Supporting Information

Dual Gold and Photoredox Catalysis: Visible Light-Mediated Intermolecular Atom Transfer Thiosulfonylation of Alkenes

Haoyu Li, Cuicui Shan, Chen-Ho Tung and Zhenghu Xu

xuzh@sdu.edu.cn

General information	S2
Synthesis of the starting materials	.S2
General procedure for Thiosulfonylation of Alkenes	.S4
Optimization of light source	.S4
Mechanism Study	.S5
X-ray Crystallography Data	.S9
Characterization Data	S10
NMR spectra for the products	S22

General information

Unless otherwise noted, all the reagents were obtained commercially and used without further purification and reactions were monitored by TLC. Solvents used directly. All NMR spectra were recorded on Bruker-400 MHz spectrometer and Bruker-400 MHz spectrometer. HRMS were measured on the Q-TOF6510 instruments. The light source for the reaction is 100W 400nm blue LED and the total light intensity irradiated on the reaction vial was measured using a light intensity meter (model CEL-NP2000-10; Au light, China) and the value is ca. 120 mW/ cm².Thermo Scientific Lumina Fluorescence Instrument was used for Emission Quenching Experiments. In the transient absorption spectra measurements, excitation was provided by using an Nd:YAG laser and the detector was a xenon lamp on the Edingburge LP920 apparatus from Analytical Instruments.

Synthesis of the starting materials

But-3-en-1-yn-1-ylbenzene 1m was prepared according to reported procedures¹.
Typical procedure for the preparation of 4-Bromo-β-methylstyrene 1p.

Ethyltriphenylphosphonium bromide (3.7g, 10mmol) was dissolved in 50mL anhydrous THF under N₂ atmosphere and the suspension was cooled to -78 °C. n-BuLi (2.5M in hexanes, 4.4mL, 11mmol) was added to the reaction mixture slowly and the mixture was stirred at 0 °C for an hour. After one hour, a solution of 4-bromobenzaldehyde (1.8g, 10mmol) in 10mL THF was slowly added to the flask at -78 °C and the mixture was stirred for two hours at room temperature. Brine (50mL) was added, and mixture was extracted with ethyl acetate (50mL, three times). The combined organic fractions were dried over NaSO4. The reaction mixture was evaporated under reduced pressure and the residue was purified through column chromatography (petroleum ether: EtOAc = 50:1) afforded the desired product **1p** (1.4 g, 72% yield, (*Z*)-alkene: (*E*)-alkene = 7: 3) as a colourless oil. Known compound². ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.37 (m, 2H), 7.21-7.12 (m, 2H), 6.41 – 6.30 (m, 1H), 6.28-6.17 (m, 0.3H), 5.87-5.74 (m, 0.7H), 1.91-1.83 (m, 3H).

Typical procedure for the preparation of S-(trifluoromethyl) benzenesulfonothioate
2a.

AgF +
$$CS_2 \xrightarrow{CH_3CN} AgSCF_3 \xrightarrow{NBS} CH_3CN \xrightarrow{O} N-SCF_3 \xrightarrow{PhSO_2Na} CH_3CN \xrightarrow{O} CH_3CN$$

A mixture of AgF (10 g, mmol) and CS₂ 20 mL in dry CH₃CN (60 mL) was refluxed at 80 °C for 16 h under N₂ atmosphere. The reaction mixture was filtered on celite and evaporated under reduced pressure. Pale yellow crude product AgSCF₃ was obtained. Then NBS (3.9 g, 22mmol) and CH₃CN (30 mL) were added to the flask with AgSCF₃.

The mixture was stirred for 2h and filtered on celite. After evaporating under reduced pressure, white solid was obtained. Then PhSO₂Na (6.4 g, 40 mmol) and CH₃CN (30 mL) were added to the same flask and stirred at 10 °C for 1-3 h which was determined by TLC screening (PhSO₂SCF₃ was easy to decompose in the mixture). The reaction mixture was filtered on celite and evaporated under reduced pressure. The residue was purified through column chromatography (petroleum ether: EtOAc = 50:1) afforded the desired product **2a** (2.6 g, 54% yield) as a colourless oil. Known compound³. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 2H).

Benzenesulfonothioates **2b-2h** were prepared according to reported procedure⁴.

- (1) Cheng, J.; Loh, T. J. Am. Chem. Soc. 2015, 137, 42.
- (2) Zhang, L.; Dolbier, W. R.; Jr.; Sheeller, B.; Ingold, K. U. J. Am. Chem. Soc., 2002, 124, 6362.
- (3) Shao, X.; Xu, C.; Lu, L.; Shen, Q. J. Org. Chem., 2015, 80, 3012.
- (4) Wang, W.; Peng, X.; Wei, F.; Tung, C.; Xu, Z. Angew. Chem. Int. Ed. 2016, 55, 649.

General Procedure for the Thiosulfonylation of Alkenes

A mixture of alkene **1a** (0.4 mmol), thiosulfonylation reagent **2a** (0.2 mmol), IPrAuCl (10 mol%), AgSbF₆ (15 mol%), Ru(bpy)₃Cl₂ (2.5 mol%), DCE (1 mL) was stirred at room temperature under irradiation with 100 w blue LED at N₂ atmosphere for 1-3 h. The organic layer was filtered on celite and evaporated under reduced pressure. The crude reaction mixture was purified by silica gel flash chromatography to afford the desired product.

	✓ +	PhSO ₂ SCF ₂ -	Ru(bpy)₃Cl₂ (2.5 mol%) IPrAuCl (10 mol%) AgSbF ₆ (15 mol%)	SCF ₃	₀O₂Ph
			DCE, rt, N ₂ , hv		
1a	2a			3a	
_	Entry 1		Light Source	Yield (%)	
	1 100W		(100W*1,400nm)	94(87)	
	2 3W		(3W*1,450nm)	0	
	3	21W	(3W*7, 450nm)	68	
	4	50W	(5W*10, 450nm)	90	

Optimization of light source

Table S1. Reaction conditions: a mixture of **1a** (0.4 mmol), **2a** (0.2 mmol), IPrAuCl (10 mol%), AgSbF₆ (15 mol%), Ru(bpy)₃Cl₂ (2.5 mol%), in DCE (1 mL) was stirred at room temperature under irridiation of LED at N₂ atmosphere.

Mechanism Study

Control Experiments

			Ru(bpy) ₃ Cl ₂ (2.5 mol%) IPrAuCl (10 mol%) AgSbF ₆ (15 mol%)	ol%)	SCF₃ └SO₂Ph		
		10020013	DCE, rt, N ₂ , hv				
1a		2a			3a		
	Variation from the						
	Entry	"standard	l" conditions	Yield (%)		
	1	None		94 (87)			
	2	No IPrAuC	1	<5			
	3	No Ru(bpy)	$_{3}Cl_{2}$	0.			
	4	No AgSbF6		<5			
	5	No light		0.			

Table S2. Reaction conditions: a mixture of **1a** (0.4 mmol), **2a** (0.2 mmol), IPrAuCl (10 mol%), AgSbF₆ (15 mol%), Ru(bpy)₃Cl₂ (2.5 mol%), in DCE (1 mL) was stirred at rt under irradiation with 100 w 400nm LED at N₂ atmosphere.

Emission Quenching Experiments for Ru(bpy)₃(SbF₆)₂

Emission intensities were recorded using a HITACHI F-4500 Fluorescence Spectrometer. All Ru(bpy)₃(SbF₆)₂ solutions were excited at 450 nm and the emission intensity at 600 nm was observed. In the typical experiment, the Ru(bpy)₃(SbF₆)₂ solution was prepared by stirring the mixture of Ru(bpy)₃Cl₂•6H₂O (0.01 mmol) and AgSbF₆ (0.02 mmol) in DCE (200 mL) for 5 minutes and filtering the precipitate, and 5×10^{-5} M Ru(bpy)₃(SbF₆)₂ solution was obtained. Then the Ru(bpy)₃(SbF₆)₂ solution was degassed with a stream of N₂ for 30 minutes. The emission spectrum of a 5×10^{-5} M solution of Ru(bpy)₃(SbF₆)₂ in DCE was collected. Then, appropriate amount of quencher was added to the measured solution and the emission spectrum of the sample was collected.

Figure S1. Ru(bpy)₃(SbF₆)₂ Emission Quenching by IPrAuSbF₆.

Figure S2. Ru(bpy)₃(SbF₆)₂ emission quenching with IPrAuSbF₆, PhSO₂SCF₃ and styrene; I₀ and I represent the intensities of the emission in the absence and presence of the quencher. Emission Quenching by IPrAuSbF₆, $k_q = 8.85 \times 10^2 \text{ mol}^{-1} \cdot \text{L}$; no quenching were observed by PhSO₂SCF₃ and styrene.

Light/dark Experiments

The reaction was done on the condition: styrene **1a** (0.4mmol), PhSO₂SCF₃ **2a** (0.2mmol), IPrAuCl (10 mol%), AgSbF₆ (15 mol%), Ru(bpy)₃Cl₂•6H₂O (2.5 mol%), DCE 1ml at N₂ atmosphere. Yields of the **3** was determined by ¹⁹F NMR and based on (trifluoromethyl)benzene as an internal standard.

Figure S3. Light/dark experiments. The white area indicates the light irradiation, while the blue area indicates the dark treatment.

It was observed that the reaction completely ceased once the light source was removed. No more transformation was observed if irradiation was recommenced after a period of 20 minutes in the dark. This results may be caused by the altered reaction environment leading the aggregation of the active IPrAu(0) catalyst to inactive gold black.

Transient Absorption Experiments

Figure S4. Transient absorption spectra (a) $Ru(bpy)_3Cl_2 \cdot 6H_2O = 8 \times 10^{-5} \text{ M}$, AgSbF₆ = 1.6×10⁻⁴ M, $\tau_1 = 13$ ns, $\tau_2 = 493$ ns; (b) $Ru(bpy)_3Cl_2 \cdot 6H_2O = 8 \times 10^{-5} \text{ M}$, AgSbF₆ = 1.6*10⁻⁴ M, PhSO₂SCF₃ = 8×10⁻³ M, $\tau_1 = 12$ ns, $\tau_2 = 473$ ns; (c) $Ru(bpy)_3Cl_2 \cdot 6H_2O = 8 \times 10^{-5} \text{ M}$, AgSbF₆ = 1.6*10⁻⁴ M, IPrAuSbF₆ = 1.5×10⁻³, $\tau_1 = 12$ ns, $\tau_2 = 394$ ns; (d) $Ru(bpy)_3Cl_2 \cdot 6H_2O = 8 \times 10^{-5} \text{ M}$, AgSbF₆ = 1.6*10⁻⁴ M, IPrAuSbF₆ = 1.6*10⁻⁴ M, IPrAuSbF₆ = 1.6*10⁻⁴ M, IPrAuSbF₆ = 1.5×10⁻³ M, PhSO₂SCF₃ = 8×10⁻³ M, $\tau_1 = 12$ ns, $\tau_2 = 398$ ns; in dce at room temrerature, excitation at 355nm.

CV Experiments

Figure S5. CV experiments condition: 10 mM sample in DCE, 0.1 M Bu₄NPF₆; scan rate, 100 mV s⁻¹. Potentials vs SCE results (Fc as a standard compound): PhSO₂SCF₃, Epa = -1.11 V; PhSO₂SC₄H₉, Epa = -1.64 V; IPrAuSbF₆, Epox =0.08 V, Epred -0.11 V.

X-ray Crystallography Data

Characterization Data

Yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.3 Hz, 2H), 7.54-7.50 (m, 1H), 7.39-7.34 (m, 2H), 7.22-7.13 (m, 5H), 4.87 (dd, *J* = 10.2, 4.4 Hz, 1H), 3.99-3.90 (m, 1H), 3.85-3.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.07, 135.94, 133.73, 129.62 (q, *J* = 307.1 Hz, SCF₃), 129.14, 129.06, 128.90, 127.88, 127.65, 61.24, 43.60. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.05. HRMS (ESI, m/z) calcd for C₁₅H₁₃F₃O₂S₂ [M+NH₄]⁺ 364.0647, found 364.0630.

Yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.3 Hz, 2H), 7.62-7.57 (m, 1H), 7.55-7.51 (m, 2H), 7.49-7.41 (m, 2H), 7.39-7.31 (m, 2H), 4.90 (dd, *J* = 10.0, 4.5 Hz, 1H), 3.93-3.82 (m, 1H), 3.81-3.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.78, 138.82, 134.20, 132.73, 129.42, 129.31 (q, *J* = 307.1 Hz, SCF₃), 128.62, 127.85, 117.96, 112.84, 60.51, 42.92. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.26. HRMS (ESI, m/z) calcd for C₁₆H₁₂F₃NO₂S₂ [M+H]⁺ 372.0334, found 372.0330.

Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.65-7.62 (m, 2H), 7.56-7.52 (m, 1H), 7.40-7.36 (m, 2H), 7.29-7.22 (m, 2H), 4.89 (dd, *J* = 10.0, 4.5 Hz, 1H), 3.94-3.86 (m, 4H), 3.83-3.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.17, 141.17, 138.86, 133.97, 130.59, 130.26, 129.45 (q, *J* = 307.0 Hz, SCF₃), 129.25, 127.88, 127.78, 60.82, 52.32, 43.13. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.94. HRMS (ESI, m/z) calcd for C₁₇H₁₅F₃O₄S₂ [M+H]⁺ 405.0437, found 405.0418.

Yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.49 (m, 3H), 7.48-7.41 (m, 2H), 7.41-7.34 (m, 2H), 7.32-7.27 (m, 2H), 4.92 (dd, J = 10.4, 4.4 Hz, 1H), 3.98-3.87 (m, 1H), 3.87-3.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.11, 138.86, 133.95, 131.01 (q, J = 32.6 Hz), 129.40 (q, J = 307.0 Hz, SCF₃), 129.26, 128.22, 127.77, 125.98 (q, J = 3.8 Hz), 123.56 (q, J = 270.8 Hz, CF₃), 60.76, 42.99. ¹⁹F NMR (282 MHz, CDCl₃) δ - 39.89, -62.93. HRMS (ESI, m/z) calcd for C₁₆H₁₂F₆O₂S₂ [M+Na]⁺ 437.0075, found 437.0075.

Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.53 (m, 3H), 7.47-7.37 (m, 2H), 7.34-7.28 (m, 2H), 7.09-7.00 (m, 2H), 4.83 (dd, *J* = 10.3, 4.4 Hz, 1H), 3.94-3.84 (m, 1H), 3.83-3.74 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.99, 135.11, 133.79, 132.17, 129.45 (q, *J* = 307.1 Hz, SCF₃), 129.36, 129.25, 127.82, 123.04, 61.01, 42.98. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.89. HRMS (ESI, m/z) calcd for C₁₅H₁₂BrF₃O₂S₂ [M+Na]⁺ 446.9306, found 446.9302.

Yield: 77%. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.59-7.55 (m, 1H), 7.43-7.39 (m, 2H), 7.17-7.13 (m, 2H), 6.91-6.86 (m, 2H), 4.88 (dd, *J* = 10.3, 4.4 Hz, 1H), 3.92-3.86 (m, 1H), 3.82-3.77 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.92, 161.44, 139.13, 133.82, 131.88, 129.58, 129.50, 129.49 (q, *J* = 306.9 Hz, SCF₃), 129.20, 128.06, 127.85, 116.17, 115.95, 61.25, 42.87. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.97, -112.02. HRMS (ESI, m/z) calcd for C₁₅H₁₂F₄O₂S₂ [M+Na]⁺ 387.0107, found 387.0096.

Yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.58-7.48 (m, 1H), 7.43-7.31 (m, 2H), 7.09-6.96 (m, 4H), 4.83 (dd, *J* = 10.3, 4.3 Hz, 1H), 3.97-3.76 (m, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.16, 138.86, 133.52, 132.79, 129.69, 129.65 (q, *J* = 306.9 Hz, SCF₃) 129.06, 127.91, 127.55, 61.40, 43.37, 21.11. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.06. HRMS (ESI, m/z) calcd for C₁₆H₁₅F₃O₂S₂ [M+Na]⁺ 383.0358, found 383.0360.

Yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.48 (m, 3H), 7.44-7.34 (m, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.92 (d, *J* = 8.5 Hz, 2H), 4.88 (dd, *J* = 10.0, 4.5 Hz, 1H), 3.97-3.85 (m, 1H), 3.85-3.76 (m, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.89, 150.88, 138.93, 133.88, 133.36, 129.53 (q, *J* = 306.9 Hz, SCF₃), 129.28, 128.78, 127.80, 122.22, 61.29, 43.04, 21.12. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.97. HRMS (ESI, m/z) calcd for C₁₇H₁₅F₃O₄S₂ [M+Na]⁺ 427.0256, found 427.0257.

Yield: 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.8 Hz, 2H), 7.58-7.53 (m, 1H), 7.42-7.38 (m, 2H), 7.34-7.31 (m, 1H), 7.23 (s, 1H), 7.15-7.06 (m, 2H), 4.81 (dd, *J* = 10.2, 4.4 Hz, 1H), 3.92-3.85 (m, 1H), 3.80-3.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.80, 138.22, 132.06, 130.66, 130.56, 129.44 (q, *J* = 307.0 Hz, SCF₃), 129.18, 128.03, 127.80, 126.47, 122.96, 60.84, 42.96.¹⁹F NMR (282 MHz, CDCl₃) δ -39.94. HRMS (ESI, m/z) calcd for C₁₅H₁₂BrF₃O₂S₂ [M+Na]⁺ 446.9306, found 446.9301.

Yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.54-7.47 (m, 1H), 7.40-7.32 (m, 2H), 7.10-7.05 (m, 1H), 7.03-6.95 (m, 2H), 6.88 (s, 1H), 4.83 (dd, *J* = 10.3, 4.2 Hz, 1H), 4.06-3.89 (m, 1H), 3.87-3.77 (m, 1H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.12, 138.83, 135.59, 133.61, 129.69, 129.65 (q, *J* = 306.9 Hz, SCF₃), 129.05, 128.97, 128.15, 127.85, 124.84, 61.27, 43.60, 21.22. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.08. HRMS (ESI, m/z) calcd for C₁₆H₁₅F₃O₂S₂ [M+Na]⁺ 383.0358, found 383.0353.

Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.54-7.50 (m, 1H), 7.39-7.35 (m, 2H), 7.13-7.09 (m, 1H), 6.76-6.71 (m, 2H), 6.63-6.61 (m, 1H), 4.82 (dd, *J* = 10.2, 4.4 Hz, 1H), 3.98-3.90 (m, 1H), 3.83-3.76 (m, 1H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.86, 139.08, 137.27, 133.66, 130.16, 129.61 (q, *J* = 306.8 Hz, SCF₃), 129.06, 127.88, 119.92, 114.30, 113.26, 61.24, 55.22, 43.54. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.01. HRMS (ESI, m/z) calcd for C₁₆H₁₅F₃O₃S₂ [M+Na]⁺ 399.0307, found 399.0299.

Yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 2H), 7.61-7.51 (m, 1H), 7.48-7.38 (m, 2H), 7.27-7.23 (m, 2H), 7.21-7.12 (m, 2H), 5.28-5.08 (m, 1H), 4.28-4.08 (m, 1H), 3.88-3.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.57, 133.84, 133.66, 133.25, 130.42, 130.06, 129.65 (q, *J* = 306.9 Hz, SCF₃), 129.17, 128.25, 127.91, 127.33, 62.68, 60.02. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.72. HRMS (ESI, m/z) calcd for C₁₅H₁₂ClF₃O₂S₂ [M+Na]⁺ 402.9812, found 402.9800.

Yield: 31%. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.64-7.55 (m, 1H), 7.54-7.48 m, 2H), 7.34-7.26 (m, 3H), 7.23-7.17 (m, 2H), 4.68 (dd, *J* = 9.9, 3.8 Hz, 1H), 3.87-3.78 (m, 1H), 3.74-3.65 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.94, 134.21, 132.78 (q, *J* = 306.9 Hz, SCF₃), 131.77, 129.36, 129.13, 128.51, 128.19, 121.28, 87.89, 82.54, 61.18, 30.50, 29.69. ¹⁹F NMR (282 MHz, CDCl₃) δ -39.43. HRMS (ESI, m/z) calcd for C₁₇H₁₃F₃O₂S₂ [M+Na]⁺ 393.0201, found 393.0200.

Yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.72-7.62 (m, 1H), 7.61-7.53 (m, 2H), 5.20 (t, *J* = 7.8 Hz, 1H), 3.76 (s, 2H), 3.46 (d, *J* = 7.9 Hz, 2H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.16, 133.88, 130.60 (q, *J* = 306.8 Hz, SCF₃), 129.53, 129.19, 128.44, 128.28, 65.62, 27.36, 16.83. ¹⁹F NMR (282 MHz, CDCl₃) δ - 41.43. HRMS (ESI, m/z) calcd for C₁₂H₁₃F₃O₂S₂ [M+H]⁺ 311.0382, found 311.0394.

Yield: 67% / 61% (from (*E*)-alkene / from (*Z*)-alkene), d.r.=9:1 / d.r.=9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.70-7.62 (m, 1H), 7.58-7.49 (m, 2H), 7.35-7.27 (m, 5H), 5.04 (d, *J* = 3.8 Hz, 1H), 3.48 (m, 1H), 1.43 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.75, 137.65, 134.01, 130.00 (q, *J* = 306.2 Hz, SCF₃), 129.24, 128.99, 128.86, 128.38, 127.78, 65.31, 48.13, 10.28. ¹⁹F NMR (282 MHz, CDCl₃) δ - 40.03. HRMS (ESI, m/z) calcd for C₁₆H₁₅F₃O₂S₂ [M+Na]⁺ 383.0358, found 383.0357.

Yield: 65%, d.r.=7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.8 Hz, 2H), 7.68-7.59 (m, 1H), 7.57-7.48 (m, 2H), 7.43-7.36 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.94 (d, *J* = 4.6 Hz, 1H), 3.51 – 3.39 (m, 1H), 1.44 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.70, 133.99, 131.96, 130.03, 129.60, 129.85 (q, *J* = 305.9 Hz, SCF₃), 129.28, 128.81, 122.52, 64.94, 48.01, 10.79. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.01. HRMS (ESI, m/z) calcd for C₁₆H₁₄BrF₃O₂S₂ [M+Na]⁺ 460.9463, found 460.9468.

Yield: 63%, d.r.>20:1. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.4 Hz, 2H), 7.70-7.59 (m, 1H), 7.57-7.48 (m, 2H), 7.38-7.14 (m, 4H), 5.33-5.21 (m, 1H), 4.24-4.14 (m, 1H), 3.64-3.45 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.20, 137.15, 137.11, 134.21, 129.65 (q, *J* = 307.2 Hz, SCF₃), 129.55, 129.35, 128.87, 128.00, 125.51, 124.70, 70.34, 49.24, 31.86. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.14. HRMS (ESI, m/z) calcd for $C_{16}H_{13}F_{3}O_{2}S_{2}$ [M+Na]⁺ 381.0201, found 381.0206.

Yield: 56%, d.r.=10:1. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.7 Hz, 2H), 7.73-7.63 (m, 1H), 7.64-7.53 (m, 2H), 7.38-7.32 (m, 1H), 7.24-7.17 (m, 2H), 7.13-7.04 (m, 1H), 5.08-4.95 (m, 1H), 3.90-3.79 (m, 1H), 3.27-3.14 (m, 1H), 2.90-2.79 (m, 1H), 2.61-2.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.93, 136.65, 134.14, 130.74, 129.76 (q, *J* = 307.1 Hz, SCF₃), 129.41, 129.28, 129.15, 128.59, 128.57, 126.82, 64.58, 42.07, 24.37, 18.07. ¹⁹F NMR (282 MHz, CDCl₃) δ -41.05. HRMS (ESI, m/z) calcd for C₁₇H₁₅F₃O₂S₂ [M+Na]⁺ 395.0358, found 395.0367.

Yield: 52%, d.r.=9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.5 Hz, 2H), 7.72-7.64 (m, 1H), 7.58-7.51 (m, 2H), 7.26-7.17 (m, 3H), 7.12-7.05 (m, 1H), 5.13 (d, *J* = 4.3 Hz, 1H), 3.60-3.52 (m, 1H), 3.07-2.94 (m, 1H), 2.80-2.70 (m, 1H), 2.43-2.27 (m, 1H), 2.15-2.05 (m, 1H), 1.92-1.75 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.90, 137.95, 134.87, 134.02, 130.75, 130.34, 130.12 (q, *J* = 306.1 Hz, SCF₃), 129.36, 129.30, 128.86, 126.85, 66.28, 48.36, 33.94, 25.02, 22.75. ¹⁹F NMR (282 MHz, CDCl₃) δ -40.58. HRMS (ESI, m/z) calcd for C₁₈H₁₇F₃O₂S₂ [M+Na]⁺ 409.0514, found 409.0514.

Yield: 84%. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6 Hz, 2H), 7.51-7.47 (m, 1H), 7.37-7.33 (m, 2H), 7.14-7.12 (m, 5H), 4.32 (dd, *J* = 9.4, 4.6 Hz, 1H), 3.80-3.68 (m, 1H), 3.68-3.63 (m, 1H), 2.37-2.24 (m, 2H), 1.49-1.38 (m, 2H), 1.31-1.23 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.56, 138.95, 133.37, 128.95, 128.59, 127.91, 127.81, 127.79, 61.58, 43.30, 31.23, 31.04, 21.87, 13.58. HRMS (ESI, m/z) calcd for C₁₈H₂₂O₂S₂ [M+H]⁺ 335.1134, found 335.1136.

Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.3 Hz, 2H), 7.58-7.54 (m, 1H), 7.48-7.46 (m, 2H), 7.42-7.38 (m, 2H), 7.30-7.28 (m, 2H), 4.35 (dd, *J* = 9.7, 4.5Hz, 1H), 3.74-3.62 (m, 2H), 2.36-2.24 (m, 2H), 1.46-1.41 (m, 2H), 1.29-1.24 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.72, 139.32, 133.78, 132.34, 129.19, 128.71, 127.84, 118.37, 111.63, 60.98, 43.00, 31.36, 30.90, 21.80, 13.53. HRMS (ESI,

m/z) calcd for $C_{19}H_{21}NO_2S_2$ [M+H]⁺ 360.1086, found 360.1081.

Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.52-7.48 (m, 1H), 7.37-7.33 (m, 2H), 7.23-7.21 (m, 2H), 4.35 (dd, *J* = 9.6, 4.4 Hz, 1H), 3.90 (s, 3H), 3.78-3.63 (m, 2H), 2.35-2.23 (m, 2H), 1.45-1.41 (m, 2H), 1.29-1.25 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.51, 144.27, 139.35, 133.58, 129.87, 129.55, 129.04, 127.90, 127.89, 61.20, 52.18, 43.01, 31.25, 30.95, 21.83, 13.55. HRMS (ESI, m/z) calcd for C₂₀H₂₄O₄S₂ [M+Na]⁺415.1008, found 415.0999.

Yield: 48%. ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.54-7.45 (m, 1H), 7.44-7.31 (m, 4H), 7.29-7.21 (m, 2H), 4.37 (dd, *J* = 9.7, 4.6 Hz, 1H), 3.85-3.62 (m, 2H), 2.41-2.24 (m, 2H), 1.51-1.41 (m, 2H), 1.35-1.25 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.01, 139.34, 133.54, 129.02, 128.26, 127.76, 125.52, 125.47, 122.01, 61.14, 42.97, 31.30, 30.95, 21.82, 13.53. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.73. HRMS (ESI, m/z) calcd for C₁₉H₂₁F₃O₂S₂ [M+H]⁺403.1008, found 403.1003.

Yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.3 Hz, 2H), 7.56-7.52 (m, 1H), 7.39-7.35 (m, 2H), 7.26-7.24 (m, 2H), 7.02-7.00 (m, 2H), 4.28 (dd, *J* = 9.7, 4.6 Hz, 1H), 3.73-3.61 (m, 2H), 2.36-2.23 (m, 2H), 1.49-1.40 (m, 2H), 1.34-1.22 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.44, 138.01, 133.42, 131.66, 129.56, 129.05, 127.83, 121.68, 61.38, 42.76, 31.22, 30.99, 21.85, 13.58. HRMS (ESI, m/z) calcd for C₁₈H₂₁BrO₂S₂ [M+H]⁺ 413.0239, found 413.0236.

Yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.4 Hz, 2H), 7.55-7.51 (m, 1H), 7.40-7.35 (m, 2H), 7.14-7.09 (m, 2H), 6.86-6.81 (m, 2H), 4.32 (dd, *J* = 9.7, 4.5 Hz, 1H), 3.75-3.61 (m, 2H), 2.38-2.23 (m, 2H), 1.50-1.39 (m, 2H), 1.33-1.23 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.28, 160.83, 139.51, 134.71, 133.48, 129.54, 129.46, 129.01, 127.85, 115.60, 115.38, 61.55, 42.58, 31.21, 31.00, 21.87, 13.59. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.10. HRMS (ESI, m/z) calcd for C₁₈H₂₁FO₂S₂ [M+H]⁺ 353.1040, found 353.1044.

Yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.58 (m, 2H), 7.56-7.46 (m, 1H), 7.40-7.29 (m, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 4.30 (dd, *J* = 9.5, 4.6 Hz, 1H), 3.80-3.60 (m, 2H), 2.37-2.30 (m, 2H), 2.26 (s, 3H), 1.50-1.40 (m, 2H), 1.32-1.26 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 139.65, 137.48, 135.85, 133.18, 129.24, 128.88, 127.94, 127.69, 61.72, 42.99, 31.19, 31.08, 21.89, 21.07, 13.60. HRMS (ESI, m/z) calcd for C₁₉H₂₄O₂S₂ [M+Na]⁺ 371.1110, found 371.1115.

Yield: 52%. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.3 Hz, 2H), 7.53-7.49 (m, 1H), 7.39-7.35 (m, 2H), 7.14-7.11 (m, 2H), 6.88-6.85 (m, 2H), 4.33 (dd, *J* = 9.3, 4.8 Hz, 1H), 3.76-3.62 (m, 2H), 2.34-2.28 (m, 2H), 2.27 (s, 3H), 1.47-1.42 (m, 2H), 1.33-1.25 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.08, 150.05, 139.41, 136.46, 133.53, 129.08, 128.80, 127.83, 121.69, 61.66, 42.78, 31.27, 31.00, 21.87, 21.16, 13.59. HRMS (ESI, m/z) calcd for C₂₀H₂₄O₄S₂ [M+NH₄]⁺ 410.1454, found 410.1458.

Yield: 57%. ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.59 (m, 2H), 7.57-7.49 (m, 1H), 7.45-7.33 (m, 2H), 7.29-7.18 (m, 2H), 7.15-6.99 (m, 2H), 4.26 (dd, *J* = 9.5, 4.7 Hz, 1H), 3.79-3.57 (m, 2H), 2.41-2.24 (m, 2H), 1.53-1.39 (m, 2H), 1.39-1.23 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 141.26, 139.27, 133.63, 130.92, 130.80, 130.07, 128.96, 127.81, 126.60, 122.61, 61.19, 42.90, 31.31, 30.96, 21.83, 13.55. HRMS (ESI, m/z) calcd for C₁₈H₂₁BrO₂S₂ [M+H]⁺413.0239, found 413.0248.

Yield: 70%. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.55 (m, 2H), 7.51-7.44 (m, 1H), 7.38-7.28 (m, 2H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.97-6.89 (m, 2H), 6.86 (s, 1H), 4.27 (dd, *J* = 9.4, 4.7 Hz, 1H), 3.84-3.71 (m, 1H), 3.69-3.58 (m, 1H), 2.35-2.28 (m, 2H), 2.18 (s, 3H), 1.52-1.39 (m, 2H), 1.33-1.24 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.56, 138.68, 138.18, 133.27, 128.77, 128.57, 128.44, 128.28, 127.88, 125.01, 61.51, 43.29, 31.26, 31.06, 21.87, 21.26, 13.58. HRMS (ESI, m/z) calcd for

 $C_{19}H_{24}O_2S_2$ [M+H]⁺ 349.1290, found 349.1296.

Yield: 41%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.4 Hz, 2H), 7.52-7.48 (m, 1H), 7.38-7.34 (m, 2H), 7.09-7.05 (m, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.62 (s, 1H), 4.28 (dd, *J* = 9.4, 4.7 Hz, 1H), 3.78-3.71 (m, 1H), 3.70 (s, 3H), 3.69-3.61 (m, 1H), 2.42-2.23 (m, 2H), 1.48-1.40 (m, 2H), 1.36-1.26 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.66, 140.50, 139.62, 133.30, 129.57, 128.86, 127.92, 120.32, 113.35, 113.22, 61.60, 55.14, 43.38, 31.29, 31.05, 21.86, 13.56. HRMS (ESI, m/z) calcd for C₁₉H₂₄O₃S₂ [M+H]⁺ 365.1240, found 365.1242.

Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.55-7.48 (m, 1H), 7.43-7.35 (m, 2H), 7.24-7.20 (m, 2H), 7.10-7.05 (m, 2H), 4.88-4.76 (m, 1H), 3.94-3.81 (m, 1H), 3.69-3.64 (m, 1H), 2.47-2.32 (m, 2H), 1.53-1.41 (m, 2H), 1.33-1.26 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.01, 136.63, 133.57, 133.49, 129.82, 129.05, 129.01, 128.80, 128.01, 127.19, 60.62, 52.55, 31.54, 31.20, 21.87, 13.57. HRMS (ESI, m/z) calcd for C₁₈H₂₁ClO₂S₂ [M+H]⁺ 369.0744, found 369.0744.

Yield: 51%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.69-7.59 (m, 1H), 7.58-7.50 (m, 2H), 5.23 (t, *J* = 7.8 Hz, 1H), 5.04 (t, *J* = 7.1 Hz, 1H), 3.77 (s, 2H), 3.06 (d, *J* = 7.8 Hz, 2H), 2.41-2.31 (m, 2H), 2.28-2.13 (m, 2H), 2.12-2.01 (m, 2H), 1.66 (s, 3H), 1.58 (s, 3H), 1.55-1.44 (m, 2H), 1.43-1.31 (m, 2H), 0.90 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.59, 133.60, 132.79, 132.70, 130.12, 129.07, 128.50, 122.97, 63.14, 31.62, 31.35, 29.75, 29.10, 26.65, 25.65, 22.00, 17.73, 13.69. HRMS (ESI, m/z) calcd for C₂₀H₃₀O₂S₂ [M+H]⁺ 367.1760, found 367.1754.

Yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 2H), 7.66-7.61 (m, 1H), 7.56-7.52 (m, 2H), 5.20 (t, *J* = 7.7 Hz, 1H), 3.76 (s, 2H), 3.04 (d, *J* = 7.5 Hz, 2H), 2.39 -2.33 (m, 2H), 1.81 (s, 3H), 1.51-1.44 (m, 2H), 1.38-1.34 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.46, 133.68, 132.19, 129.09, 128.43, 126.01, 65.91, 31.58, 31.07, 29.13, 22.04, 16.85, 13.71. HRMS (ESI, m/z) calcd for C₁₅H₂₂O₂S₂ [M+H]⁺299.1134, found 299.1132.

Yield: 45% / 48% (from (*E*)-alkene / from (*Z*)-alkene), d.r.>20:1 / d.r.>20:1. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.3 Hz, 2H), 7.63-7.55 (m, 1H), 7.51-7.43 (m, 2H), 7.36-7.29 (m, 2H), 7.28 -7.17 (m, 3H), 4.55 (d, *J* = 4.6 Hz, 1H), 3.52-3.41 (m, 1H), 2.26 (m, 2H), 1.53-1.38 (m, 5H), 1.31-123 (m, 2H), 0.82 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.15, 138.58, 133.40, 129.78, 128.87, 128.58, 128.38, 127.59, 66.06, 48.84, 31.42, 31.00, 21.89, 13.59, 10.50. HRMS (ESI, m/z) calcd for C₁₉H₂₄O₂S₂ [M+Na]⁺ 371.1110, found 371.1110.

Yield: 51%, d.r.=12:1. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.62-7.55 (m, 1H), 7.47-7.41 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.43 (d, *J* = 5.7 Hz, 1H), 3.50-3.39 (m, 1H), 2.32-2.17 (m, 2H), 1.48 (d, *J* = 7.1 Hz, 3H), 1.45-1.38 (m, 2H), 1.30-1.22 (m, 2H), 0.82 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.18, 138.62, 133.34, 131.61, 130.14, 128.95, 128.65, 121.50, 65.71, 48.65, 31.36, 30.95, 21.87, 13.58, 10.97. HRMS (ESI, m/z) calcd for C₁₉H₂₃BrO₂S₂ [M+H]⁺ 427.0396, found 427.0392.

Yield: 57%, d.r.>20:1. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.8 Hz, 2H), 7.63-7.58 (m, 1H), 7.53-7.49 (m, 2H), 7.29-7.26 (m, 1H), 7.18-7.08 (m, 3H), 4.78 (d, J = 2.9 Hz, 1H), 4.02 -3.96 (m, 1H), 3.46-3.44 (m, 2H), 2.52-2.34 (m, 2H), 1.55-1.43 (m, 2H), 1.37-1.27 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.51, 139.36, 137.59, 133.88, 129.18, 128.85, 128.34, 127.50, 125.14, 124.31, 71.18, 49.80, 32.49, 31.36, 31.16, 22.01, 13.65. HRMS (ESI, m/z) calcd for C₁₉H₂₂O₂S₂ [M+H]⁺ 347.1134, found 347.1135.

Yield: 56%, d.r.=14:1. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 2H), 7.68-7.60 (m, 1H), 7.57-7.46 m, 2H), 7.28-7.22 (m, 1H), 7.18-7.07 (m, 2H), 7.02 (d, *J* = 6.7 Hz, 1H), 4.52-4.41 (m, 1H), 3.68-3.62 (m, 1H), 3.05-2.94 (m, 1H), 2.90-2.76 (m, 1H), 2.55-2.42 (m, 1H), 2.37-2.16 (m, 3H), 1.48-1.36 (m, 2H), 1.31-1.23 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.09, 136.35, 133.80, 133.36, 130.04,

129.20, 128.76, 128.54, 127.35, 126.28, 64.97, 41.13, 31.89, 31.20, 25.19, 21.96, 19.71, 13.62. HRMS (ESI, m/z) calcd for C₂₀H₂₄O₂S₂ [M+Na]⁺ 383.1110, found 383.1122.

Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.3 Hz, 2H), 7.52-7.48 (m, 1H), 7.38-7.33 (m, 2H), 7.18-7.11 (m, 5H), 4.24 (dd, *J* = 9.3, 4.8 Hz, 1H), 3.81-3.65 (m, 2H), 1.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.48, 138.43, 133.46, 129.00, 128.63, 127.92, 127.88, 127.82, 61.17, 44.98, 14.87. HRMS (ESI, m/z) calcd for C₁₅H₁₆O₂S₂ [M+H]⁺ 293.0664, found 293.0677.

Yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.53-7.48 (m, 1H), 7.38-7.26 (m, 5H), 7.23-7.15 (m, 5H), 7.16-7.06 (m, 2H), 4.20 (dd, *J* = 9.2, 4.8 Hz, 1H), 3.80-3.41 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 139.43, 138.64, 137.13, 133.40, 128.97, 128.95, 128.67, 128.62, 128.00, 127.93, 127.92, 127.31, 61.41, 43.06, 36.05. HRMS (ESI, m/z) calcd for C₂₁H₂₀O₂S₂ [M+H]⁺ 369.0977, found 369.0977.

Yield: 92%. ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 7.3 Hz, 2H), 7.50-7.44 (m, 1H), 7.33-7.25 (m, 6H), 7.16-6.98 (m, 6H), 4.65 (dd, *J* = 10.4, 3.8 Hz, 1H), 3.92-3.77 (m, 1H), 3.72-3.60 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 139.28, 137.27, 133.34, 133.19, 132.74, 129.25, 128.91, 128.56, 128.36, 128.03, 127.91, 127.88, 60.54, 47.28. HRMS (ESI, m/z) calcd for C₂₀H₁₈O₂S₂ [M+H]⁺ 355.0821, found 355.0823.

Yield: 84%. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.1 Hz, 2H), 7.47-7.42 (m, 1H), 7.32-7.25 (m, 3H), 7.20-7.16 (m, 2H), 7.12-7.05 (m, 6H), 4.57 (dd, *J* = 10.5, 3.8 Hz, 1H), 3.89-3.77 (m, 1H), 3.69-3.59 (m, 1H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.32, 138.78, 137.38, 133.82, 133.28, 130.04, 128.95, 128.86, 128.51, 127.95, 127.92, 127.88, 60.51, 47.68, 21.21. HRMS (ESI, m/z) calcd for C₂₁H₂₀O₂S₂ [M+H]⁺ 369.0977, found 369.0979.

Yield: 65%. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 7.3 Hz, 2H), 7.51-7.47 (m, 1H), 7.39-7.30 (m, 4H), 7.15-7.04 (m, 7H), 4.63 (dd, *J* = 10.1, 4.1 Hz, 1H), 3.89-3.77 (m, 1H), 3.68-3.58 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 139.69, 137.67, 135.22, 133.94, 132.79, 129.45, 129.10, 128.64, 128.64, 128.37, 128.35, 123.28, 60.99, 47.85. HRMS (ESI, m/z) calcd for C₂₀H₁₇BrO₂S₂ [M+Na]⁺ 454.9746, found 454.9743.

Yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.56-7.48 (m, 1H), 7.42-7.33 (m, 2H), 7.20-7.12 (m, 5H), 6.78-6.66 (m, 1H), 5.74 (d, *J* = 15.5 Hz, 1H), 4.31-4.16 (m, 3H), 3.78-3.57 (m, 2H), 3.11-2.89 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.79, 142.61, 139.33, 138.21, 133.56, 129.06, 128.81, 128.18, 128.03, 127.95, 123.62, 61.34, 60.57, 42.85, 32.33, 14.28. HRMS (ESI, m/z) calcd for C₂₀H₂₂O4S₂ [M+H]⁺ 391.1032, found 391.1035.

Yield: 72%. ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.3 Hz, 2H), 7.20-7.05 (m, 7H), 4.30 (dd, *J* = 9.4, 4.6 Hz, 1H), 3.79-3.68 (m, 1H), 3.66-3.57 (m, 1H), 2.37 (s, 3H), 2.34-2.20 (m, 2H), 1.49-1.38 (m, 2H), 1.36-1.23 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.37, 139.11, 136.54, 129.57, 128.56, 127.97, 127.82, 127.62, 61.65, 43.29, 31.22, 31.05, 21.89, 21.58, 13.60. HRMS (ESI, m/z) calcd for C₁₉H₂₄O₂S₂ [M+Na]⁺ 371.1110, found 371.1121.

Yield: 56%. ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.46 (m, 2H), 7.32-7.27 (m, 2H), 7.21 -7.13 (m, 3H), 7.12-7.08 (m, 2H), 4.30 (dd, *J* = 9.7, 4.6 Hz, 1H), 3.80-3.70 (m, 1H), 3.70-3.61 (m, 1H), 2.36-2.25 (m, 2H), 1.50-1.37 (m, 2H), 1.37-1.20 (m, 3H), 0.84 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.09, 138.64, 137.95, 130.95, 129.40, 129.16, 128.67, 127.84, 61.59, 43.37, 31.24, 31.04, 21.88, 13.59. HRMS (ESI, m/z) calcd for C₁₈H₂₁ClO₂S₂ [M+Na]⁺ 391.0564, found 391.0562.

Yield: 80%. ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.25 (m, 5H), 3.91 (dd, *J* = 8.2, 6.4 Hz, 1H), 3.01-2.82 (m, 2H), 2.54-2.40 (m, 2H), 1.51-1.44 (m, 2H), 1.37-1.25 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 134.71, 129.17, 128.56, 127.48, 119.97, 39.19, 37.64, 32.75, 31.55, 21.83, 13.59. HRMS (ESI, m/z) calcd for C₁₃H₁₇NS [M+H]⁺ 220.1154, found 220.1155.

Yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.25 (m, 2H), 7.21-7.09 (m, 3H), 5.63 (m, 1H), 5.03-4.87 (m, 2H), 2.88-2.68 (m, 3H), 2.62-2.52 (m, 1H), 2.45-2.32 (m, 3H), 1.53-1.44 (m, 2H), 1.38-1.28 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.76, 136.30, 128.38, 127.68, 126.57, 116.52, 46.00, 39.70, 38.54, 32.48, 31.76, 21.98, 13.68. HRMS (ESI, m/z) calcd for C₁₅H₂₂S [M+H]⁺ 235.1515, found 235.1514.

IPrAuSCF₃ (8)

¹H NMR (400 MHz, CD₃CN) δ 7.62-7.48 (m, 4H), 7.45-7.32 (m, 4H), 2.56 (m, 4H), 1.29 (d, J = 6.9 Hz, 12H), 1.23 (d, J = 6.9 Hz, 12H). ¹³C NMR (100 MHz, CD₃CN) δ 165.45, 145.94, 133.99, 130.63, 124.12, 117.32, 28.63, 23.54, 23.12(SCF₃ was not observed). ¹⁹F NMR (282 MHz, CDCl₃) δ -22.49. HRMS (ESI, m/z) calcd for C₂₈H₃₆Au F₃N₂S [M+H]⁺ 687.2290, found 687.2293.

Known compound⁵. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.5 Hz, 2H), 7.53-7.45 (m, 1H), 7.40-7.25 (m, 8H), 7.24-7.19 (m, 2H), 7.12-7.06 (m, 2H), 7.04 (s, 1H).

(5) Russell, G. A.; Ngoviwatchai, P.; Tashtoush, H. 1.; Pla-Dalmau, A.; Khanna, R. K. *J. Am. Chem. Soc.* **1988**, *110*, 3530.

NMR spectra for the products

S22

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

 $\label{eq:chemical Formula: C_{15}H_{13}F_3O_2S_2 \\ Exact Mass: 346.0309 \\ Molecular Weight: 346.3822 \\ m/z: 346.0309 \ (100.0\%), \ 347.0343 \ (16.2\%), \ 348.0267 \ (9.0\%), \\ 347.0303 \ (1.6\%), \ 349.0301 \ (1.5\%), \ 348.0376 \ (1.2\%) \\ Elemental Analysis: C, \ 52.01; \ H, \ 3.78; \ F, \ 16.45; \ O, \ 9.24; \ S, \ 18.51 \\ \end{array}$

HRMS (ESI, m/z) calcd for C₁₅H₁₃F₃O₂S₂ [M+NH₄]⁺ 364.0647, found 364.0630.

HRMS (ESI, m/z) calcd for C₁₆H₁₂F₃NO₂S₂ [M+H]⁺ 372.0334, found 372.0330.

Chemical Formula: C₁₇H₁₅F₃O₄S₂ Exact Mass: 404.0364 Molecular Weight: 404.4182 m/z: 404.0364 (100.0%), 405.0397 (18.4%), 406.0322 (9.0%), 407.0355 (1.7%), 405.0358 (1.6%), 406.0431 (1.6%) Elemental Analysis: C, 50.49; H, 3.74; F, 14.09; O, 15.82; S, 15.85

HRMS (ESI, m/z) calcd for $C_{17}H_{15}F_3O_4S_2$ [M+H]⁺405.0437, found 405.0418.

HRMS (ESI, m/z) calcd for $C_{16}H_{12}F_6O_2S_2$ [M+Na]⁺ 437.0075, found 437.0075.

 $\label{eq:chemical Formula: C_{15}H_{12}BrF_3O_2S_2\\ Exact Mass: 423.9414\\ Molecular Weight: 425.2782\\ m/z: 423.9414 \ (100.0\%), 425.9394 \ (97.3\%), 424.9448 \ (16.2\%), 426.9427 \ (15.8\%), 425.9372 \ (9.0\%), 427.9352 \ (8.8\%), 424.9408 \ (1.6\%), 426.9388 \ (1.6\%), 426.9406 \ (1.5\%), 428.9385 \ (1.4\%), 425.9481 \ (1.2\%), 427.9461 \ (1.2\%)\\ Elemental Analysis: C, 42.36; H, 2.84; Br, 18.79; F, 13.40; O, 7.52; S, 15.08\\ \end{array}$

HRMS (ESI, m/z) calcd for $C_{15}H_{12}BrF_3O_2S_2$ [M+Na]⁺ 446.9306, found 446.9302.

 $\label{eq:chemical Formula: C_{15}H_{12}F_4O_2S_2 \\ Exact Mass: 364.0215 \\ Molecular Weight: 364.3726 \\ m/z: 364.0215 \ (100.0\%), \ 365.0248 \ (16.2\%), \ 366.0173 \ (9.0\%), \ 365.0209 \ (1.6\%), \\ 367.0206 \ (1.5\%), \ 366.0282 \ (1.2\%) \\ Elemental Analysis: C, \ 49.45; \ H, \ 3.32; \ F, \ 20.86; \ O, \ 8.78; \ S, \ 17.60 \\ \end{tabular}$

HRMS (ESI, m/z) calcd for C₁₅H₁₂F₄O₂S₂ [M+Na]⁺ 387.0107, found 387.0096.

S41

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

HRMS (ESI, m/z) calcd for $C_{16}H_{15}F_3O_2S_2$ [M+Na]⁺ 383.0358, found 383.0360.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{17}H_{15}F_3O_4S_2 \\ \mbox{Exact Mass: } 404.0364 \\ \mbox{Molecular Weight: } 404.4182 \\ \mbox{m/z: } 404.0364 \ (100.0\%), \ 405.0397 \ (18.4\%), \ 406.0322 \ (9.0\%), \\ \mbox{407.0355 } (1.7\%), \ 405.0358 \ (1.6\%), \ 406.0431 \ (1.6\%) \\ \mbox{Elemental Analysis: C, } 50.49; \ \mbox{H, } 3.74; \ \mbox{F, } 14.09; \ \mbox{O, } 15.82; \ \mbox{S, } 15.85 \end{array}$

HRMS (ESI, m/z) calcd for C₁₇H₁₅F₃O₄S₂ [M+Na]⁺ 427.0256, found 427.0257.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{15}H_{12}BrF_{3}O_{2}S_{2} \\ \mbox{Exact Mass: } 423.9414 \\ \mbox{Molecular Weight: } 425.2782 \\ \mbox{m/z: } 423.9414 \ (100.0\%), \ 425.9394 \ (97.3\%), \ 424.9448 \ (16.2\%), \ 426.9427 \ (15.8\%), \\ \ 425.9372 \ (9.0\%), \ 427.9352 \ (8.8\%), \ 424.9408 \ (1.6\%), \ 426.9388 \ (1.6\%), \\ \ 426.9406 \ (1.5\%), \ 428.9385 \ (1.4\%), \ 425.9481 \ (1.2\%), \ 427.9461 \ (1.2\%) \\ \mbox{Elemental Analysis: C, } \ 42.36; \ \mbox{H, } 2.84; \ \mbox{Br, } 18.79; \ \mbox{F, } 13.40; \ \mbox{O, } 7.52; \ \mbox{S, } 15.08 \end{array}$

HRMS (ESI, m/z) calcd for C₁₅H₁₂BrF₃O₂S₂ [M+Na]⁺ 446.9306, found 446.9301.

HRMS (ESI, m/z) calcd for $C_{16}H_{15}F_3O_2S_2$ [M+Na]⁺ 383.0358, found 383.0353.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{16}H_{15}F_3O_3S_2 \\ & \mbox{Exact Mass: } 376.0415 \\ \mbox{Molecular Weight: } 376.4082 \\ \mbox{m/z: } 376.0415 \ (100.0\%), \ 377.0448 \ (17.3\%), \ 378.0373 \ (9.0\%), \ 377.0409 \ (1.6\%), \\ & \ 379.0406 \ (1.6\%), \ 378.0482 \ (1.4\%) \\ \mbox{Elemental Analysis: C, } 51.06; \mbox{H, } 4.02; \mbox{F, } 15.14; \mbox{O, } 12.75; \mbox{S, } 17.03 \\ \end{array}$

HRMS (ESI, m/z) calcd for C₁₆H₁₅F₃O₃S₂ [M+Na]⁺ 399.0307, found 399.0299.

Chemical Formula: C₁₅H₁₂ClF₃O₂S₂ Exact Mass: 379.9919 Molecular Weight: 380.8242 m/z: 379.9919 (100.0%), 381.9890 (32.0%), 380.9953 (16.2%), 381.9877 (9.0%), 382.9923 (5.2%), 383.9848 (2.9%), 380.9913 (1.6%), 382.9911 (1.5%), 381.9986 (1.2%) Elemental Analysis: C, 47.31; H, 3.18; Cl, 9.31; F, 14.97; O, 8.40; S, 16.84

HRMS (ESI, m/z) calcd for $C_{15}H_{12}ClF_3O_2S_2$ [M+Na]⁺ 402.9812, found 402.9800.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{17}H_{13}F_3O_2S_2 \\ \mbox{Exact Mass: } 370.0309 \\ \mbox{Molecular Weight: } 370.4042 \\ \mbox{m/z: } 370.0309 \ (100.0\%), \ 371.0343 \ (18.4\%), \ 372.0267 \ (9.0\%), \ 373.0301 \ (1.7\%), \\ \mbox{} 371.0303 \ (1.6\%), \ 372.0376 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 55.13; \ H, \ 3.54; \ F, \ 15.39; \ O, \ 8.64; \ S, \ 17.31 \end{array}$

HRMS (ESI, m/z) calcd for $C_{17}H_{13}F_3O_2S_2$ [M+Na]⁺ 393.0201, found 393.0200.

HRMS (ESI, m/z) calcd for $C_{12}H_{13}F_3O_2S_2$ [M+H]⁺ 311.0382, found 311.0394.

nj Vol ata Filename	Unavailable L7-63-2b.d	InjPosition ACQ Method	Unavailable	SampleType Comment	Unavailable Sample information is unavailable	IRM Calibration Status Acquired Time	Success Unavailable
×10 5 +E	SI Scan (1.38	0 min) Frag=13	5.0V L7-63-2b	d Subtract (5)			
1.55-		383.03	57				
1.5-		000.00					
1.45							
1.4-				~		SCFa	
1.35					2	= 0	
1.3-				1. A.	~	$\dot{\sim}$	
1.25						\checkmark	
1.2-							
1.131							22
1.05						\sim $_{2}$ SO ₂ PI	า ั
1.00					\sim	30 -	
0.95							
0.9-							
0.85		18					
0.8							
0.75				×.			
0.7		1					
0.65							
0.6							
0.55-		5					
0.5							
0.45-							
0.35							
0.3							
0.25							
0.2							
0.15		1					
0.1			1				
0.05			1 20 2				11
0		240.000.000	100 420 44	0 460 490 500	520 540 560 58	30 600 620 640 6	50 680 700
2	50 300 320	340 380 380	400 420 44 Col	unts vs. Mass-to-Ch	arge (m/z)		an annaith 202320
0 2	80 300 320	340 360 380	400 420 44 Col	0 460 480 500 s unts vs. Mass-to-Ch	520 540 560 58 arge (m/z)	30 600 620 640 66	50 68

HRMS (ESI, m/z) calcd for $C_{16}H_{15}F_3O_2S_2$ [M+Na]⁺ 383.0358, found 383.0357.

S68

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

 $\begin{array}{c} \mbox{Chemical Formula: } C_{16}H_{14}\mbox{Br}_{3}\mbox{O}_{2}\mbox{S}_{2} \\ \mbox{Exact Mass: } 437.9571 \\ \mbox{Molecular Weight: } 439.3052 \\ \mbox{m/z: } 437.9571 \ (100.0\%), \ 439.9550 \ (97.3\%), \ 438.9604 \ (17.3\%), \ 440.9584 \ (16.8\%), \\ \mbox{439.9529 } \ (9.0\%), \ 441.9508 \ (8.8\%), \ 438.9565 \ (1.6\%), \ 440.9544 \ (1.6\%), \\ \mbox{442.9542 } \ (1.5\%), \ 440.9562 \ (1.5\%), \ 441.9617 \ (1.4\%), \ 439.9638 \ (1.1\%) \\ \mbox{Elemental Analysis: C, } \ 43.75; \ \mbox{H}, \ 3.21; \ \mbox{Br}, \ 18.19; \ \mbox{F}, \ 12.97; \ \mbox{O}, \ 7.28; \ \mbox{S}, \ 14.60 \end{array}$

HRMS (ESI, m/z) calcd for C₁₆H₁₄BrF₃O₂S₂ [M+Na]⁺ 460.9463, found 460.9468.

S71

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

 $\begin{array}{c} \mbox{Chemical Formula: } C_{16}H_{13}F_3O_2S_2 \\ \mbox{Exact Mass: } 358.0309 \\ \mbox{Molecular Weight: } 358.3932 \\ \mbox{m/z: } 358.0309 \ (100.0\%), \ 359.0343 \ (17.3\%), \ 360.0267 \ (9.0\%), \ 359.0303 \ (1.6\%), \\ \mbox{361.0301 \ (1.6\%), } 360.0376 \ (1.4\%) \\ \mbox{Elemental Analysis: } C, \ 53.62; \ H, \ 3.66; \ F, \ 15.90; \ O, \ 8.93; \ S, \ 17.89 \end{array}$

HRMS (ESI, m/z) calcd for $C_{16}H_{13}F_3O_2S_2$ [M+Na]⁺ 381.0201, found 381.0206.

S74

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 fl (ppm)

 $\begin{array}{c} \mbox{Chemical Formula: } C_{17}H_{15}F_3O_2S_2 \\ \mbox{Exact Mass: } 372.0466 \\ \mbox{Molecular Weight: } 372.4202 \\ \mbox{m/z: } 372.0466 \ (100.0\%), \ 373.0499 \ (18.4\%), \ 374.0424 \ (9.0\%), \ 375.0457 \ (1.7\%), \\ \mbox{} 373.0459 \ (1.6\%), \ 374.0533 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 54.83; \ H, \ 4.06; \ F, \ 15.30; \ O, \ 8.59; \ S, \ 17.22 \end{array}$

HRMS (ESI, m/z) calcd for C₁₇H₁₅F₃O₂S₂ [M+Na]⁺ 395.0358, found 395.0367.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

 $\begin{array}{c} \mbox{Chemical Formula: } C_{18}H_{17}F_3O_2S_2 \\ \mbox{Exact Mass: } 386.0622 \\ \mbox{Molecular Weight: } 386.4472 \\ \mbox{m/z: } 386.0622 \ (100.0\%), \ 387.0656 \ (19.5\%), \ 388.0580 \ (9.0\%), \ 388.0689 \ (1.8\%), \\ \ 389.0614 \ (1.8\%), \ 387.0616 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 55.95; \ H, \ 4.43; \ F, \ 14.75; \ O, \ 8.28; \ S, \ 16.59 \end{array}$

HRMS (ESI, m/z) calcd for $C_{18}H_{17}F_3O_2S_2$ [M+Na]⁺ 409.0514, found 409.0514.

Exact Mass: 334.1061 Molecular Weight: 334.4920 m/z: 334.1061 (100.0%), 335.1095 (19.5%), 336.1019 (9.0%), 336.1128 (1.8%), 337.1053 (1.8%), 335.1055 (1.6%) Elemental Analysis: C, 64.63; H, 6.63; O, 9.57; S, 19.17

HRMS (ESI, m/z) calcd for C₁₈H₂₂O₂S₂ [M+H]⁺ 335.1134, found 335.1136.

 $\begin{array}{c} \mbox{Chemical Formula: $C_{19}H_{21}NO_2S_2$} \\ \mbox{Exact Mass: 359.1014} \\ \mbox{Molecular Weight: 359.5020} \\ \mbox{m/z: 359.1014 (100.0\%), 360.1047 (20.5\%), 361.0972 (9.0\%), 361.1081 (2.0\%), $$ 362.1005 (1.9\%), 360.1008 (1.6\%) \\ \mbox{Elemental Analysis: C, 63.48; H, 5.89; N, 3.90; O, 8.90; S, 17.84} \end{array}$

HRMS (ESI, m/z) calcd for $C_{19}H_{21}NO_2S_2$ [M+H]⁺ 360.1086, found 360.1081.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

HRMS (ESI, m/z) calcd for $C_{20}H_{24}O_4S_2$ [M+Na]⁺ 415.1008, found 415.0999.

HRMS (ESI, m/z) calcd for $C_{19}H_{21}F_3O_2S_2$ [M+H]⁺403.1008, found 403.1003.

Chemical Formula: C₁₈H₂₁BrO₂S₂ Exact Mass: 412.0166 Molecular Weight: 413.3880

m/z: 412.0166 (100.0%), 414.0146 (97.3%), 413.0200 (19.5%), 415.0179 (18.9%), 414.0124 (9.0%), 416.0104 (8.8%), 416.0213 (1.7%), 417.0137 (1.7%), 413.0160 (1.6%), 415.0140 (1.6%), 415.0158 (1.5%), 414.0233 (1.1%) Elemental Analysis: C, 52.30; H, 5.12; Br, 19.33; O, 7.74; S, 15.51

HRMS (ESI, m/z) calcd for C₁₈H₂₁BrO₂S₂ [M+H]⁺413.0239, found 413.0236.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Chemical Formula: C₁₈H₂₁FO₂S₂ Exact Mass: 352.0967 Molecular Weight: 352.4824 m/z: 352.0967 (100.0%), 353.1001 (19.5%), 354.0925 (9.0%), 354.1034 (1.8%), 355.0959 (1.8%), 353.0961 (1.6%) Elemental Analysis: C, 61.34; H, 6.01; F, 5.39; O, 9.08; S, 18.19

HRMS (ESI, m/z) calcd for $C_{18}H_{21}FO_2S_2$ [M+H]⁺ 353.1040, found 353.1044.

S94

HRMS (ESI, m/z) calcd for C₁₉H₂₄O₂S₂ [M+Na]⁺ 371.1110, found 371.1115.

Exact Mass: 392.1116 Molecular Weight: 392.5280 m/z: 392.1116 (100.0%), 393.1150 (21.6%), 394.1074 (9.0%), 394.1183 (2.2%), 395.1108 (2.0%), 393.1110 (1.6%) Elemental Analysis: C, 61.20; H, 6.16; O, 16.30; S, 16.34

HRMS (ESI, m/z) calcd for $C_{20}H_{24}O_4S_2$ [M+NH₄]⁺ 410.1454, found 410.1458.

HRMS (ESI, m/z) calcd for $C_{18}H_{21}BrO_2S_2$ [M+H]⁺413.0239, found 413.0248.

 $\label{eq:chemical Formula: C_{19}H_{24}O_2S_2 \\ Exact Mass: 348.1218 \\ Molecular Weight: 348.5190 \\ m/z: 348.1218 (100.0\%), 349.1251 (20.5\%), 350.1176 (9.0\%), 350.1285 (2.0\%), \\ 351.1209 (1.9\%), 349.1212 (1.6\%) \\ Elemental Analysis: C, 65.48; H, 6.94; O, 9.18; S, 18.40 \\ \end{array}$

HRMS (ESI, m/z) calcd for $C_{19}H_{24}O_2S_2$ [M+H]⁺ 349.1290, found 349.1296.

 $\begin{array}{c} \mbox{Chemical Formula: $C_{19}H_{24}O_3S_2$} \\ \mbox{Exact Mass: 364.1167} \\ \mbox{Molecular Weight: 364.5180} \\ \mbox{m/z: 364.1167 (100.0\%), 365.1200 (20.5\%), 366.1125 (9.0\%), 366.1234 (2.0\%), 367.1158 (1.9\%), 365.1161 (1.6\%)$} \\ \mbox{Elemental Analysis: C, 62.61; H, 6.64; O, 13.17; S, 17.59} \end{array}$

HRMS (ESI, m/z) calcd for C₁₉H₂₄O₃S₂ [M+H]⁺ 365.1240, found 365.1242.

Chemical Formula: C₁₈H₂₁ClO₂S₂ Exact Mass: 368.0671 Molecular Weight: 368.9340 m/z: 368.0671 (100.0%), 370.0642 (32.0%), 369.0705 (19.5%), 370.0629 (9.0%), 371.0676 (6.2%), 372.0600 (2.9%), 370.0739 (1.8%), 371.0663 (1.8%), 369.0665 (1.6%) Elemental Analysis: C, 58.60; H, 5.74; Cl, 9.61; O, 8.67; S, 17.38

HRMS (ESI, m/z) calcd for C₁₈H₂₁ClO₂S₂ [M+H]⁺ 369.0744, found 369.0744.

S106

 $\begin{array}{c} \mbox{Chemical Formula: } C_{20}H_{30}O_2S_2 \\ \mbox{Exact Mass: } 366.1687 \\ \mbox{Molecular Weight: } 366.5780 \\ \mbox{m/z: } 366.1687 \ (100.0\%), \ 367.1721 \ (21.6\%), \ 368.1645 \ (9.0\%), \\ \ 368.1754 \ (2.2\%), \ 369.1679 \ (2.0\%), \ 367.1681 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 65.53; \ H, \ 8.25; \ O, \ 8.73; \ S, \ 17.49 \\ \end{array}$

HRMS (ESI, m/z) calcd for C20H30O2S2 [M+H]⁺ 367.1760, found 367.1754.

HRMS (ESI, m/z) calcd for C₁₅H₂₂O₂S₂ [M+H]⁺299.1134, found 299.1132.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{19}H_{24}O_2S_2 \\ \mbox{Exact Mass: } 348.1218 \\ \mbox{Molecular Weight: } 348.5190 \\ \mbox{m/z: } 348.1218 \ (100.0\%), \ 349.1251 \ (20.5\%), \ 350.1176 \ (9.0\%), \ 350.1285 \ (2.0\%), \\ \mbox{} 351.1209 \ (1.9\%), \ 349.1212 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 65.48; \ H, \ 6.94; \ O, \ 9.18; \ S, \ 18.40 \end{array}$

HRMS (ESI, m/z) calcd for C₁₉H₂₄O₂S₂ [M+Na]⁺ 371.1110, found 371.1110.

S112

 $\begin{array}{c} \mbox{Chemical Formula: $C_{19}H_{23}BrO_2S_2$} \\ \mbox{Exact Mass: 426.0323} \\ \mbox{Molecular Weight: 427.4150} \\ \mbox{m/z: 426.0323 (100.0%), 428.0302 (97.3%), 429.0336 (20.0%), 427.0356 (16.2%), 428.0281 (9.0%), 430.0260 (8.8%), 427.0356 (4.3%), 431.0294 (1.8%), 427.0317 (1.6%), 429.0296 (1.6%), 429.0314 (1.5%), 430.0369 (1.2%), 428.0390 (1.1%)$ \\ \mbox{Elemental Analysis: C, 53.39; H, 5.42; Br, 18.69; O, 7.49; S, 15.00} \end{array}$

HRMS (ESI, m/z) calcd for $C_{19}H_{23}BrO_2S_2$ [M+H]⁺427.0396, found 427.0392.

Chemical Formula: C₁₉H₂₂O₂S₂ Exact Mass: 346.1061 Molecular Weight: 346.5030 m/z: 346.1061 (100.0%), 347.1095 (20.5%), 348.1019 (9.0%), 348.1128 (2.0%), 349.1053 (1.9%), 347.1055 (1.6%) Elemental Analysis: C, 65.86; H, 6.40; O, 9.23; S, 18.50

HRMS (ESI, m/z) calcd for $C_{19}H_{22}O_2S_2$ [M+H]⁺ 347.1134, found 347.1135.

 $\label{eq:chemical Formula: C_{20}H_{24}O_2S_2 \\ Exact Mass: 360.1218 \\ Molecular Weight: 360.5300 \\ m/z: 360.1218 \ (100.0\%), 361.1251 \ (21.6\%), 362.1176 \ (9.0\%), 362.1285 \ (2.2\%), \\ 363.1209 \ (2.0\%), 361.1212 \ (1.6\%) \\ Elemental Analysis: C, 66.63; H, 6.71; O, 8.88; S, 17.78 \\ \end{array}$

HRMS (ESI, m/z) calcd for C₂₀H₂₄O₂S₂ [M+Na]⁺ 383.1110, found 383.1122.

HRMS (ESI, m/z) calcd for C₁₅H₁₆O₂S₂ [M+H]⁺293.0664, found 293.0677.

HRMS (ESI, m/z) calcd for C₂₁H₂₀O₂S₂ [M+H]⁺ 369.0977, found 369.0977.

 $\label{eq:chemical Formula: C_{20}H_{18}O_2S_2 \\ Exact Mass: 354.0748 \\ Molecular Weight: 354.4820 \\ m/z: 354.0748 \ (100.0\%), \ 355.0782 \ (21.6\%), \ 356.0706 \ (9.0\%), \ 356.0815 \ (2.2\%), \\ \ 357.0740 \ (2.0\%), \ 355.0742 \ (1.6\%) \\ Elemental Analysis: C, \ 67.77; \ H, \ 5.12; \ O, \ 9.03; \ S, \ 18.09 \\ \end{array}$

HRMS (ESI, m/z) calcd for C₂₀H₁₈O₂S₂ [M+H]⁺ 355.0821, found 355.0823.

HRMS (ESI, m/z) calcd for $C_{21}H_{20}O_2S_2$ [M+H]⁺ 369.0977, found 369.0979.

Br

HRMS (ESI, m/z) calcd for C₂₀H₁₇BrO₂S₂ [M+Na]⁺ 454.9746, found 454.9743.

 $\begin{array}{c} \mbox{Chemical Formula: } C_{20}H_{22}O_4S_2 \\ \mbox{Exact Mass: } 390.0960 \\ \mbox{Molecular Weight: } 390.5120 \\ \mbox{m/z: } 390.0960 \ (100.0\%), \ 391.0993 \ (21.6\%), \ 392.0917 \ (9.0\%), \ 392.1027 \ (2.2\%), \\ \mbox{ } 393.0951 \ (2.0\%), \ 391.0953 \ (1.6\%) \\ \mbox{Elemental Analysis: C, } 61.51; \ \mbox{H, } 5.68; \ \mbox{O, } 16.39; \ \mbox{S, } 16.42 \end{array}$

HRMS (ESI, m/z) calcd for $C_{20}H_{22}O_4S_2$ [M+H]⁺ 391.1032, found 391.1035.

 $\int_{\Gamma} 144.37$ $\int_{\Gamma} 139.11$ $\int_{\Gamma} 136.54$ $\int_{\Gamma} 129.57$ $\int_{\Gamma} 127.97$ $\int_{\Gamma} 127.82$

-61.65-43.29-43.2931.22-13.60-13.60

 $\begin{array}{c} \mbox{Chemical Formula: } C_{19} H_{24} O_2 S_2 \\ \mbox{Exact Mass: } 348.1218 \\ \mbox{Molecular Weight: } 348.5190 \\ \mbox{m/z: } 348.1218 \ (100.0\%), \ 349.1251 \ (20.5\%), \ 350.1176 \ (9.0\%), \ 350.1285 \ (2.0\%), \\ \mbox{ } 351.1209 \ (1.9\%), \ 349.1212 \ (1.6\%) \\ \mbox{Elemental Analysis: } C, \ 65.48; \ H, \ 6.94; \ O, \ 9.18; \ S, \ 18.40 \end{array}$

HRMS (ESI, m/z) calcd for $C_{19}H_{24}O_2S_2$ [M+Na]⁺ 371.1110, found 371.1121.

Chemical Formula: C₁₈H₂₁ClO₂S₂ Exact Mass: 368.0671 Molecular Weight: 368.9340 m/z: 368.0671 (100.0%), 370.0642 (32.0%), 369.0705 (19.5%), 370.0629 (9.0%), 371.0676 (6.2%), 372.0600 (2.9%), 370.0739 (1.8%), 371.0663 (1.8%), 369.0665 (1.6%) Elemental Analysis: C, 58.60; H, 5.74; Cl, 9.61; O, 8.67; S, 17.38

HRMS (ESI, m/z) calcd for C₁₈H₂₁ClO₂S₂ [M+Na]⁺ 391.0564, found 391.0562.

Chemical Formula: C₁₃H₁₇NS Exact Mass: 219.1082 Molecular Weight: 219.3460 m/z: 219.1082 (100.0%), 220.1115 (14.1%), 221.1040 (4.5%) Elemental Analysis: C, 71.19; H, 7.81; N, 6.39; S, 14.62

HRMS (ESI, m/z) calcd for C₁₃H₁₇NS [M+H]⁺ 220.1154, found 220.1155.

Chemical Formula: C₁₅H₂₂S Exact Mass: 234.1442 Molecular Weight: 234.4010 m/z: 234.1442 (100.0%), 235.1476 (16.2%), 236.1400 (4.5%), 236.1509 (1.2%) Elemental Analysis: C, 76.86; H, 9.46; S, 13.68

HRMS (ESI, m/z) calcd for C₁₅H₂₂S [M+H]⁺ 235.1515, found 235.1514.

Exact Mass: 686.2217 Molecular Weight: 686.6318 m/z: 686.2217 (100.0%), 687.2250 (30.3%), 688.2175 (4.5%), 688.2284 (3.0%), 688.2284 (1.4%), 689.2208 (1.4%) Elemental Analysis: C, 48.98; H, 5.28; Au, 28.69; F, 8.30; N, 4.08; S, 4.67

HRMS (ESI, m/z) calcd for C₂₈H₃₆Au F₃N₂S [M+H]⁺ 687.2290, found 687.2293.

