SUPPORTING INFORMATION

Cobalt-Catalyzed Carbonylation of Unactivated C(sp³)-H bonds

Nagaraju Barsu, Bolli Shyam Kumar, Basker Sundararaju

Fine chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur. India.

Email: <u>basker@iitk.ac.in</u>

Contents

1	General Information	S2
2	General procedure for preparation of starting materials	S3-S4
3	Analytical Data of Starting Materials (1g, 1h, 1i, 1j, 1m and 1q,)	S5-S6
4	General Procedure for Cobalt-Catalyzed Carbonylation of Aliphatic Amides	S6-S14
5	H/D exchange experiment	\$15-\$16
6	K_H/K_D and Control Experiments	S16-S19
7	Gram scale reaction	S19-S20
8	Derivatization	S20-S21
9	UV-Vis spectroscopy of cobalt complexes	S21-S22
10	Crystallographic Summary	S22-S23

1. General information: Unless stated otherwise, all reactions were carried out under Ar in an oven-dried glassware. Chlorobenzene and α , α , α -trifluorotoluene were purchased from commercial provider namely Spectrochem and Alfa aesar. Dichloromethane (CaH_2), methanol (Mg) were purified by distillation over the indicated drying agents under Argon. Flash Column Chromatography was conducted on silica gel (Merck, 100-200 mesh). ¹H and ¹³C NMR were recorded on JEOL (400 and 500 MHz) using CDCl₃ and DMSO- d_6 as a solvent. Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals used as references and the chemicals shifts converted to TMS scale (CDCl₃: δ C = 77 ppm; residual CHCl₃ in CDCl₃: δ H = 7.26 ppm, DMSO- d_6 : ¹H NMR shift for residual DMSO- d_6 at 2.5 ppm and ¹³C NMR shift at 39.52 ppm). The abbreviations used for ¹H NMR spectra to indicate the signal multiplicity are s (singlet); brs (broad singlet), d (doublet), t (triplet), g (quartet), quint (quintet), sext (sextet), sept (septet) and m (multiplet). ESI-MS was recorded on a Waters-Micromass Quattro Micro triplequadrupole mass spectrometer. GC-MS was used to analyse our samples on a Shimadzu GC 2010 plus and MS 2010SE system. All the reactions were monitored by analytical thin layer chromatography (TLC) using commercial aluminium sheets precoated with silica gel. Unless stated otherwise, all commercially available compounds (Alfa, Aldrich) were used as received.

2. General Procedure (A) for the Preparation of Starting Materials:

To an oven dried 100 mL flask connected with a $CaCl_2$ guard tube charged with carboxylic acid (1 eq) in 1M of MeOH. Thionyl chloride (1.2 eq) was then added dropwise to the suspension and stirring continued at the same temparature (r.t.) overnight. After completion of reaction, solvent was evaporated. The crude material was redissolved in EtOAc, washed with sat.NaHCO₃ (3 x 30 ml) and brine (30 mL). The separated organic layers was dried over anhydrous Na₂SO₄, and then evapourated in vacuo to provide the corresponding carboxylate ester as a colourless oil.

A solution of LDA (10 mmol) in THF (30 mL) was prepared from diisopropylamine (1.5 mL, 10.7 mmol) and 1.6 M *n*-BuLi in hexane (4.0 mL, 10 mmol) at -78 °C. Carboxylate ester (10 mmol) in THF (5 ml) was added dropwise to this LDA solution at -78 °C and the mixture was stirred at the same temperature for 1 h. Dropwise addition of alkyl halide (15 mmol) to this solution was performed carefully at - 78 °C. After the addition, the mixture was slowly warmed to room temperature and stirring continued at the same temperature overnight. The reaction mixture was quenched with water at 0 °C, extracted with Et_2O (15 mL x 3). The combined organic layers were washed with brine, dried over Na_2SO_4 , and then evaporated in vaccum to give the crude ester.

To the ester procured from the previous step, solution of NaOH (2 M, 8.0 mL) and methanol (10 mL) was added. The mixture was stirred overnight at 60 °C. After removal of methanol in vacuo, the pH of the mixture was adjusted to 2 with 3.0 M HCl. The mixture was then saturated with NaCl and extracted with Et_2O (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and then evaporated in vacuo to give the crude carboxylic acid, which was used directly for the next step without any further purification.

Oxalyl chloride (1.75 mL, 20 mmol) was added slowly to a stirred solution of the carboxylic acid in CH_2Cl_2 (20 mL) and DMF (0.1 mL) at 0 °C. The obtained mixture was stirred for 1 h at 0 °C and another 16 h at room temperature. After its evaporation in vacuo, residue was dissolved in toluene (5 mL), evaporated in vacuo twice, to give the crude acid chloride, which was used directly for the next step without any purification.

The acid chloride was added dropwise to a solution of 8-aminoquinoline (1.01 g, 7.0 mmol) and Et_3N (1.7 mL, 12 mmol) in CH_2Cl_2 (12 mL), which was stirred overnight at room temperature. The reaction was quenched with water after dilution with CH_2Cl_2 (10 mL), washed successively with saturated aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:100 v/v), to afford corresponding 8-aminoquinolinyl amides.¹

Compound **1** is prepared from reported literature²

¹a) Wu, X.; Zhao, Y.; and Ge. H. *J. Am. Chem. Soc.* **2015**, *137*, 4924. b) Wu, X.-S.; Yang, K.; Zhao, Y.; Sun, H.; Li, G.-G.; Ge, H. Nat. Commun. **2015**, *6*, 6462-6471.

²a) Maity, S.; Agasti, S.; Earsad, A.M.; Hazra, A.; and Maiti, D. Chem. Eur. J. **2015**, 21, 11320 – 11324.

3. Analytical Data of Starting Materials (1g, 1h, 1i, 1j, 1m and 1q,)

2-cyclopentyl-2-methyl-N-(quinolin-8-yl)propanamide (1g): Compound 1g, was prepared from cyclopentyl iodide, 8-aminoquinoline and methyl isobutyrate by using general

HN

procedure **A** and purified by flash column chromatography (5% EtOAc/Hexane) in 75% yield as light brown liquid. R_f Value = 0.3. ¹**H NMR** (400 MHz, CDCl₃): δ 10.26 (s, 1H), 8.81 (dt, J = 5.9, 1.7 Hz, 2H), 8.13

(dd, *J* = 8.1, 1.8 Hz, 1H), 7.54-7.41 (m, 3H), 2.36-2.28 (m 1H), 1.76-1.68 (m, 2H), 1.61-1.51 (m, 4H), 1.43-1.39 (m, 2H), 1.37 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃): δ 176.8, 148.1, 138.7, 136.2, 134.6, 127.8, 127.3, 121.4, 121.0, 116.0, 48.5, 45.5, 27.4, 25.4, 22.4.

HRMS: $[M+H]^+$ calculated for $C_{18}H_{23}N_2O$: 283.1810, found 283.1817.

2,2,4-trimethyl-N-(quinolin-8-yl)pentanamide (1h): Compound **1h**, was prepared from 1bromo-2-methylpropane, 8-amino quinoline and methyl isobutyrate by using general procedure **A** and purified by flash column chromatography (4% EtOAc/Hexane) in 68% yield as colourless liquid. R_f Value = 0.3.

¹**H NMR** (400 MHz, CDCl₃): δ 10.27 (s, 1H), 8.82-8.78 (m, 2H), 8.14 (m, 1H), 7.51 (dd, *J* = 15.7, 8.1 Hz, 2H), 7.46-7.42 (m, 1H), 1.82-1.69 (m, 1H), 1.70 (d, *J* = 6.1 Hz, 2H), 1.41 (s, 6H), 0.90 (d *J* = 6.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 148.1, 138.7, 136.2, 134.6, 127.8, 127.4, 121.4, 121.1, 116.1, 50.2, 43.4, 26.4, 25.2, 23.9.

HRMS: $[M+H]^+$ calculated for $C_{17}H_{23}N_2O$: 271.1810, found 271.1811.

2,2-dimethyl-N-(quinolin-8-yl)pentanamide (1i): Compound **1i**, was prepared from bromo propane, 8 amino quinoline and methyl isobutyrate by using general procedure **A** and

purified by flash column chromatography (4% EtOAc/Hexane) in 72% yield as colourless liquid. R_f Value = 0.3.

¹**H NMR** (400 MHz, CDCl₃): δ 10.25 (s, 1H), 8.81 (d, J = 1.3 Hz, 1H), 8.80 (dd, J = 3.0, 1.5 Hz, 1H), 8.14 (dd, J = 8.2, 1.4 Hz, 1H), 7.54-7.46 (m, 2H), 8.46 (dd, J = 8.4, 4.4 Hz, 1H), 1.71-1.67 (m, 2H), 1.40 (s, 6H), 1.38-1.32 (m, 2H), 0.92 (t, J = 14.8, 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.7, 148.1, 138.7, 136.2, 134.5, 127.8, 127.3, 121.4, 121.1, 116.0, 43.8, 43.7, 25.5, 18.2, 14.5.

HRMS: $[M+H]^+$ calculated for $C_{16}H_{21}N_2O$: 257.1654, found 257.1653.

2,2-dimethyl-N-(quinolin-8-yl)hexanamide (1j): Compound **1***j*, was prepared from bromo butane, 8-amino quinoline and methyl isobutyrate by using above procedure **A** and purified by flash column chromatography (4% EtOAc/Hexane) in 70% yield as colourless liquid. R_f Value = 0.3.

¹**H NMR** (400 MHz, CDCl₃): δ 10.26 (s, 1H), 8.81 (m, 2H), 8.12 (m, 1H), 7.54-7.40 (m, 3H), 1.71 (m, 2H), 1.40 (s, 6H), 1.35-1.30 (m, 4H), 0.88 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.7, 148.1, 138.6, 136.1, 134.5, 127.8, 127.3, 121.4, 121.1, 116.0, 43.6, 41.2, 27.0, 25.5, 23.1, 13.9.

HRMS: $[M+H]^+$ calculated for $C_{16}H_{21}N_2O$: 271.1810, found 271.1818.

3-(4-bromophenyl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (1m): Compound **1m**, was prepared from p-bromo benzyl bromide, 8-aminoquinoline and methyl isobutyrate by using general procedure **A** and purified by flash column chromatography (4% EtOAc/Hexane) in 74% yield as colourless liquid. R_f Value = 0.35. ¹H NMR (400 MHz, CDCl₃): δ 10.13 (s, 1H), 8.77 (m, 2H), 8.13 (d, *J* = 8.2 Hz, 1H), 7.53 (m, 2H), 7.41 (m, 1H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.06 (m, 2H), 2.98 (s, 2H), 1.41 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.6, 148.2, 138.6, 136.8, 136.2, 134.1, 131.8, 131.07, 131.01, 127.8, 127.3, 121.5, 120.3, 116.2, 46.2, 44.8, 25.2.

HRMS: [M+H]⁺ calculated for C₂₀H₂₀BrN₂O: 383.0759, found 383.0752.

N-(quinolin-8-yl)cyclopropanecarboxamide (1t): Compound 1t, was prepared from

Br

cyclopropane carboxylic acid and 8-aminoquinoline by using general procedure **A** and purified by flash column chromatography (8% EtOAc/Hexane) in 85% yield as light yellow solid. R_f Value = 0.25.

¹**H NMR** (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.80 (dd, J = 4.2, 1.5 Hz, 1H), 8.74 (dd, J = 7.2, 1.5 Hz, 1H), 8.14 (dd, J = 8.3, 1.8 Hz, 1H), 7.53-7.42 (m, 3H), 1.81 (ddd, J = 15.5, 9.4, 4.6 Hz, 1H), 1.15 (m, 2H), 0.91 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 172.2, 148.0, 138.1, 136.3, 134.6, 127.8, 127.4, 121.5, 121.1, 116.3, 16.2, 8.12.

HRMS: $[M+H]^+$ calculated for $C_{17}H_{23}N_2O$: 213.1028, found 213.1020.

4. General Procedure (B) for Cobalt-Catalyzed Carbonylation of Aliphatic Amides

To an oven dried Schlenk tube associate a teflon coated magnetic stir bar was vaccumized and charged with argon. To this added Co(acac)₂ (7.71mg, 0.03mmol, 10 mol%), PhCO₂Na (8.64 mg, 0.06 mmol, 20 mol%), Ag₂CO₃ (247mg, 0.9 mmol, 3 eq), and substituted N-(quinolin-8-yl)pivalamide in 0.75 mL of α, α, α -trifluorotoluene. The resulting mixture was vaccumized quickly and purged with carbon monoxide (either by using "CO" baloon or direct "CO" gas connected to schlenk tube) and placed in preheated oil bath for 24 h. The crude mixture was evaporated to dryness and purified by flash column chromatography using silica gel and petroleum ether / ethyl acetate (50:50 v/v) as the eluent to afford succinamide **2** as white solid in 95% yield (72 .5 mg).

4a. Pictorial representation of typical Schlenk tube used for carbonylation

3,3-dimethyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2a): Compound (**2a**) was prepared according to the general procedure **B** from **1a** (68.4 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (50% EtOAc/Hexane) in 95% (72.5 mg) yield as a white solid. R_f Value = 0.2.

¹**H NMR** (400 MHz, CDCl₃): δ 8.84 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.88 (dd, J = 7.5, 2.0 Hz, 1H), 7.59 (m, 2H), 7.38 (dd, J = 8.2, 4.1 Hz, 1H), 2.94 (d, J = 18.0 Hz, 1H), 2.81 (d, J = 18.0 Hz, 1H), 1.60 (s, 3H), 1.49 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 182.8, 175.5, 150.8, 143.4, 135.9, 130.1, 129.4, 129.2, 129.0, 125.8, 121.7, 44.0, 40.8, 26.0, 25.2.

HRMS: $[M+H]^+$ calculated for $C_{15}H_{14}N_2O_2$: 254.1134, found 254.1139.

6-(quinolin-8-yl)-6-azaspiro[3.4]octane-5,7-dione (2b): Compound (2b) was prepared according to the general procedure B from 1b (72 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 87% (70 mg) yield as pale yellow liquid. R_f Value = 0.2.

¹³**C NMR** (100 MHz, CDCl₃): δ 181.6, 175.6, 150.8, 143.4, 136.1, 130.1, 129.5, 129.4, 129.1, 126.0, 121.8, 44.9, 43.2, 32.0, 31.5, 16.3.

HRMS: $[M+H]^+$ calculated for $C_{16}H_{15}N_2O_2$: 267.1134, found 267.1130.

2-(quinolin-8-yl)-2-azaspiro[4.4]nonane-1,3-dione (2c): Compound (2c) was prepared according to the general procedure **B** from 1c (76.2 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 71% (60 mg) yield as white solid. R_f Value = 0.2. ¹H NMR (400 MHz, CDCl₃): δ 8.86 (dd, J = 4.2, 1.7 Hz, 1H), 8.18 (dd, J = 8.1, 1.5 Hz, 1H), 7.93-7.89 (m, 1H), 7.64-7.62 (m, 2H), 7.44-7.41 (m, 1H), 3.00 (d,

1.5 Hz, 1H), 7.93-7.89 (m, 1H), 7.64-7.62 (m, 2H), 7.44-7.41 (m, 1H), 3.00 (d, J = 18.0 Hz, 1H), 2.85 (d, J = 18.0 Hz, 1H), 2.45-2.29 (m, 2H), 2.01-1.97 (m, 3H), 1.83-1.80 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 182.9, 176.0, 150.9, 143.5, 136.0, 130.4, 129.5, 129.3, 129.1, 126.0, 121.8, 51.0, 44.2, 38.9, 38.1, 25.4, 25.3.

HRMS: $[M+H]^+$ calculated for $C_{17}H_{17}N_2O_2$: 281.1290, found 281.1292.

2-(quinolin-8-yl)-2-azaspiro[4.5]decane-1,3-dione (2d): Compound (2d) was prepared according to the general procedure B from 1d (80.4 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 67% (59.6 mg) yield as white solid. R_f Value = 0.2.

¹**H NMR** (500 MHz, CDCl₃): δ 8.84 (m, 1H), 8.16 (m, 1H), 7.91-7.88 (q, *J* = 8.1, 3.3 Hz, 1H), 7.63-7.59 (m, 2H), 7.41-7.39 (m, 1H), 2.98 (d, *J* = 18.1Hz, 1H), 2.80 (d, *J* = 18.0 Hz, 1H), 2.02-1.97 (m, 3H), 1.88-1.86 (m, 2H), 1.75-1.73 (m, 2H), 1.44-1.39 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 182.6, 176.0, 150.8, 143.5, 135.9, 130.2, 129.5, 129.3, 129.1, 125.9, 121.8, 45.7, 40. 6, 33.6, 33.4, 25.0, 22.2, 22.0.

HRMS: $[M+H]^+$ calculated for $C_{18}H_{18}N_2O_2$: 295.1447, found 295.1446.

3-benzyl-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2e): Compound (2e) was

0

prepared according to the general procedure **B** from **1e** (91.2 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (30% EtOAc/Hexane) in 71% (70.4 mg) yield as white solid. R_f Value = 0.2. Characteristic data for **2e** was in accordance with the reported literature^{1a}

¹**H NMR** (400 MHz, $CDCl_{3}$, a mixture of atropisomers in ratio 2.6:1.0, the minor one is marked with an *): δ 8.86 (dd, J = 4.1, 1.3 Hz, 1H), 8.15 (dd, J = 8.2, 1.3 Hz, 1H), 7.88-7.86 (m, 1H), 7.63-7.53 (m, 1H), 7.43-7.28 (m, 6H), 7.17-7.15 (m, 1H), 3.36 (d, J = 13.5 Hz, 1H), 3.04 (d, J = 18.3 Hz, 1H), 2.85 (d, J = 13.5 Hz, 1H), 2.81 (d, J = 18.1 Hz, 1H), 1.71 (s, 3H); 8.80 (dd, J = 4.0, 1.6

Hz, 1H)*, 8.18 (dd, J = 8.4, 1.6 Hz, 1H)*, 7.93-7.90 (m, 1H)*, 7.63-7.53 (m, 1H)*, 7.43-7.28 (m, 6H)*, 7.17-7.15 (m, 1H)*, 3.42 (d, J = 13.5 Hz, 1H)*, 3.20 (d, J = 18.4 Hz, 1H)*, 2.85 (d, J = 13.5 Hz, 1H)*, 2.57 (d, J = 18.0 Hz, 1H)*, 1.53 (s, 3H)*.

¹³**C NMR** (100 MHz, CDCl₃): δ 181.8, 175.3, 150.9, 143.48, 136.2, 136.0, 130.5, 130.0, 129.52, 129.1, 129.01, 128.6, 127.3, 125.94, 121.82, 46.02, 43.9, 40.1, 25.5; 182.2*, 175.5*, 150.7*, 143.44*, 136.3*, 135.9*, 130.1*, 129.9*, 129.59*, 129.2*, 129.07*, 128.3*, 126.8*, 125.92*, 121.86*, 45.6*, 43.0*, 40.5*, 24.6*.

3-(4-methoxybenzyl)-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2f): Compound (2f)

was prepared according to the general procedure **B** from **1f** (100.2 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 71% (77 mg) yield as white solid. R_f Value = 0.2.

¹**H NMR** (400 MHz, CDCl₃ a mixture of atropisomers in ratio 2.5:1.0, the minor one is marked with an *): δ 8.86 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.18 (m, 1H), 7.88 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.58-7.54 (m, 1H), 7.44-7.40 (m, 1H), 7.20-7.17 (m, 3H), 6.91-6.89 (m, 2H), 3.83 (s, 3H), 3.29 (d, *J* = 13.4 Hz, 1H), 3.01 (d, *J* = 18.1 Hz, 1H), 2.83-2.74 (m, 2H), 1.68 (s, 3H); 8.79 (dd, *J* = 6.7, 2.9 Hz, 1H)*, 8.18 (m, 1H)*, 7.92 (dd, J = 6.7, 2.9 Hz, 1H)*, 7.65-7.60 (m, 1H)*, 7.44-7.40 (m, 1H)*, 7.23-7.21 (m, 3H)*, 6.87-6.85 (m, 2H)*, 3.82 (s, 3H)*, 3.34 (d, *J* = 13.7 Hz, 1H)*, 3.17 (d, *J* = 18.1 Hz, 1H)*, 2.97 (d, *J* = 13.9 Hz, 1H)*, 2.55 (d, *J* = 15.0 (m, 2H)*

= 18.0 Hz, 1H)*, 1.50 (s, 3H)*.

¹³C NMR (125 MHz, CDCl₃): δ 182.0, 175.5, 158.8, 150.9, 143.3, 136.2, 131.0, 129.9, 129.5, 129.4, 129.0, 128.3, 126.09, 121.9, 114.0, 55.25, 46.2, 43.2, 40.5, 25.41; 182.3*, 175.7*, 158.5*, 150.7*, 143.4*, 136.0*, 131.5*, 130.1*, 129.6*, 129.3*, 129.1*, 128.4*, 126.02*, 121.8*, 113.7*, 55.20*, 45.8*, 42.3*, 40.1*, 24.6*.

HRMS: $[M+H]^+$ calculated for $C_{22}H_{21}N_2O_3$: 361.1552, found 361.1552.

3-cyclopentyl-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2g): Compound (2g) was

prepared according to the general procedure **B** from **1g** (84.6 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 72% (67 mg) yield as pale yellow liquid. R_f Value = 0.2. ¹H NMR (400 MHz, CDCl₃, a mixture of atropisomers in ratio 1.3:1.0, the

minor one is marked with an *): δ 8.86 (ddd, J = 12.7, 8.5, 5.4 Hz, 1H), 8.19-8.16 (m, 1H), 7.92-7.89 (m, 1H), 7.64-7.54 (m, 2H), 7.42 (dt, J = 12.8, 7.4 Hz, 1H), 2.86 (d, J = 18.2 Hz, 1H), 2.75 (d, J = 18.2 Hz, 1H), 2.49-2.35 (m, 1H), 1.97-1.81 (m, 2H), 1.70-1.64 (m, 4H), 1.60 (s, 3H), 1.43-1.34 (m, 2H);

8.86 (ddd, J = 12.7, 8.5, 5.4 Hz, 1H)*, 8.19-8.16 (m, 1H)*, 7.92-7.89 (m, 1H)*, 7.64-7.54 (m, 2H)*, 7.42 (dt, J = 12.8, 7.4 Hz, 1H)*, 3.00 (d, J = 18.4 Hz, 1H)*, 2.60 (d, J = 18.0 Hz, 1H)*, 2.49-2.35 (m, 1H)*, 1.97-1.81 (m, 2H)*, 1.70-1.64 (m, 4H)*, 1.60 (s, 3H)*, 1.43-1.34 (m, 2H)*. ¹³**C** NMR (100 MHz, CDCl₃): δ 182.54, 176.3, 151.0, 143.59, 136.0, 130.3, 129.6, 129.3, 129.1, 126.0, 121.9, 46.98, 46.4, 39.0, 27.8, 27.6, 25.5, 25.3, 24.4; 182.55*, 176.1*, 150.7*, 143.57*, 135.9*, 130.2*, 129.5*, 129.2*, 129.1*, 125.9*, 121.8*, 46.99*, 46.1*, 39.4*, 27.9*, 27.7*, 25.9*, 25.6*, 24.3*.

HRMS: $[M+H]^+$ calculated for $C_{19}H_{21}N_2O_2$: 309.1603, found 309.1608.

3-isobutyl-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2h): Compound (2h) was prepared according to the general procedure **B** from **1h** (81 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 75% (67 mg) yield as pale yellow liquid. R_f Value = 0.2. **1H NMR** (500 MHz, CDCl₃, a mixture of atropisomers in ratio 1.2:1.0, the

¹**H NMR** (500 MHz, CDCl₃, a mixture of atropisomers in ratio 1.2:1.0, the minor one is marked with an *): δ 8.86-8.84 (m, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.90 (m, 1H), 7.61 (m, 2H), 7.41 (dd, *J* = 8.0, 3.9 Hz, 1H), 3.01 (d, *J* = 18.2 Hz, 1H), 2.83 (d, *J* = 18.2 Hz, 1H), 1.91-1.87 (m, 1H), 1.80-1.77 (m, 2H),

1.60 (s, 3H), 1.07-1.00 (m, 6H); 8.86-8.84 (m, 1H)*, 8.17 (d, *J* = 8.0 Hz, 1H)*, 7.90 (m, 1H)*, 7.61 (m, 2H)*, 7.41 (dd, *J* = 8.0, 3.9 Hz, 1H)*, 3.15 (d, *J* = 18.5 Hz, 1H)*, 2.69 (d, *J* = 18.1 Hz, 1H)*, 2.07-2.00 (m, 1H)*, 1.87-1.82 (m, 2H)*, 1.48 (s, 3H)*, 1.07-1.00 (m, 6H)*.

¹³C NMR (125 MHz, CDCl₃): δ 182.7, 175.9, 150.9, 143.74, 135.97, 130.5, 129.5, 129.24, 129.1, 125.97, 121.8, 46.0, 44.4, 41.7, 25.9, 25.2, 24.6, 23.0; 182.72*, 175.7*, 150.7*, 143.70*, 135.94*, 130.5*, 129.4*, 129.29*, 129.1*, 125.96*, 121.8*, 46.1*, 44.47*, 42.1*, 25.6*, 25.0*, 24.7*, 23.4*.

HRMS: $[M+H]^+$ calculated for $C_{18}H_{21}N_2O_2$: 297.1603, found 297.1600.

3-methyl-3-propyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2i): Compound (2i) was prepared according to the general procedure **B** from **1i** (76.8 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 87% (74.2 mg) yield as white solid. R_f

Value = 0.2. ¹H NMR (500 MHz, CDCl₃, a mixture of atropisomers in ratio 1.1:1.0, the minor one is marked with an *): δ 8.87-8.84 (m, 1H), 8.17 (dt, *J* = 4.2, 2.1 Hz, 1H), 7.91-7.88 (m, 1H), 7.63-7.58 (m, 2H), 7.43-7.40 (m, 1H), 2.90 (d, *J* = 18.0 Hz, 1H), 2.84 (d, *J* = 18.1 Hz, 1H), 1.95-1.71 (m, 4H), 1.58 (s, 3H), 1.01 (td, *J* = 4.0, 3.0 Hz, 3H); 8.87-8.84 (m, 1H)*, 8.17 (dt, *J* = 4.2, 2.1 Hz, 1H)*, 7.91-7.88 (m, 1H)*, 7.63-7.58 (m, 2H)*, 7.43-7.40 (m, 1H)*, 3.04 (d, *J* = 17.9 Hz, 1H)*, 2.69 (d, *J* = 18.1 Hz, 1H)*, 1.95-1.71 (m, 4H)*, 1.47 (s, 3H)*, 1.01 (td, *J* = 4.0, 3.0 Hz, 3H)*.

¹³C NMR (125 MHz, CDCl₃): δ 182.53, 175.9, 150.9, 143.6, 136.0, 129.57, 129.37, 129.18, 125.98, 121.89, 44.66, 41.5, 40.62, 29.6, 24.7, 17.9, 14.31; 182.59*, 175.8*, 150.8*, 143.60*, 135.9*, 129.52*, 129.32*, 129.15*, 125.97*, 121.85*, 44.62*, 41.6*, 40.65*, 29.64*, 24.3*, 17.70*, 14.4*.

HRMS: $[M+H]^+$ calculated for $C_{17}H_{19}N_2O_2$: 283.1447, found 283.1448.

3-butyl-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2j): Compound (2j) was prepared

according to the general procedure **B** from **1j** (81 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 88% (78 mg) yield as pale yellow solid. R_f Value = 0.25.

¹**H NMR** (500 MHz, $CDCl_{3}$, a mixture of atropisomers in ratio 1.1:1.0, the minor one is marked with an *): δ 8.85 (m, 1H), 8.15 (d, *J* = 8.3 Hz, 1H), 7.89 (m, 1H), 7.61 (m, 2H), 7.40 (m, 1H), 2.90 (d, *J* = 18.3 Hz, 1H), 2.84 (d, J = 18.3

Hz, 1H), 1.83 (m, 2H), 1.58 (s, 3H), 1.39 (m, 4H), 0.98 (m, 3H); 8.85 (m, 1H)*, 8.15 (d, *J* = 8.3 Hz, 1H)*, 7.89 (m, 1H)*, 7.61 (m, 2H)*, 7.40 (m, 1H)*, 3.04 (d, *J* = 18.3 Hz, 1H)*, 2.69 (d, *J* = 18.1 Hz, 1H)*, 1.83 (m, 2H)*, 1.47 (s, 3H)*, 1.39 (m, 4H)*, 0.98 (m, 3H)*.

¹³C NMR (125 MHz, CDCl₃): δ 182.4, 175.7, 150.8, 143.6, 135.90, 130.4, 129.48, 129.2, 129.14, 125.9, 121.7, 44.55, 41.5, 38.3, 26.6, 24.7, 22.8, 13.9; 182.5*, 175.8*, 150.6*, 143.6*, 135.97*, 130.5*, 129.42*, 129.3*, 129.12*, 125.9*, 121.8*, 44.53*, 41.6*, 38.0*, 26.6*, 24.3*, 23.0*, 13.8*.

HRMS: $[M+H]^+$ calculated for $C_{18}H_{21}N_2O_2$: 297.1603, found 297.1600.

3-methyl-3-phenethyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2k): Compound (2k) was

prepared according to the general procedure **B** from **1k** (95.4 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (30% EtOAc/Hexane) in 88% (91 mg) yield as pale yellow solid. R_f Value = 0.3. ¹**H NMR** (500 MHz, CDCl₃, a mixture of atropisomers in ratio 1.1:1.0, the minor one is marked with an *): δ 8.92-8.85 (m, 1H), 8.20 (m, 1H), 7.94 (m, 1H), 7.66 (m, 2H), 7.46-7.41 (m, 1H), 7.37-7.25 (m, 5H), 3.16-2.78 (m, 4H), 2.33-2.06 (m, 2H), 1.58 (s, 3H); 8.92-8.85 (m, 1H)*, 8.20 (m, 1H)*, 7.94 (m, 1H)*, 7.66 (m, 2H)*, 7.46-7.41 (m, 1H)*, 7.37-7.25 (m, 5H)*, 3.16-2.78 (m, 4H)*, 2.33-2.06 (m, 2H)*, 7.46-7.41 (m, 1H)*, 7.37-7.25 (m, 5H)*, 3.16-2.78 (m, 4H)*, 2.33-2.06 (m, 2H)*, 1.69 (s, 3H)*.

¹³C NMR (125 MHz, CDCl₃): δ 182.14, 175.6, 150.7, 143.4, 140.8, 136.01, 130.3, 129.8, 129.57, 129.30, 129.1, 128.4, 128.3, 126.1, 125.9, 121.8, 44.5, 41.6, 40.5, 30.90; 182.12*, 175.7*, 150.9*, 141.6*, 140.8*, 136.06*, 130.1*, 129.8*, 129.59*, 129.36*, 129.1*, 128.5*, 128.2*, 126.1*, 125.9*, 121.8*, 44.5*, 41.4*, 40.0*, 30.99*. HRMS: $[M+H]^+$ calculated for C₂₂H₂₁N₂O₂: 345.1603, found 345.1601.

methyl 4-(3-methyl-2,5-dioxo-1-(quinolin-8-yl)pyrrolidin-3-yl)butanoate (2l): Compound (2l) was prepared according to the general procedure B from 1l (94.2 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40%

0>

EtOAc/Hexane) in 61% (63 mg) yield as pale yellow solid. R_f Value = 0.2. ¹H NMR (400 MHz, CDCl₃, a mixture of atropisomers in ratio 1.0:1.0, the minor one is marked with an *): δ 8.85 (m, 1H), 8.17 (dt, *J* = 12.0, 1.9 Hz, 1H), 7.91-7.89 (m, 1H), 7.61-7.59 (m, 2H), 7.41 (dd, *J* = 8.2, 4.2 Hz, 1H), 3.69 (s, 3H), 2.94 (d, *J* = 18.3 Hz, 1H), 2.85 (d, *J* = 18.2 Hz, 1H), 2.42-2.38 (m, 2H), 1.97-1.70 (m, 4H), 1.48 (s, 3H); 8.85 (m, 1H)*, 8.17 (dt, *J* = 12.0, 1.9 Hz, 1H)*, 7.91-7.89 (m, 1H)*, 7.61-7.59 (m, 2H)*, 7.41 (dd, *J* = 8.2, 4.2 Hz, 1H), 1.97 Hz, 1H)*, 3.69 (s, 3H)*, 3.06 (d, *J* = 18.3 Hz, 1H)*, 2.71 (d, *J* = 18.1 Hz, 1H)*,

2.42-2.38 (m, 2H)*, 1.97-1.70 (m, 4H)*, 1.59 (s, 3H)*. ¹³C NMR (125 MHz, CDCl₃): δ 182.27, 175.71, 173.6, 150.9, 143.43, 136.01, 130.2, 129.65, 129.2, 129.1, 125.9, 121.9, 51.5, 44.3, 41.4, 37.7, 34.0, 24.4, 20.0; 182.22*, 175.77*, 173.3*, 150.8*, 143.41*, 136.11*, 130.0*, 129.60*, 129.4*, 129.0*, 126.0*, 121.9*, 51.6*, 44.4*, 41.3*, 37.3*, 33.7*, 24.6*, 19.9*.

HRMS: $[M+H]^+$ calculated for $C_{19}H_{21}N_2O_4$: 341.1501, found 341.1500.

3-methyl-3-phenyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2m): Compound (**2m**) was prepared according to the general procedure **B** from **1m** (114.6 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (40% EtOAc/Hexane) in 58% (70 mg) yield as white solid. R_f Value = 0.25.

¹**H NMR** (400 MHz, CDCl₃, a mixture of atropisomers in ratio 2.4:1.0, the minor one is marked with an *): δ 8.88 (dd, *J* = 4.1, 1.5 Hz, 1H), 8.18 (m, 1H), 7.91 (m, 1H), 7.64-7.60 (m, 1H), 7.50 (m, 2H), 7.45-7.40 (m, 2H), 7.17-7.14 (m, 2H), 3.29 (d, *J* = 13.2 Hz, 1H), 2.96 (d, *J* = 18.2 Hz, 1H), 2.82-2.77 (m, 2H), 1.69 (s, 3H); 8.76 (dd, *J* = 4.2, 2.0 Hz, 1H)*, 8.18 (m, 1H)*, 7.91 (m, 1H)*, 7.58-7.56 (m, 1H)*, 7.50 (m, 2H)*, 7.45-7.40 (m, 2H)*, 7.21-7.18 (m, 2H)*, 3.36 (d, *J* = 13.4 Hz, 1H)*, 3.11 (d, *J* = 17.6 Hz, 1H)*, 2.95 (d, *J* = 13.1 Hz, -18.4 Hz, 1H)*.

1H)*, 2.60 (d, J = 18.4 Hz, 1H)*, 1.52 (s, 3H)*.

¹³C NMR (100 MHz, CDCl₃): δ 181.6, 175.20, 151.0, 143.4, 136.0, 135.3, 132.2, 131.79, 129.8, 129.6, 129.2, 129.0, 126.0, 121.93, 121.4, 45.9, 43.0, 40.0, 25.6; 181.8*, 175.29*, 150.7*, 143.3*, 135.9*, 135.2*, 131.75*, 131.5*, 130.0*, 129.7*, 129.2*, 129.1*, 125.9*, 121.97*, 121.0*, 45.5*, 42.6*, 40.3*, 25.0*.

HRMS: $[M+H]^+$ calculated for $C_{21}H_{18}BrN_2O_2$: 409.0552, found 409.0551.

3-methyl-3-phenyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2n): Compound (**2n**) was prepared according to the general procedure **B** from **1n** (87 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (30% EtOAc/Hexane) in 51% (49 mg) of sp³ and 14% (14 mg) sp² carbonylated product yield. R_f Value = 0.3. Characteristic data for **2n** was in accordance with the reported literature^{1a}

¹**H NMR** (400 MHz, CDCl₃, a mixture of atropisomers in ratio 1.0:1.0, the minor one is marked with an *): δ 8.90 (td, *J* = 3.7, 1.5 Hz, 1H), 8.19 (m, 1H), 7.95-7.91 (m, 1H), 7.79-7.76 (m, 1H), 7.71-7.62 (m, 2H), 7.58-7.55 (m,

1H), 7.46-7.36 (m, 3H), 7.36-7.31 (m, 1H), 3.42 (d, *J* = 18.3 Hz, 1H), 3.13 (d, *J* = 18.3 Hz, 1H), 2.02 (s, 3H); 8.90 (td, *J* = 3.7, 1.5 Hz, 1H), 8.19 (m, 1H), 7.95-7.91 (m, 1H), 7.79-7.76 (m, 1H), 7.71-7.62 (m, 2H), 7.58-7.55 (m, 1H), 7.46-7.36 (m, 3H), 7.36-7.31 (m, 1H), 3.38 (d, *J* = 18.1 Hz, 1H), 3.28 (d, *J* = 17.9 Hz, 1H), 1.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.6, 175.45, 151.0, 143.5, 142.4, 136.1, 130.2, 129.76, 129.4, 129.18, 128.9, 127.4, 126.3, 125.7, 121.9, 48.5, 45.52, 26.1; 180.9*, 175.43*, 150.8*, 143.4*, 142.0*, 136.0*, 130.1*, 129.70*, 129.3*, 129.12*, 128.7*, 127.3*, 126.3*, 126.0*, 121.9*, 48.7*, 45.56*, 24.9*.

3-(4-fluorophenyl)-3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2o): Compound (2o)

was prepared according to the general procedure **B** from **1o** (92.4 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (30% EtOAc/Hexane) in 50% (50 mg) sp³ and 15% (15mg) sp² carbonylated product yield R_f Value = 0.3.

¹**H NMR** (400 MHz, CDCl₃, a mixture of atropisomers in ratio 1.3:1.0, the minor one is marked with an *): δ 8.89 (m, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.93 (m, 1H), 7.78-7.75 (m, 1H), 7.70-7.62 (m, 2H), 7.53 (m, 1H), 7.45 (dd, *J* = 8.2, 4.1 Hz, 1H), 7.14-7.09 (m, 2H), 3.35 (d, *J* = 18.7 Hz, 1H) 3.12 (d, *J* = 18.4 Hz, 1H), 1.91 (s, 3H); δ 8.89 (m, 1H)*, 8.20 (d, *J* = 8.4 Hz, 1H)*, 7.93

(m, 1H)*, 7.78-7.75 (m, 1H)*, 7.70-7.62 (m, 2H)*, 7.53 (m, 1H)*, 7.45 (dd, J = 8.2, 4.1 Hz, 1H)*, 7.14-7.09 (m, 2H)*, 3.35 (d, J = 18.7 Hz, 1H)*, 3.26 (d, J = 18.0 Hz, 1H)*, 2.01 (s, 3H)*. ¹³C NMR (100 MHz, CDCl₃): δ 180.7, 175.16, 163.1, 150.8, 143.4, 138.26, 137.7, 136.14, 130.17, 129.7, 129.3, 129.1, 128.2, 127.6, 126.05, 122.03, 115.8, 115.65, 48.03, 46.5, 25.03; 180.4*, 175.11*, 160.7*, 151.0*, 143.5*, 138.29*, 137.8*, 136.10*, 130.12*, 129.8*, 129.4*, 129.2*, 128.1*, 127.5*, 126.02*, 122.02*, 115.63*, 115.4*, 48.2*, 45.4*, 26.8*. HRMS: [M+H]⁺ calculated for C₂₀H₁₆FN₂O₂: 335.1196, found 335.1193.

1-(quinolin-8-yl)pyrrolidine-2,5-dione (2p): Compound (2p) was prepared according to the

general procedure **B** from **1p** (60 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (80% EtOAc/Hexane) in 31% (21 mg) yield as pale yellow solid. R_f Value = 0.2. ¹H NMR (500 MHz, CDCl₃): δ 8.88 (dd, J = 4.0, 1.5 Hz, 1H), 8.21 (m, 1H), 7.94 (dd, J = 8.0, 1.5 Hz, 1H), 7.63 (m, 2H), 7.46 (dd, J = 8.3, 3.9 Hz, 1H), 3.17-3.10 (m, 2H), 3.03-2.95 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 176.9, 150.9, 143.4, 136.3, 130.1, 129.7, 129.5, 129.2, 126.1, 122.0, 28.9.

HRMS: $[M+H]^+$ calculated for $C_{13}H_{11}N_2O_2$: 227.0821, found 227.0822.

3-methyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2q): Compound (**2q**) was prepared according to the general procedure **B** from **1q** (64.2 mg, 0.3 mmol, 1 eq) and purified by

flash column chromatography (70% EtOAc/Hexane) in 45% (32.5 mg) yield as pale yellow solid. R_f Value = 0.2. ¹H NMR (500 MHz, CDCl₃, a mixture of atropisomers in ratio 1.1:1.0, the

minor one is marked with an *): δ 8.87 (m, 1H), 8.19 (m, 1H), 7.92 (m, 1H), 7.64-7.60 (m, 2H), 7.43 (dt, *J* = 8.5, 4.5 Hz, 1H), 3.34-3.28 (m, 1H), 3.19-3.11 (m, 1H), 2.62-2.56 (m, 1H), 1.50 (d, *J* = 6.8 Hz, 3H); 8.87 (m, 1H)*, 8.19 (m,

1H)*, 7.92 (m, 1H)*, 7.64-7.60 (m, 2H)*, 7.43 (dt, J = 8.5, 4.5 Hz, 1H)*, 3.34-3.28 (m, 1H)*, 3.19-3.11 (m, 1H)*, 2.77-2.73 (m, 1H)*, 1.59 (d, J = 7.3 Hz, 3H)*.

¹³**C NMR** (125 MHz, CDCl₃): δ 180.1, 175.9, 150.8, 143.53, 136.2, 130.3, 129.59, 129.4, 129.27, 126.03, 121.89, 37.16, 35.3, 17.19; 180.2*, 176.1*, 150.9*, 143.57*, 136.0*, 130.4*, 129.57*, 129.3*, 129.20*, 126.05*, 121.89*, 37.10*, 35.6*, 16.77*.

HRMS: $[M+H]^+$ calculated for $C_{14}H_{13}N_2O_2$: 241.0977, found 241.0978.

3-ethyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2r): Compound (2r) was prepared according

to the general procedure **B** from **1r** (68.4 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (50% EtOAc/Hexane) in 48% (37.2 mg) yield as pale yellow solid. R_f Value = 0.2.

¹**H NMR** (400 MHz, $CDCl_{3}$, a mixture of atropisomers in ratio 1.1:1.0, the minor one is marked with an *): δ 8.86 (m, 1H), 8.18 (t, *J* = 15.2, 8.0 Hz, 1H), 7.91 (m, 1H), 7.61 (m, 2H), 7.42 (m, 1H), 3.23 (m, 2H), 2.66 (m, 1H), 2.12 (m, 1H), 1.94 (m, 1H), 1.11 (t, *J* = 14.7, 7.1 Hz, 3H); 8.86 (m, 1H)*, 8.18 (t, *J* = 15.2, 8.0 Hz, 1H)*, 7.91 (m, 1H)*, 7.61 (m, 2H)*, 7.42 (m, 1H)*, 3.06 (m, 1H)*, 8.18 (m, 2H)*, 7.42 (m, 2H)*, 7.4

2H)*, 2.82 (m, 1H)*, 2.12 (m, 1H)*, 1.79 (m, 1H)*, 1.17 (t, J = 14.7, 7.3 Hz, 3H)*. ¹³**C NMR** (100 MHz, CDCl₃): δ 179.5, 176.3, 150.8, 143.35, 136.3, 130.0, 129.6, 129.4, 129.2, 126.06, 121.9, 41.7, 34.4, 24.4, 10.95; 179.6*, 176.5*, 150.9*, 143.37*, 136.0*, 130.2*, 129.5*, 129.3*, 129.1*, 126.01*, 121.8*, 41.9*, 34.2*, 24.5*, 10.93*.

HRMS: $[M+H]^+$ calculated for $C_{15}H_{15}N_2O_2$: 255.1134, found 255.1133.

3-tert-butyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione (2s): Compound (**2s**) was prepared according to the general procedure **B** from **1s** (76.8 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (50% EtOAc/Hexane) in 60% (51.2 mg) yield as yellow liquid. R_f Value = 0.3.

¹**H NMR** (400 MHz, CDCl₃, a mixture of atropisomers in ratio 1.2:1.0, the minor one is marked with an *); δ 8.89-8.83 (m, 1H), 7.94-7.89 (m, 1H), 7.94-7.89 (m, 1H), 7.64-7.54 (m, 2H), 7.46-7.40 (m, 1H), 3.18-3.04 (m, 1H), 2.97-2.77 (m, 2H), 1.17 (s, 9H); 8.89-8.83 (m, 1H)*, 7.94-7.89 (m, 1H)*,

7.94-7.89 (m, 1H)*, 7.64-7.54 (m, 2H)*, 7.46-7.40 (m, 1H)*, 3.18-3.04 (m, 1H)*, 2.97-2.77 (m, 2H)*, 1.23 (s, 9H)*.

¹³**C NMR** (125 MHz, CDCl₃); δ 177.9, 176.28, 143.3, 136.3, 130.1, 129.6, 129.2, 129.06, 128.3, 127.5, 126.0, 121.88, 50.3, 33.5, 32.3, 27.4, 27.2; 178.0*, 176.25*, 150.6*, 143.4*, 135.8*, 130.3*, 129.5*, 129.4*, 129.7*, 128.0*, 127.5*, 125.9*, 121.80*, 50.5*, 33.7*, 32.3*, 27.2*, 27.1*.

HRMS: $[M+H]^+$ calculated for $C_{17}H_{19}N_2O_2$: 283.1447, found 283.1443.

3-(quinolin-8-yl)-3-azabicyclo[3.1.0]hexane-2,4-dione (2t): Compound (**2t**) was prepared according to the general procedure **B** from **1t** (63.6 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (50% EtOAc/Hexane) in 84% (60.3 mg) yield as white solid. R_f Value = 0.3.

¹**H NMR** (500 MHz, CDCl₃, a mixture of atropisomers in ratio 5.0:1.0, the minor one is marked with an *): δ 8.82 (d, *J* = 4.0 Hz, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 6.9 Hz, 1H), 7.59 (t, *J* = 15.7, 8.0 Hz, 1H), 7.39-7.37 (m, 1H), 2.67 (dd, *J* = 8.1, 3.4 Hz, 2H), 2.42 (m, 1H), 1.69-1.64

(m, 1H); 8.91 (d, *J* = 4.0 Hz, 1H)*, 8.17 (d, *J* = 7.8 Hz, 1H)*, 7.89 (d, *J* = 8.5 Hz, 1H)*, 7.66 (dd, *J* = 6.9 Hz, 1H)*, 7.55 (d, *J* = 8.0 Hz, 1H)*, 7.43-7.41 (m, 1H)*, 2.75 (dd, *J* = 8.1, 3.3 Hz, 2H)*, 2.42 (m, 1H)*, 1.69-1.64 (m, 1H)*.

¹³C NMR (125 MHz, CDCl₃): δ 174.7, 150.7, 143.32, 135.9, 130.5, 129.8, 129.29, 128.9, 128.7, 125.9, 121.7, 21.2, 20.7, 19.9; 174.7*, 150.0*, 143.35*, 136.1*, 130.5*, 129.4*, 129.21*, 129.0*, 128.7*, 125.8*, 121.9*, 21.2*, 20.8*, 19.9*.

HRMS: $[M+H]^+$ calculated for $C_{14}H_{11}N_2O_2$: 239.0821, found 239.0824.

4-phenyl-2-(quinolin-8-yl)-2-azaspiro[4.4]nonane-1,3-dione (2u): Compound (2u) was

prepared according to the general procedure **B** from **1u** (99 mg, 0.3 mmol, 1 eq) and purified by flash column chromatography (70% EtOAc/Hexane) in 26% (28.6 mg) yield as pale yellow solid. R_f Value = 0.2.

¹**H NMR** (400 MHz, $CDCl_{3}$, a mixture of atropisomers in ratio 5.0:1.0, the minor one is marked with an *): δ 8.82 (dd, J = 4.0, 1.7 Hz, 1H), 8.15 (dd, J = 8.1, 1.6 Hz, 1H), 7.86 (dd, J = 8.3, 1.6 Hz, 1H), 7.55-7.51 (m, 1H), 7.41-7.28 (m, 6H), 7.07 (dd, J = 7.4, 1.4 Hz, 1H), 3.54-3.47 (m, 1H), 3.21 (m, 1H), 2.84 (d, J = 13.0 Hz, 1H), 2.60-2.55 (m, 1H), 2.37-2.21 (m, 2H), 2.11-2.06 (m, 1H), 1.93-1.78 (m, 2H); 8.75 (dd, J = 4.1, 1.9 Hz, 1H)*, 8.15 (dd, J = 8.1, 1.6 Hz,

1H)*, 7.90 (dd, J = 7.6, 1.5 Hz, 1H)*, 7.62-7.57 (m, 1H)*, 7.41-7.28 (m, 6H)*, 7.07 (d, J = 7.4, 1.4 Hz, 1H)*, 3.54-3.47 (m, 1H)*, 3.37-3.35 (m, 1H)*, 3.05 (d, J = 13.6 Hz, 1H)*, 2.60-2.55 (m, 1H)*, 2.37-2.21 (m, 2H)*, 2.11-2.06 (m, 1H)*, 1.93-1.78 (m, 2H)*.

¹³C NMR (100 MHz, CDCl₃): δ 181.95, 179.5, 151.02, 143.5, 136.9, 135.89, 129.8, 129.4, 129.1, 128.6, 127.2, 126.0, 121.8, 58.4, 48.8, 41.7, 38.3, 31.2, 25.04; 181.13*, 179.3*, 151.79*, 143.4*, 136.7*, 135.84*, 129.8*, 129.5*, 129.0*, 128.4*, 126.7*, 125.9*, 121.8*, 57.3*, 49.1*, 40.9*, 36.9*, 30.7*, 25.26.*

HRMS: $[M+H]^+$ calculated for $C_{23}H_{21}N_2O_2$: 357.1603, found 357.1608.

5. H/D Exchange experiment:

To an oven dried Schlenk tube associate with a teflon coated magnetic stir bar was vaccumised and purged with argon, to this $Co(acac)_2$ (7.71mg, 0.03mmol, 10 mol%), PhCO₂Na (8.64 mg, 0.06 mmol, 20 mol%), Ag₂CO₃ (247mg, 0.9 mmol, 3 eq), followed by 1c-[CD₃] (77.1 mg, 0.3 mmol, 1 eq) in 0.75 mL of α, α, α - trifluoro toluene solvent was added. Finally, schlenk was capped, vaccumised and pressurized to 2 atm of carbon monoxide and placed in preheated oil bath for 12 h. After 12 h, upon completion of reaction, it was cooled to room temperature. Then concentration of solvent followed by purification by column chromatography using silica gel (100-200 mesh size) and petroleum ether / ethyl acetate (50:50 v/v) as the eluent to give the desired product 2c-[CD₂] (37 mg, 43%) and recovered 1c-[CD₃] (39.9 mg, 51%). The ratio of deuterium incorporated was determined by ¹H NMR.

2c-[CD₂], ¹**H NMR** (400 MHz, CDCl₃): 8.86 (dd, *J* = 4.2, 1.9 Hz, 1H), 8.18 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.93-7.89 (m, 1H), 7.62 (m, 2H), 7.42 (dd, *J* = 8.3, 4.0 Hz, 1H), 2.45-2.38 (m, 1H), 2.33-2.26 (m, 1H), 2.10-1.93 (m, 3H), 1.88-1.80 (m, 3H).

Recovered **1c-[CD₃]**, ¹**H NMR** (400 MHz, CDCl₃): 10.20 (s, 1H), 8.80 (m, 2H), 8.14 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.50 (m, 2H), 7.43 (dd, *J* = 8.2, 4.2 Hz, 1H), 2.32-2.25 (m, 2H), 1.85-1.77 (m, 5H), 1.72-1.65 (m, 2H).

6. Deuterium and Control Experiments:

6.1. Parallel KIE Experiment:

To an oven dried Schlenk tube associate with a teflon coated magnetic stir bar was vaccumised and charged with argon, to this added Co(acac)₂ (2.57 mg, 0.01mmol, 10 mol%), PhCO₂Na (2.88 mg, 0.02 mmol, 20 mol%), Ag₂CO₃ (82.5 mg, 0.3 mmol, 3 eq), and 1**c**–[**CD**₃](25.7 mg, 0.1 mmol, 1 eq) in 0.3 mL of α, α, α - trifluoro toluene on one side. On the other hand, in another dried Schlenk tube Co(acac)₂ (2.57 mg, 0.01 mmol, 10 mol%),

PhCO₂Na (2.88 mg, 0.02 mmol, 20 mol%), Ag₂CO₃ (82.5 mg, 0.3 mmol, 3 eq), and 1c – [CH₃](25.4 mg, 0.1 mmol, 1 eq) and 0.3 mL of α,α,α - trifluoro toluene was added sequentially. Finally both the Schlenks were closed, vaccumised and pressurized to 2 atm of carbon monoxide and placed in preheated oil bath for 10, 20, 30, 40 min and immediately quenched separately with 1ml EtOAc. Next, the reaction mixture was diluted with 5 mL of EtOAc, and filtered using a silica pad. The solvent was then removed under reduced pressure and ¹H NMR was taken using Anisole (7 mg) as the internal standard. The K_H/K_D value for parallel experiment is 1.42 determined by ¹H NMR spectroscopy by plotting NMR yield vs time (min).

Time (min)	10	20	30	40
Yield of 2c (%)	7.84	13.7	21.5	29.4
Yield of [D ₂]- 2c (%)	7.84	11.76	15.6	23.5

6.2. One pot KIE Experiment:

To an oven dried Schlenk tube ,Co(acac)₂ (7.71mg, 0.03mmol, 10 mol%), PhCO₂Na (8.64 mg, 0.06 mmol, 20 mol%), Ag₂CO₃ (247mg, 0.9 mmol, 3 eq), was added along with 1c – [CD₃](77.1 mg, 0.3 mmol, 1 eq) and 1c –[CH₃](76.2 mg, 0.3 mmol, 1 eq) in 0.75 mL of α , α , α -trifluoro toluene as solvent. After addition is over it was again vaccumised and purged with carbon monoxide with 2 atm pressure and placed in preheated oil bath for 12 h. After 12 h, upon completion of reaction, it was cooled to room temperature. The crude mixtures was purified by column chromatography using silica gel (100-200 mesh size) and petroleum ether / ethyl acetate (50:50 v/v) as the eluent, gave mixture of 2C-CH₂ and 2C-CD₂. The KH/KD value for one pot experiment is 5.2, determined by ¹H NMR spectroscopy.

$K_{\rm H}/K_{\rm D} = 0.84/(1-0.84)$

KIE value determined from one pot reaction = 5.25

6.3. Radical quenching Experiment: To an oven dried Schlenk tubes, was added $Co(acac)_2$ (7.71mg, 0.03mmol, 10 mol%), PhCO₂Na (8.64 mg, 0.06 mmol, 20 mol%), Ag₂CO₃ (247mg, 0.9 mmol, 3 eq), and amide 1a (68.4 mg, 0.3 mmol, 1 eq) in 0.75 mL of α , α , α -trifluoro toluene along with 1 equiv of TEMPO (2,2,6,6-Tetramethyl-piperidin-1-yl)oxyl (46.8 mg, 0.3 mmol, 1 eq). Similarly the reaction was conducted with 2 equiv of TEMPO (2,2,6,6-Tetramethyl-piperidin-1-yl)oxyl (93.6 mg, 0.6 mmol, 2 eq) using the same procedure. The closed Schlenk tubes was vaccumised and pressurized to 2 atm of carbon monoxide and placed in preheated oil bath for 24 h. After 24 h, removal of solvent followed by purification through column chromatography using silica gel (100-200 mesh size) and petroleum ether / ethyl acetate (50;50 v/v) as the eluent gave **2a** 25% (19.2 mg) as white solid.

7. Gram scale reaction:

To an oven dried Schlenk tube associate with a teflon coated magnetic stir bar was vaccumized and charged with argon, to this added Co(acac)₂ (112.7 mg, 0.43 mmol, 10 mol%), PhCO₂Na (126.31 mg, 0.877 mmol, 20 mol%), Ag₂CO₃ (3618 mg, 13.15 mmol, 3 eq), and substituted N-(quinolin-8-yl)pivalamide in 11 mL of α, α, α - trifluoro toluene as solvent. The closed Schlenk tube was vaccumised and filled with 1 atm of carbon monoxide using "CO" baloon and placed in preheated oil bath for 36 h. After 36 h removal of solvent followed by purification was done through column chromatography using silica gel (100-200 mesh size) and petroleum ether / ethyl acetate (50:50 v/v) as the eluent to afford **2a** as white solid (791 mg, 71% yield). Residual silver was recycled according to the literature procedure in 69% (2.5 g) after two steps as pale grey powder.³

³ Tan, G.; He, S.; Huang, X.; Liao, X.; Cheng, Y.; You. J. -S. Angew. Chem. Int. Ed. **2016**, 55, 10414-10418.

Silver residue
$$\xrightarrow{HNO_3}$$
 AgNO₃ $\xrightarrow{Na_2CO_3}$ Ag₂CO₃
 69% 2.5 g
Crystalline Pale grey
while powder powder

Caution: It should be noted that the resulting filterate at the end of the first step (ie.after silvernitrate formation) should not be recovered and free from EtOH. The second crop of $AgNO_3$ may potentially produce EXPLOSIVE silver fulminate, which should be avoided. Also, Do not wash with ethanol, instead you may wash with isopropanol and then dry the silver nitrate.⁴

8. Derivatization of 3,3-dimethyl-1-(quinolin-8-yl)pyrrolidine-2,5-dione:

To an oven dried Schlenk tube associate with a teflon coated magnetic stir bar was vaccumised and charged with argon, to this added compound **2a** (38 mg, 0.15 mmol) added dry MeONa (12.4 mg, 0.23 mmol) in MeOH (distilled) (1 mL) was stirred for 48 h at room temperature. The reaction mixture was diluted with EtOAc (10 mL). The organic layer was washed with saturated aqueous NaHCO₃, brine, dried over Na₂SO₄, and then evaporated in vacuo. The residue was purified by flash column chromatography on silica gel, eluted with EtOAc/hexane (1:20, v/v), to afford 60% (26 mg) of compound **4** as colourless oil.

¹**H NMR** (500 MHz, CDCl₃): δ 9.85 (s, 1H), 8.79-8.73 (m, 2H), 8.13 (dd, J = 8.1, 1.3 Hz, 1H), 7.51-7.42 (m, 3H), 3.76 (s, 3H), 2.86 (s, 2H), 1.37 (s, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 177.5, 169.1, 148.0, 138.2, 136.3, 134.3, 127.8, 127.3, 121.5, 121.4, 116.5, 52.2, 47.8, 41.2, 29.6, 25.5.

HRMS: $[M+H]^+$ calculated for $C_{16}H_{19}N_2O_3$: 287.1396, found 287.1394.

A 25 mL Schlenk tube was charged with **2a** (150 mg, 0.59 mmol), trifluoroacetic acid (1.5 mL) and conc. HCl (1.5 mL). The reaction mixture was stirred at 120 $^{\circ}$ C for 36 h. After cooling to room temperature, the crude mixture was concentered under reduced pressure and the

⁴ Henderson, K. O.; Garlin, D. L. *J. Chem. Educ.* **1970**, *47*, 741.

residue was diluted with 3N HCl (3 mL) and extracted with EtOAc (10 mL x 3). The combined organic layer were washed with brine, dried over Na_2SO_4 , and then evaporated in vacuo to afford 91% (79 mg) of the carboxylic acid **5** as white solid. Characteristic data of diacid **5** was in accordance with the literature.⁵

¹H NMR (500 MHz, DMSO-*d*₆): δ 12.05 (s, 2H), 2.43 (s, 2H), 1.15 (s, 6H);

¹³**C NMR** (125 MHz, DMSO-*d*₆); δ 177.9, 172.4, 43.6, 25.2.

9. UV-Vis spectra of cobalt complexes:

To probe the oxidation state of the active cobalt species in the reaction media, we have monitored the progress of the reaction stoichiometrically through UV-Vis spectra. In an oven dried schlenk tube $Co(acac)_2$ (20 mg, 0.07 mmol) , Ag_2CO_3 (40 mg, 0.15 mmol) and sodium benzoate (22 mg, 0.15 mmol) was added along with N-(quinolin-8-yl)pivalamide **1a** (17.7 mg, 0.07 mmol) in 1 mL of α, α, α - trifluoro toluene under 2 atm CO pressure. The Uv-Vis spectra was measured by diluting to 10^{-6} M concentration. The conditions were altered as mentioned in the spectra and carried out for 2h both at r.t and 150 °C and monitored the reaction mixture by UV-Vis spectra. Analysis of the spectral data suggest that the conversion of Co(II) to Co(III) observed only using Ag_2CO_3 at 150 °C for 2h. Further there is no significant change in the spectra even after addition of the "CO" suggesting involvement of Co(III) species in the catalytic cycle.

The typical peak appears at 325 nm is responsible for the Co(III) (transition of e^{-} from $t_{2g}-e_{g}$) and it is in accordance with the literature.

⁵ Yoo, E. J.; Wasa, M.; and Yu, J. -Q. J. Am. Chem. Soc. **2010**, *132*, 17378–17380.

10. Crystallographic Summary:

Figure S1: Structure of compound **2a** in solid state. Hydrogen atoms are omitted for clarity.

X-ray Crystal Structure Analysis : $C_{15}H_{14}N_2O_2$, MW = 254.28 g.mol⁻¹, colourless, crystal size = 0.20 x 0.12 x 0.14 mm, monoclinic, space group: P2(1)/n, a = 8.730(5) Å, b = 13.396(5) Å, c = 11.372(5) Å, T = 293 K, Z = 4, Dcalc = 1.298 g.cm-1, λ = 0.71073 Å (Mo-K α), CCD Bruker SMART APEX diffractometer, 1.9 < q < 25.4, 3766 measured reflections, structures were solved by direct methods and refined (SHELXL-97) by full matrix least squares based on F².

Figure S2: Structure of compound **2t** in solid state. Hydrogen atoms are omitted for clarity.

X-ray Crystal Structure Analysis : $C_{14}H_{10}N_2O_2$, MW = 238.24 g.mol-1 colourless, crystal size = 0.20 x 0.15 x 0.14 mm, orthorhombic, space group: Pbca, a = 8.2000(8) Å, b = 12.4012(12) Å, c = 21.182(2) Å, T = 293 K, Z = 8, Dcalc = 1.469 g.cm-1, λ = 0.71073 Å (Mo-K α), CCD Bruker SMART APEX diffractometer, 1.9 < q < 25.4, 3766 measured reflections, structures were solved by direct methods and refined (SHELXL-97) by full matrix least squares based on F².

$\mathbf{Ig}^{L8:9L1-}$	—48.51 —45.54	

Г)0

 	 <127.85 <127.38 <121.47 -116.08	43.8943.78	

· · · · · ·		· · ·	· · · ·	· · · ·	· · · ·	· · · ·	· · ·	· · · ·	· · ·	·	·	· · · ·	· · ·	·	· · · ·	· · ·	· · ·	· · ·	, , , , , , , , , , , , , , , , , , , 	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

			-127.35 -121.45 -121.11	— 116.06					→ 27.05 → 25.58 → 23.19	
HN CH ₃ H ₃ C										
1j CH ₃										
						1				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MALE AND	มหม่งเหตุการใหญ่เหตุการให้เป็นหลายหมายหลางขั	Myerenowierd (num	าะกรไม _{่งเป็} นและสามารถสามารถ	งหรือปริกษณ์ให้มหุรโหลงให้เหตุอาณาให้เห	ของอาและมาแรงเหน่ ³ ไปสะเภาพจะเองจะ	างทั้งไปแรงของการเขางางไป เหมืองจากเป็นจากเหมือง	anintra <mark>l</mark> an ^l anorumanaria	vervrusneludijaalbumomum	กลุณสุขปัญญาการประกอบสาย 
200 190 180 170 160	150	140 130	120	) 110	100 90	80 70	60 50	40	30 20	10 0







11.0 10.5 10.0 9.5 8.5 7.5 5.5 4.5 3.5 3.0 2.5 2.0 9.0 8.0 7.0 6.5 6.0 5.0 4.0 1.5 1.0 0.5 .5 0.0

-0.5










												1								
															1					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				understangen ander andere a	 			********	and	helloutener and						berner and the second				10-101/10-10-10-10-10-10-10-10-10-10-10-10-10-1
	190	180	170	160	 140	 30	120		 0	100	90		70	 			30	20	10	-,,- 0

$rac{1}{2c}$	 -150.94 -143.59 -136.03 129.53 121.88 121.88	51.05 44.21 ~38.16 ~38.16 ~25.34
	นใหม _{่ม} าวังสุดปะสี หลุกบริเราร์หมุฟ ใหญ่สารหลางสมันสรีประการการสนี่ ปูร่างใหญ่ ใหญ่แห่งๆ การแกรมรายการและเหตุประการก	ŢĸĹ'nŧ₩ŧŎĸIJĸĸĸĸĸĸĸŊĬĸĸŢŢĨĬĬŎţŎĸĸIJĸſĸĬŎĸŎŎŢŢĊŎĸġĸĸĸŊġĸĊĬĸĬſĸŢĬŢŔĬijŎŎĬĬŎŢĬŎŔĬŎĸŢĸĹĬĬŎĬĬŎŢĬŎŢŎĸŎŎĸŎŢŎĸŎŊ ŢĸĹ'nŧ₩ŧŎĸIJŎĸĸĸſĸŎŊĬĸĸŢŢĨĬŎŎŔĸĸIJĸſĬŎŎŎŎŢŢĊŎĸġĸĸĸŊġĸĊĬĸſĬŎŢŎŔĬIJŎŢĬŎŎĬĬŎĬĬŎĬĬŎŢĬŎŢŎŎĸŎŎĸŎŢŎĸŎŊŎŢĬŢĊŢŎĸĸŔŎĸŎŦŢŔĸĬŊĸ

— 182.63 — 176.02	-150.89 -143.53 -130.24 129.51 129.36 121.84 121.84	-45.70 40.60 <33.45 <25.00 <22.24 <22.08

n A in dies water hit hit sich a Austikaals dies het View statischen er

MARANTANA MARANANA M

INTERNET AND A DEAL PROPERTY OF A D

and the second second

anay Mayayay

6.5 0.5 10.0 9.5 9.0 7.0 6.0 5.5 5.0 4.5 3.0 2.5 8.5 8.0 7.5 4.0 3.5 2.0 1.5 1.0

0.0

0.0

0.0

1.0

0.5

3.5 10.0 9.5 9.0 8.5 7.0 6.5 5.5 5.0 4.5 4.0 3.0 2.5 1.5 8.0 7.5 6.0 2.0

		\sim 138.27 \sim 136.30 \sim 134.32 \sim 134.32 \sim 127.87 \sim 127.31 \sim 121.51					52.20			—_29.64 —_25.55		
3 CH ₃												
H ₃ C												
							I					
1												
ากระบะสะบริศรษาทุกสารให้สระจากกระการสราชการสารรายกระสารราการสารปไหน่ายสมัยวงไป พระสารสราชนุกริร์ตองอาการบาลส	ogh-backed View-ray top	เลงกละกรรไปแหน่ 151 เป็นสามาณการการเหน่า ใจกรรการการการ โลก	Weever Jones Annues and an	nam frankrigen er staten som	กรังสุราวารการการการการการที่ไ	านสามรูโปรไฟร์ไปร้านที่สุดราสการประเพิ่ม	manageraper	an lowerly	de montecorder	hulling		wanterstation
200 190 180 170 160	150	140 130 12	20 110	100 9	0 80	70 6	0 5	, , , , , , , , , , , , , , , , , , ,	40	30	20 1	0 0

— 177.98 — 172.47

 	 ~~~~~	 	 	 	 		 b	