141.2,138.5,137.8,137.5,120.6,115.7,111.4,111.3,108.0,107.1,56.3,56.2,56.1,56.1,50.5,49.0$, 45.3; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J$ $=9.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=12.7,8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=12.8,7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,148.8,148.7,147.6,141.4,138.4,138.0,137.5,119.8,114.5,111.3$, $111.1,108.1,107.5,56.3,56.2,56.1,56.0,49.6,48.4,44.0$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 363.1567$. Found 363.158.

1-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-2-methyl-3-vinylindane (9b): Synthesized from 3, ${ }^{\prime}$,4,4'-tetramethoxybenzhydrol ($\mathbf{1 5}, 0.197 \mathrm{mmol}$) and (E)-2-(trimethylsilyl)pent-3-en-1-ol (3b) via General Method F (40 mg, 4:1 d.r., 57% yield): IR (Germanium ATR): 3016, 2953, 1639, 1503, 1463, 1212, $1027,913 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.0,10.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.21$ $(\mathrm{m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{tq}, J=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,148.7,148.5,147.9,140.1,138.0,137.4,136.2$, $121.2,117.2,111.5,111.2,108.0,107.1,58.3,56.9,56.3,56.2,56.1,56.0,53.7,15.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 372.2169$. Found 372.2179.

anti-3-(3,4-Dimethoxyphenyl)-5,6-dimethoxy-1-methyl-1-vinylindane (9c major) and syn-3-(3,4-

Dimethoxyphenyl)-5,6-dimethoxy-1-methyl-1vinylindane (9c minor): Synthesized from $3,3^{\prime}, 4,4^{\prime}$ tetramethoxybenzhydrol ($\mathbf{1 5}, 0.184 \mathrm{mmol}$) and 3-methyl-2-(trimethylsilyl)but-3-en-1-ol (3c) via General Method F ($42 \mathrm{mg}, 2: 1$ d.r., 55% yield): IR (Germanium ATR): 2997, 2953, 1634, 1499, 1463, 1208, 1027, 911 cm^{-1}; Major Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83$ $(\mathrm{s}, 1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=17.2,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=10.2,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=12.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=$ $12.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$; Major Isomer ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,148.7,147.7$, $146.9,145.9,140.9,138.1,137.5,120.5,111.5,111.3,111.1,108.0,106.4,56.2,56.2,56.1,56.1,52.4$, 49.6, 49.1, 26.3; Minor Isomer ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.73-$ $6.71(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=17.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11$ (dd, $J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=9.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ ($\mathrm{s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74$ (s, $3 \mathrm{H}), 2.38(\mathrm{dd}, J=12.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=12.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$; Minor Isomer ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 149.2,148.7,148.7,148.6,145.9,142.4,137.7,137.1,120.5,112.0,111.5$,
111.3, 108.0, 106.2, 56.2, 45.2, 56.1, 56.1, 52.3, 49.5, 48.5, 24.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 372.2169$. Found 372.2175.

7. Type C Allylsilanes and Tetralins Experimental Procedures and Characterization Data

2-Trimethylsilylmethyl-3-trimethylsiloxy-l-propene (4a): Followed same procedure as Trost and co-workers ${ }^{17}$ (60 mmol scale, $3.5 \mathrm{~g}, 26 \%$ yield after distillation): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.49$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.1,106.8,66.7,23.0$, $-0.3,-1.2$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{17}$

(Z)-2-Trimethylsilylmethyl-2-buten-1-ol (4b): Followed same procedure as Trost and co-workers ${ }^{18}$ (60 mmol scale, $3.5 \mathrm{~g}, 26 \%$ yield after distillation): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 5 \mathrm{H})$, 1.25 (brs, 1H), $0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.1,117.6,68.9,18.7,13.9,-0.5$. All spectroscopic data for this compound agrees with previously reported values. ${ }^{18}$

Scheme S8: General method for synthesis of tetralins with Type C allylsilanes
General Method G: Benzhydrol 1 (1 equiv) was dissolved in $\mathrm{MeNO}_{2}(0.1 \mathrm{M})$ and allowed to stir under N_{2} atmosphere. Alkyl silane 4 (1.5 equiv) was added, followed by a solution of triflimide in DCM ($10 \mathrm{~mol} \%$). The reaction was allowed to stir at room temperature for 24 hours before being quenched with saturated aqueous NaHCO_{3} solution. The biphasic solution was extracted with DCM and the combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with EtOAc in hexanes solvent systems afforded the desired tetralin.

4-(3,4-Dimethoxyphenyl)-3,4-dihydro-6,7-dimethoxy-2-methyl naphthalene (10a): Synthesized from $3,3^{\prime}, 4,4^{\prime}$-tetramethoxybenzhydrol (15, 0.251 mmol) and 2-trimethylsilylmethyl-3-trimethylsiloxy-l-propene (4a) via General Method G (40 mg, 46\% yield): IR (Germanium ATR): 2998, 2956, 2831, 1603, 1512, 1463, 1260, 1231, 1111, 1028, 994, 864, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), 3.87 (s, 3H), 3.82 $(\mathrm{s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $149.0,147.7,147.7,147.4,137.6,134.9,129.2,128.2,122.3,120.5,111.7,111.4,111.2,109.2,56.1$

[^12](2C), 56.0, 56.0, 44.1, 38.1, 23.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 341.1747$. Found 341.1751.

(\pm)-Cyclogalgravin (13): Synthesized from 3,3',4,4'-tetramethoxy benzhydrol ($\mathbf{1 5}, 0.259 \mathrm{mmol}$) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (4b) via General Method G (72 mg, 78% yield): IR (Germanium ATR): 2956, 1604, 1508, 1463, 1226, 1140, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H})$, $6.55(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{qd}, J=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8$, 147.7, 147.6, 147.4, 139.0, 138.3, 127.4, 127.2, 121.2, 119.7, 113.0, 111.1, 111.0, 109.0, 56.1 (2C), $55.9,55.9,51.0,42.1,22.3,18.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 355.1904$. Found 355.1913. All spectroscopic data for this compound agrees with previously reported values. ${ }^{19}$

trans-4-(4-Isopropoxy-3-methoxyphenyl)-3,4-dihydro-7-isopropoxy-6-methoxy-2,3-dimethylnaphthalene (10b): Synthesized from 4,4'-diisopropoxy-3,3'-dimethoxybenzhydrol (16, 0.112 mmol) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (4b) via General Method G ($23 \mathrm{mg}, 49 \%$ yield): IR (Germanium ATR): 2973, 2928, 1603, 1508, 1465, 1264, 1224, $1138,1112,1036,941,889 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.3,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{p}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{p}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.66(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{qd}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{dd}, J=6.1,3.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{dd}, J=6.1,1.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,149.2,145.9,145.7,138.7,138.7,128.2,127.3,121.3,119.8,115.5$, $113.8,113.7,111.9,71.7,71.4,56.2,56.0,51.1,42.0,22.4,22.4,22.3,18.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 411.253$. Found 411.2536.

(\pm)-4',5-O-Didemethylcyclogalgravin (17): trans-4-(4-Isopropoxy-3methoxy phenyl)-3,4-dihydro-7-isopropoxy-6-methoxy-2,3dimethylnaphthalene ($\mathbf{1 0 b}, 0.151 \mathrm{mmol}$) was dissolved in DCM $(12 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BCl}_{3}(1.0 \mathrm{M}$ in $\mathrm{DCM}, 0.453 \mathrm{mmol}, 0.453 \mu \mathrm{~L})$ was added and the reaction was allowed to stir for 50 min before being quenched with MeOH . The solution was washed with brine, and the aqueous layer was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with a $30 \% \mathrm{EtOAc}$ in hexanes solvent system afforded the desired product ($40 \mathrm{mg}, 81 \%$ yield): IR (Germanium ATR): 3511, 2962, 2841, 1611, 1507, 1463, $1449,1357,1265,1219,1092,1031,879 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{qd}, J=7.0$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3$,

[^13]$145.2,144.3,144.0,139.0,137.9,127.9,127.0,121.2,120.5,114.1,112.2,111.8,110.2,56.1,55.9$, 51.2, 42.3, 22.3, 18.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 349.141. Found 349.1428. All spectroscopic data for this compound agrees with previously reported values. ${ }^{20}$

4-(4-Isopropoxy-3-methoxyphenyl)-7-isopropoxy-6-methoxy-2,3dimethylnaphthalene (S6): trans-4-(4-Isopropoxy-3-methoxyphenyl)-3,4-dihydro-7-isopropoxy-6-methoxy-2,3-dimethylnaphthalene (10b, 0.083 mmol) was dissolved in dry DCM (6 mL) and DDQ ($0.08 \mathrm{mmol}, 18.1 \mathrm{mg}$) was added in one portion. The reaction was allowed to stir at room temperature for 30 min before being quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with DCM (3 x 3 mL) and the combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with a $30 \% \mathrm{EtOAc}$ in hexanes solvent system afforded the title compound ($31 \mathrm{mg}, 90 \%$ yield): IR (Germanium ATR): 2975, 2934, 1604, 1503, 1466, 1248, 1109, 1038, 955, $877 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.72-4.59(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,149.8$, $147.0,146.1,137.2,133.8,133.5,131.5,127.7,127.6,125.8,122.4,115.8,114.1,109.4,106.1,71.5$, $71.0,56.1,55.8,22.4,22.3,22.1,21.2,17.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 409.2373. Found 409.238.

Cinnamophilin A (18): 4-(4-Isopropoxy-3-methoxyphenyl)-7-isopropoxy-6-methoxy-2,3-dimethylnaphthalene (S6, 0.054 mmol) was dissolved in DCM (5 mL) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BCl}_{3}(1.0 \mathrm{M}$ in $\mathrm{DCM}, 0.162 \mathrm{mmol}, 162$ $\mu \mathrm{L}$) was added and the reaction was allowed to stir for 1 hour before being quenched with MeOH . Concentration under reduced pressure followed by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system afforded the desired product (16 mg , 90% yield): IR (Germanium ATR): 3419, 2923, 1609, 1050, 1457, 1417, 1249, 1201, 1033, $880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}$, $J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,146.6,145.0,144.5$, $137.3,133.9$, 133.0, 131.4, 128.2, 127.5, 125.9, 123.2, 114.5, 112.8, 108.7, 104.9, 56.2, 55.8, 21.2, 17.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 347.1254. Found 347.1263. All spectroscopic data for this compound agrees with previously reported values. ${ }^{21}$

[^14]
trans-4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3-dimethylnaphthalene (10c): Synthesized from 4,4'-diisopropoxy-3,3'-dimethoxy-5,5'-dimethoxybenzhydrol (19, 0.197 mmol) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (4b) via General Method G (63 $\mathrm{mg}, 68 \%$ yield): IR (Germanium ATR): 2971, 2933, 1635, 1589, 1487, $1464,1415,1334,1232,1127,937 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.44$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 4.40($ hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28 (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{qd}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.5,152.5,149.5,140.5,138.8,138.6,134.5,130.9,121.2,115.3,109.0,105.0,75.5,75.2$, $61.2,56.0,56.0,52.3,41.7,22.7,22.7,22.6,18.8$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}, 471.2741$. Found 471.2751.

($\mathbf{\pm}$)-Sacidumlignan B (20): trans-4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3-dimethylnaphthalene (10c, 0.066 mmol) was dissolved in DCM (4 mL) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BCl}_{3}(1.0 \mathrm{M}$ in $\mathrm{DCM}, 0.199$ $\mathrm{mmol}, 199 \mu \mathrm{~L}$) was added and the reaction was allowed to stir for 1 hour before being quenched with MeOH . The solution was washed with brine, and the aqueous layer was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with a $30 \% \mathrm{EtOAc}$ in hexanes solvent system afforded the desired product ($22 \mathrm{mg}, 87 \%$ yield): IR (Germanium ATR): 3439, 2958, 2934, 2839, 1612, 1517, 1456, 1320, 1215, 1114, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{qd}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,146.0,142.5,139.3,137.2,136.7$, 133.1, 126.9, 121.0, 115.0, 108.2, 104.5, 61.4, 56.3 (3C), 51.9, 42.1, 22.7, 18.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$, 409.1622. Found 409.1629. All spectroscopic data for this compound agrees with previously reported values. ${ }^{22}$

4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3dimethylnaphthalene (S7): trans-4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-isopropoxy-6,8-dimethoxy-2,3-dimethylnaphthalene ($\mathbf{1 0 c}, 0.029 \mathrm{mmol}$) was dissolved in dry DCM (4 mL) and the reaction was cooled to $0^{\circ} \mathrm{C}$. DDQ ($0.028 \mathrm{mmol}, 6.3 \mathrm{mg}$) was added in one portion. The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min before being quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with DCM (3 x 3 mL) and the combined organic layers were dried over MgSO_{4}. Concentration under reduced pressure followed by flash column chromatography on silica gel with a 15% EtOAc in hexanes solvent system afforded the title compound ($6 \mathrm{mg}, 44 \%$ yield): IR (Germanium ATR): 2972, 2033, 1577, 1462, 1399, 1336, 1257, 1236, 1124, 1089, 981, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{hept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, J=$

[^15]$6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,152.8,148.0,138.2,137.5,136.1,134.8,133.3$, $132.9,129.0$, 122.9, 120.8, 107.2, 101.5, 75.9, 75.2, 61.2, 56.3, 55.6, 29.9, 22.7, 22.6, 21.4, 17.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}, 491.2404$. Found 491.2411.

Sacidumlignan A (21): 4-(4-Isopropoxy-2,3-dimethoxyphenyl)-7-
 isopropoxy-6,8-dimethoxy-2,3-dimethylnaphthalene (S7, 0.011 mmol) was dissolved in DCM (2 mL) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BCl}_{3}(1.0 \mathrm{M}$ in DCM, 0.011 $\mathrm{mmol}, 11 \mu \mathrm{~L}$) was added and the reaction was allowed to stir for 30 min before being quenched with MeOH . Concentration under reduced pressure followed by flash column chromatography on silica gel with a 30% EtOAc in hexanes solvent system afforded the desired product ($4 \mathrm{mg}, 98 \%$ yield): IR (Germanium ATR): 3490, 3437, 3001, 2935, 1609, 1518, 1463, 1414, 1336, 1286, 1209, 1114, 1083, 913, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.82(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,147.3$, $139.5,137.7,136.5,133.8,133.5,132.0,132.0,126.8,122.8,120.2,106.8,101.0,61.2,56.5,56.1$, 21.5, 17.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}, 407.1465$. Found 407.1471. All spectroscopic data for this compound agrees with previously reported values. ${ }^{22}$

Pycnanthuligene C (23): A mixture of cis- and trans-dihydronaphthalene isomers (10d) was synthesized from 3,4-methylenedioxy-4'-methoxybenzhydrol ($\mathbf{2 2}, 0.173 \mathrm{mmol}$) and (Z)-2-trimethylsilylmethyl-2-buten-1-ol (4b) via General Method G. The crude reaction mixture was then re-dissolved in dry DCM (10 $\mathrm{mL})$ and DDQ $(0.200 \mathrm{mmol}, 45 \mathrm{mg})$ was added in one portion. The reaction was allowed to stir at room temperature for 30 min before being quenched with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with a $10 \% \mathrm{EtOAc}$ in hexanes solvent system afforded the title compound ($34 \mathrm{mg}, 73 \%$ yield over two steps): IR (Germanium ATR): 2994, 2898, 1610, 1515, 1497, 1461, 1285, 1236, 1175, 1039, 1039, $900 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ (s, 1H), 7.15 - 7.12 (m, 2H), 7.06 - 7.01 (m, 3H), 6.64 (s, 1H), 5.94 $(\mathrm{s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7$, 146.9, 146.7, $137.7,133.8,133.1,132.0,131.3,129.0,128.9,126.6,114.0,103.2,103.2,100.9,55.5,21.1,17.6$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 307.1329$. Found 307.133. All spectroscopic data for this compound agrees with previously reported values. ${ }^{23}$

[^16]
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

(wdd) H

149.04
<148.46
-136.48
-119.09
110.79
<109.65
-79.46

orn

-148.73
~ 147.67
-

.

-115.75
-113.88
-113.88

$\begin{array}{r}153.23 \\ 150.40 \\ -145.25 \\ -141.37 \\ 141.22 \\ -136.40 \\ \\ \mathcal{L}_{128.60}^{128.52} \\ -126.46 \\ \\ -103.94 \\ \\ \hline\end{array}$

Abstract

$\begin{array}{lllllllllll}10 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 11 \\ \text { (ppm) }\end{array}$
(aynand and

$10 \quad 100$
-160.45
-157.28

-148.14
-145.37
-131.64
-128.55
-128.55
-126.37
-101.00 -97.71
©

-168.39
$<\begin{array}{r}148.77 \\ 148.43\end{array}$
$\checkmark 144.80$
-141.81
136.67
136.11
-128.98
-120.34
-108.01
-105.15
8
8
8
8
8

$\begin{array}{r}-56.21 \\ -56.20 \\ 53.43 \\ -48.52 \\ -43.27 \\ \\ \\ <-29.23 \\ \hline 29.11\end{array}$

7
\exists

148.91
$<$
$\quad 148.51$
$<$
$<$
$<\begin{aligned} & 144.88 \\ & 144.76\end{aligned}$
136.08
-131.67
-130.20
-120.12
-107.88
-105.16

-161.39
-155.11
-149.29
-148.53
-144.43
-133.19
-128.92

$$
\begin{array}{r}
123.48 \\
\mathcal{L}_{122.64} \\
{ }^{120.57}
\end{array}
$$

~ 111.15
-107.83
-105.45
-102.46
$<_{56.22}^{56.25}$

-48.30
$\mathcal{f}_{-42.47}^{43.50}$
29.40
29.35

-159.89
148.77
$\mathcal{L}^{148.41}$
-147.38
144.86
147.38
-144.86
-136.47
-129.54
-120.87
~ 114.15
-111.64
111.64
-108.12
-105.14

等 $=$

\qquad $\begin{array}{r}111.29 \\ \\ \hline\end{array}$
$\sim_{108.10}$
~ 105.17

$\underset{+}{\infty}$

148.35
148.02
~ 144.97
-136.07
-107.47
-105.45
$\quad \begin{array}{r}56.35 \\ 56.14\end{array}$

-47.55
$\int_{43.45}^{42.64}$
-40.29
$\begin{array}{r}32.28 \\ 30.05 \\ 29.51 \\ = \\ 27.78 \\ -27.17\end{array}$

оє	ob	os	09	02	${ }^{08}$	06		ои	021	O\&	Obr	osı	091	021	081	61	

105.87
<105.46
$-77.16 \mathrm{CDCl} 3$

$\quad 148.69$
148.46
$<$
$<$
143.03

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	$1\left(\begin{array}{l} 100 \\ \mathrm{ppm}) \end{array}\right.$	90	80	70	60	50	40	30	20

107.27
106.53
105.90
105.68

109.54
-107.61
<105.75
-105.49

$<\begin{array}{r}105.49\end{array}$

149.04
$\leftarrow \begin{array}{r}148.62 \\ 148.20 \\ 147.75 \\ 143.29 \\ < \\ < \\ 137.14 \\ 137.09\end{array}$
~ 105.69

149.10
-148.96
-148.81
148.74
147.72
-141.89
-138.73
-137.24
-128.27
<-126.56
126.00
-120.50
-120.50
111.56
<111.35
-107.84
$\mathbf{-}_{107.04}$

02	${ }_{0}$	ot	os	09	02	$\left.{ }_{88}^{(\mu 0)}\right)^{4}{ }_{06}$	001	ои	021	$0 ¢ 1$	0xt	ost	091	021

129.11
128.99
128.99
-125.76

1

$\begin{array}{llll}0 \varepsilon & \text { ob } & 09 & 09\end{array}$

-120.54
$\left[\begin{array}{l}111.98 \\ -11.49 \\ -11.46 \\ 111.33 \\ -111.30 \\ 111.05 \\ -108.02 \\ 107.95 \\ 106.41 \\ 106.23\end{array}\right.$
(2)

77.46.00013

\qquad
Frimen

N

$\stackrel{\Omega}{\circ}$
wnp

$<$
147.31
147.26
139.52
$\int_{137.67}^{136.48}$
-136.76
$L_{133.51}$
-131.99
131.99
-126.76
-122.75
-120.15
-106.82
-100.99

\qquad
定
$-$
-

[^0]: ${ }^{1}$ A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometal. 1996, 15, 1518-1520.
 ${ }^{2}$ D. D. Perrin, W. L. Armarego, Purification of Laboratory Chemicals; 3rd Ed., Pergamon Press, Oxford. 1988.

[^1]: ${ }^{3}$ a) R. P. Tanpure, A. R. Harkrider, T. E. Strecker, E. Hamel, M. L. Trawick, K. G. Pinney, Bioorg. Med. Chem. 2009, 17, 6993-7001; b) A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 159-162.

[^2]: ${ }^{4}$ G. W. Muller, F. Payvandi, L. H. Zhang, M. J. Robarge, R. Chen, H.-W. Man, A. L. Ruchelman (Celgene Corp), US2005107339 A1, 2005.
 ${ }^{5}$ B. Lantaño, J. M. Aguirre, L. Finkielsztein, E. N. Alesso, E. Brunet, G. Y. Moltrasio, Synth. Commun. 2004, 34, 625-641.
 ${ }^{6}$ M. Kuriyama, N. Ishiyama, R. Shimazawa, O. Onomura, Tetrahedron 2010, 66, 6814-6819.

[^3]: ${ }^{7}$ A. S. Kumar, S. Ghosh, K. Bhima, G. N. Mehta, J. Chem. Res. 2009, 2009, 482-484.

[^4]: ${ }^{8}$ Y. Peng, Z.-B. Luo, J.-J. Zhang, L. Luo, Y.-W. Wang, Org. Biomol. Chem. 2013, 11, 7574-7586.

[^5]: ${ }^{9}$ S. A. Zacchino, S. N. López, G. D. Pezzenati, R. L. Furlán, C. B. Santecchia, L. Muñoz, F. A. Giannini, A. M. Rodríguez, R. D. Enriz, J. Nat. Prod. 1999, 62, 1353-1357.

[^6]: ${ }^{10}$ C. Lambertucci, M. Sundukova, D. D. Kachare, D. S. Panmand, D. Dal Ben, M. Buccioni, G. Marucci, A. Marchenkova, A. Thomas, A. Nistri, G. Cristalli, R. Volpini, Eur. J. Med. Chem. 2013, 65, 41-50.

[^7]: ${ }^{11}$ K. Zhu, M. P. Shaver, S. P. Thomas, Eur. J. Org. Chem. 2015, 2015, 2119-2123.

[^8]: ${ }^{12}$ C. Qin, H. Wu, J. Cheng, X. a. Chen, M. Liu, W. Zhang, W. Su, J. Ding, J. Org. Chem. 2007, 72, 4102-4107.
 ${ }^{13}$ D. Ferraris, B. Young, C. Cox, T. Dudding, W. J. Drury, L. Ryzhkov, A. E. Taggi, T. Lectka, J. Am. Chem. Soc. 2002, 124, 67-77.

[^9]: ${ }^{14}$ H. Zhang, W. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2013, 52, 2529-2533.

[^10]: ${ }^{15}$ Croudace, M. C.; Schore, N. E., J. Org. Chem. 1981, 46, 5357-5363.

[^11]: ${ }^{16}$ Jankowski, P.; Masnyk, M.; Wicha, J., Synth. Commun. 1989, 19, 873-880.

[^12]: ${ }^{17}$ B. M. Trost, P. Renaut, J. Am. Chem. Soc. 1982, 104, 6668-6672.
 ${ }^{18}$ B. M. Trost, M. C. Matelich, Synthesis 1992, 151-156.

[^13]: ${ }^{19}$ a) Fonseca, S. F.; Nielsen, L. T.; Rúveda, E. A. Phytochemistry 1979, 18, 1703-1708; b) Reddel, J. C. T.; Lutz, K. E.; Diagne, A. B.; Thomson, R. J., Angew. Chem. Int. Ed. 2014, 53, 1395-1398

[^14]: ${ }^{20}$ Messiano, G. B.; Wijeratne, E. M. K.; Lopes, L. M. X.; Gunatilaka, A. A. L., J. Nat. Prod. 2010, 73, 1933-1937
 ${ }^{21}$ a) Rangkaew, N.; Suttisri, R.; Moriyasu, M.; Kawanishi, K., FitoterapiaI, 2009, 80, 377-379; b) Chen, C.-Y.; Yeh, Y.-T.; Hsui, Y.-R. Chem. Nat. Compd. 2011, 47, 519

[^15]: ${ }^{22}$ Rout, J. K.; Ramana, C. V. J. Org. Chem. 2012, 77, 1566.

[^16]: ${ }^{23}$ E. C. N. Nono, P. Mkounga, V. Kuete, K. Marat, P. G. Hultin, A. E. Nkengfack, J. Nat. Prod. 2010, 73, 213-216.

