Supporting Information

For

The Development and Mechanistic Investigation of a Palladium-Catalyzed 1,3-Arylfluorination of Chromenes

Richard T. Thornbury,^a Vaneet Saini,^b Talita de A. Fernandes,^{a,c} Celine B. Santiago,^d Eric P. A. Talbot,^{a,b} Matthew S. Sigman,^d Jeffrey M. McKenna,^b F. Dean Toste^{*a}

^{a.} Department of Chemistry, University of California, Berkeley, California 94720, United States Address here.

^b Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States

^{c.} Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Caixa postal: 04478, 70904-970, Brasília, DF, Brazil

^{d.} Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States

Table of Contents

1. General Information	S2
2. Preparation and characterization of chromene substrate	S3
3. Optimization, preparation characterization of arylfluorination products	S10
4. Preparation and characterization of deuterated substrate	S22
5. Preparation and characterization of 2-alkynyl derivative	S24
6. Experimental Data Set for Statistical Analysis	S25
7. Spectral data	S28
8. Copies of Chiral HPLC Analysis	S61
9. X-ray crystallographic data for <i>rac-2</i> d	S73
10. DFT of cis- and trans- 1,3-arylfluorination Products	S83
11. DFT for Statistical Analysis	S86
12. References	S102

1. General Information

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. All reactions were carried out without rigorous exclusion of water and air and at room temperature (23 °C) except where otherwise indicated. All reactions were magnetically stirred and monitored by analytical thin layer chromatography (TLC) using Merck 60 pre-coated silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm). Flash column chromatography was performed using ICN SiliTech 32-63 D 60Å silica gel. Commercial grade solvents were used without further purification except as indicated below. Tetrahydrofuran (THF), diethyl ether (Et₂O), dichloromethane (CH₂Cl₂), and, N,N'-dimethylformamide (DMF) were dried by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. ¹H NMR, ¹³C NMR, and ¹⁹F spectra were recorded on Bruker AMX-300, AVQ-400, AVB-400, DRX-500 and AV-600 spectrometers and referenced to CDCl₃. Tetramethylsilane was used as an internal standard for ¹H NMR (δ : 0.0 ppm), and CDCl₃ for ¹³C NMR (δ : 77.23 ppm). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), g (quartet), and m (multiplet). Enantiomeric excess was determined on a Shimadzu VP Series Chiral HPLC with a variable wavelength detector using chiral stationary columns. Mass spectral data were obtained from the QB3/Chemistry Mass Spectrometry Facility at the University of California, Berkeley.

2. Preparation and characterization of chromene substrates

Synthesis of methyl 3-(prop-2-yn-1-yloxy)benzoate:

To a round bottom flask equipped with a stir bar and under positive pressure of N₂, methyl 3hydroxybenzoate (3.04 g, 20.0 mmol 1.00 eq) and potassium carbonate (4.18 g, 30.0 mmol 1.50 eq) were added as solids and suspended in 20 ml of DMF. To the reaction mixture was added propargyl bromide (80% weight solution in toluene, 3.12 ml 28.0 mmol, 1.40 eq) was added via syringe. A slight yellow solution resulted. After stirring for 2.5 hours the reaction mixture was diluted with ethyl acetate and H2O. The organic layer was separated and washed with 1M NaOH. The organics were again separated, dried over Na2SO4, filtered, and concentrated. Residual DMF was removed in vacuo over 12 hours. The resulting yellow liquid was used crude.

¹**H** NMR (300 MHz, CDCl3) δ 7.73-7.59 (m, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.18 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.74 (d, J = 2.4 Hz, 2H), 3.91 (s, 3H), 2.54 (t, J = 2.4 Hz, 1H). Spectrum is in agreement with literature report.¹

Synthesis of methyl 2H-chromene-5-carboxylate 3:

A round bottomed flask containing a stir bar and the crude methyl 3-(prop-2-yn-1- yloxy)benzoate was placed under N2 and equipped with a reflux condenser. To the flask, 20 mL of ,-diethyl aniline was added and the reaction mixture heated to 215 °C. While heating, the solution began to turn dark brown in color beyond 150 °C. The reaction mixture was heated for 24 hours, after which it was cooled to room temperature and diluted with ethyl acetate. The combined organics were washed with two times with 1 M HCl, separated, dried over Na2SO4, and concentrated to afford a brown residue. The residue was purified by silica chromatography S4 (1.5%-2.5% ethyl acetate in hexanes) affording the product (1.31 g, 34% over 2 steps) as a yellow oil.

¹**H** NMR (300 MHz, CDCl3) δ 7.48 (dd, J = 7.8, 1.3 Hz, 1H), 7.31 (dtd, J = 10.2, 1.9, 0.8 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 7.02 - 6.92 (m, 1H), 5.94 (dt, J = 10.2, 3.8 Hz, 1H), 4.78 (dd, J = 3.8, 1.9 Hz, 2H) 3.89 (s, 3H). Spectrum is in agreement with literature report.¹

Synthesis of 2H-chromene-5-carboxylic acid

To a round bottomed flask equipped with a stir bar was added sodium hydroxide (412 mg, 10.3 mmol, 1.50 eq) was added and dissolved in 37 mL of H₂O. To the stirred solution methyl 2Hchromene-5-carboxylate (1.31 g, 1.0 eq, 6.87 mmol) was added in 17 mL of MeOH resulting in a cloudy mixture. The reaction mixture was heated to 55 °C at which point a clear yellow solution formed. After heating for the 3 hours, the contents of the flask were cooled to room temperature and the MeOH was removed by a rotary evaporator. To the remaining aqueous solution, 15 mL of 1 M HCl was added forming a colorless precipitate. The precipitate was filtered and rinsed with water on a Büchner funnel and dried in vacuo for 12 hours affording the product (846 mg, 70% yield) as a colorless product.

¹**H NMR** (300 MHz, CDCl3) δ 7.63 (dd, J = 7.8, 1.3 Hz, 1H), 7.42 (d, J = 10.2 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 5.97 (dt, J = 10.3, 3.8 Hz, 1H), 4.80 (dd, J = 3.8, 1.9 Hz, 2H). Spectrum is in agreement with literature report.²

Synthesis of N-phenyl-2H-chromene-5-carboxamide 1a:

To a solution of the 2-H-chromene-5-carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv) in dcm (10 mL) at 0 °C was added dropwise oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv) followed by a catalytic amount of dry dmf (2 drops). The reaction was allowed to stir at rt until completion (typically 4 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Aniline (168 mg, 1.8 mmol, 1.2 equiv) was added to solution of acid chloride in dcm (20 mL). Reaction was stirred

for 12 h at rt followed by quenching with sat. NaHCO₃ (20 mL) solution. Organic layers were dried over MgSO₄, filtered, evaporated and purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1a** as a white powder (300 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (m, 3H), 7.37 (t, J = 7.9 Hz, 2H), 7.21 – 7.06 (m, 3H), 6.94 – 6.83 (m, 2H), 5.88 (dt, J = 10.1, 3.7 Hz, 1H), 4.81 (dd, J = 3.8, 1.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 155.0, 138.1, 133.8, 129.3, 129.1, 124.9, 123.5, 122.2, 120.9, 120.1, 119.9, 118.7, 65.3.

HRMS (ESI) $m/z (M+H)^+$ calculated for C₁₆H₁₄NO₂: 252.1019 observed 252.1019.

Synthesis of N-(p-tolyl)-2H-chromene-5-carboxamide 1b:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*toluidine (193 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1b** as a white powder (334 mg, 84%).

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.3 Hz, 3H), 7.21 – 7.05 (m, 4H), 6.90 (t, J = 8.2 Hz, 2H), 5.89 (dt, J = 10.1, 3.7 Hz, 1H), 4.82 (dd, J = 3.7, 1.8 Hz, 2H), 2.34 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 166.5, 155.1, 135.5, 134.6, 133.9, 129.8, 129.1, 123.5, 122.3, 120.9, 120.1, 119.9, 118.6, 65.3, 21.1.

HRMS (ESI) $m/z (M+H)^+$ calculated for $C_{17}H_{15}NO_2$: 266.1176 observed: 266.1190.

Synthesis of N-(4-methoxyphenyl)-2H-chromene-5-carboxamide 1c:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*- anisidine (222 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1c** as a white powder (312 mg, 74%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.9 Hz, 2H), 7.41 (s, 1H), 7.13 (dd, *J* = 18.5, 7.1 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 4H), 5.89 (d, *J* = 10.1 Hz, 1H), 4.82 (dd, *J* = 3.7, 1.8 Hz, 2H), 3.82 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.5, 156.9, 155.1, 133.9, 131.1, 129.1, 123.5, 122.3, 121.9, 121.0, 119.9, 118.6, 114.5, 65.3, 55.7. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₇H₁₆NO₃: 282.1125 observed: 282.1125.

Synthesis of N-(4-acetylphenyl)-2H-chromene-5-carboxamide 1d:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*acetylaniline (243 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1d** as a white powder (264 mg, 60%) . ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.7 Hz, 2H), 7.74 (s, 2H), 7.72 (bs, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.17 – 7.11 (m, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 10.1 Hz, 1H), 5.94 (dt, *J* = 10.1, 3.7 Hz, 1H), 4.86 (dd, *J* = 3.7, 1.9 Hz, 2H), 2.62 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 197.1, 166.7, 155.2, 142.3, 133.4, 133.1, 130.1, 129.2, 123.9, 122.0, 121.1, 119.9, 119.2, 119.1, 65.3, 26.7.

HRMS (ESI) $m/z (M+H)^+$ calculated for C₁₈H₁₆NO₃: 294.1125 observed: 294.1130.

Synthesis of N-(4-fluorophenyl)-2H-chromene-5-carboxamide 1e:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*- fluoroaniline (200 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1e** as a white powder (238 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.11 – 7.03 (m, 3H), 6.97 – 6.83 (m, 3H), 5.89 (dt, *J* = 10.1, 3.7 Hz, 1H), 4.81 (dd, *J* = 3.7, 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 159.7 (d, *J* = 244.0 Hz), 155.1, 134.0 (d, *J* = 2.8 Hz), 133.5, 129.1, 123.6, 122.1, 121.9 (d, *J* = 7.9 Hz), 119.9, 118.8, 116.0 (d, *J* = 22.5 Hz), 115.9, 65.2. HRMS (ESI) m/z (M+H)⁺ calculated for C₁₆H₁₃FNO₂: 270.0925 observed: 270.0926.

Synthesis of N-(4-bromophenyl)-2H-chromene-5-carboxamide 1f:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*bromoaniline (310 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1f** as a white powder (205 mg, 62%) . ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (q, *J* = 8.9, 8.5 Hz, 5H), 7.18 (t, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 6.8 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 10.1 Hz, 1H), 5.91 (dt, *J* = 10.1, 3.7 Hz, 1H), 4.83 (dd, *J* = 3.7, 1.9 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.5, 155.1, 137.1, 132.3, 129.1, 123.8, 122.1, 121.6, 121.0, 120.3, 119.8, 118.9, 117.5, 65.3. **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₆H₁₃NO₂Br: 330.0124 observed: 330.0133.

Synthesis of N-(4-chlorophenyl)-2H-chromene-5-carboxamide 1g:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *p*- chloroaniline (230 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1g** as a white powder (236 mg, 55%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.7 Hz, 3H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 10.1 Hz, 1H), 5.89 (dt, *J* = 10.1, 3.7

Hz, 1H), 4.82 (dd, *J* = 3.7, 1.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 155.1, 136.6, 133.4, 129.8, 129.3, 129.1, 123.7, 122.1, 121.3, 121.0, 119.9, 118.9, 65.2.

HRMS (ESI) $m/z (M+H)^+$ calculated for C₁₆H₁₃NO₂Cl: 286.0629 observed: 286.0633.

Synthesis of N-(3-chlorophenyl)-2H-chromene-5-carboxamide 1h:

The same general procedure as that for the synthesis of **1a** was followed using 2-H-chromene-5carboxylic acid (264 mg, 1.5 mmol, 1.00 equiv), oxalyl chloride (381 mg, 3.0 mmol, 2.0 equiv), *m*chloroaniline (230 mg, 1.8 mmol, 1.2 equiv), and dmf (2 drops). The compound was purified by silica chromatography (10-40% EtOAc:hexanes) to give the compound **1h** as a white powder (194 mg, 50%). ¹H NMR (400 MHz, CDCl3) δ 7.76 (s, 1H), 7.58 (s, 1H), 7.44 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.20 – 7.11 (m, 2H), 7.08 (dd, *J* = 7.6, 1.1 Hz, 1H), 6.97 – 6.89 (m, 1H), 6.86 (d, *J* = 10.1 Hz, 1H), 5.90 (dt, *J* = 10.1, 3.7 Hz, 1H), 4.82 (dd, *J* = 3.7, 1.9 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl3) δ 166.6, 155.1, 139.1, 135.0, 133.3, 130.3, 129.1, 124.9, 123.8, 122.0, 121.0, 120.1, 119.9, 119.0, 118.0, 65.3.

HRMS (ESI) m/z (M+H)+ calculated for C16H13NO2Cl: 286.0629 observed: 286.0635. Synthesis of 2H-chromene 1i:

Compound was prepared according to literature procedure.⁴ Analytical data matches the literature.³ Synthesis of 6-fluoro-2H-chromene **1**j:

Compound was prepared according to literature procedure.⁴ Analytical data matches the literature.⁴ Synthesis of 6-methoxy-2H-chromene **1k**:

Compound was prepared according to literature procedure.⁴ Analytical data matches the literature.⁴ Synthesis of 6H-[1,3]dioxolo[4,5-g]chromene 11:

Compound **11** was prepared according to literature procedure.⁵ Synthesis of 2H-benzo[h]chromene **1m**:

Compound 1m was prepared according to literature procedure.⁴

3. Optimization, preparation characterization of arylfluorination products

Procedure A: Synthesis of racemic 1,3-arylfluorination products

Preparation of the catalyst (10 mol %):

 $Pd(OAc)_2$ (2.2 mg, 0. 010 mmol, 0.10 eq) was added to a solution of 4,4'-di-tert-butyl-2,2'-bipyridine (2.9 mg, 0.011 mmol, 0.11 eq) in CH₂Cl₂ (1 ml) and the reaction mixture was stirred for 30 min.

The catalyst solution was then added to a solution of chromene **1** (25.0 mg, 0.100 mmol, 1.00 eq), aryl boronic acid (0.200 mmol, 2.00 eq), bis(2-ethylhexyl) hydrogen phosphate (12.8 mg, 0.040 mmol, 0.40 eq), Selectfluor (71.0 mg, 0.200 mmol, 2.00 eq) and *tert*-butyl catechol (0.6 mg, 0.004 mmol, 0.04 eq) in CH_2Cl_2 (0.8 ml)/water (0.2 ml). The reaction mixture was vigorously stirred for 24 h. The reaction mixture was diluted with CH_2Cl_2 , dried with Na_2SO_4 , filtered through celite, and concentrated under reduce pressure. The residue was purified by column chromatography to give the fluorinated products **2-5**.

Optimization of 1,3- asymmetric reaction conditions and 2,1- reaction conditions Figure 1. Chiral ligand classes surveyed for enantioselective 1,3-fluoroarylation

Table 1: Screening of pyridine based ligands

Procedure B: Synthesis of racemic 2,1-arylfluorination products

Preparation of the catalyst (10 mol %):

 $Pd(OAc)_2$ (2.2 mg, 0. 010 mmol, 0.10 eq) was added to a solution of of 2,5-diphenyloxazole (4.9 mg, 0.022 mmol)in CH_2Cl_2 (1 ml) and the reaction mixture was stirred for 30 min.

The catalyst solution was then added to a solution of chromene **1** (25.0 mg, 0.100 mmol, 1.00 eq), aryl boronic acid (0.200 mmol, 2.00 eq), bis(2-ethylhexyl) hydrogen phosphate (12.8 mg, 0.040 mmol, 0.40 eq), Selectfluor (71.0 mg, 0.200 mmol, 2.00 eq) and *tert*-butyl catechol (0.6 mg, 0.004 mmol, 0.04 eq) in CH_2Cl_2 (0.8 ml)/water (0.2 ml). The reaction mixture was vigorously stirred for 24 h. The reaction mixture was diluted with CH_2Cl_2 , dried with Na_2SO_4 , filtered through celite, and concentrated under reduce pressure. The residue was purified by column chromatography to give the fluorinated products **9**.

Procedure C: synthesis of enantioenriched 1,3-arylfluorination products

The palladium complex $\mathbf{6}$ was prepared as previously reported in the literature.⁶

To a round bottom flask, chromene **1** (25.0 mg, 0.100 mmol, 1.00 eq), aryl boronic acid (0.150 mmol, 1.50 eq), bis(2-ethylhexyl) hydrogen phosphate (12.8 mg, 0.040 mmol, 0.40 eq), Selectfluor (71.0 mg, 0.200 mmol, 2.00 eq), *tert*-butyl catechol (0.6 mg, 0.004 mmol, 0.04 eq), and palladium complex **5** (6.8 mg, 0.0150 mmol, 0.15 eq) were added and placed under N₂. To the flask, 1,2-dichloroethane (1.5 ml)/water (0.5 ml) was added. The reaction mixture was vigorously stirred for 24 h. The reaction mixture was diluted with CH_2Cl_2 , dried with Na₂SO₄, filtered through celite, and concentrated under

reduce pressure. The residue was purified by column chromatography to give the fluorinated product. The enantiomeric excess was determined by chiral HPLC ananlysis.

TABLE 3. Optimization of Asymmetric 1,3-arylfluorination

11	DCE/H ₂ O 3:1	1.5 eq NaF	5:1^f	90 %
10	DCE/H ₂ O 3:1	1 eq NaF	5:1	89 %
9	CHCl ₃ /H ₂ O 9:1	ı eq NaF	1:1	-
8	DCE/H ₂ O 9:1	1 eq NaF	4:1	89 %
7	DCM/H ₂ O 9:1	1 eq NaF	>10:1 e	-
6	DCM/H ₂ O 9:1	ı eq NaF	4:1	86 %
5	DCM/H ₂ O 9:1	ı eq CsF	3:1 ^d	-
	O 9:1	KF		

Standard conditions: 1 equiv Chromene, 2 equiv boronic acid, 15 mol% $Pd(OAc)_2$, 16.5 mol% PyOx, 2 equiv Selectfluor, 40 mol% bis(2ethylhexyl)hydrogenphosphate, 4 mol% *t*-butyl catechol, CH_2Cl_2/H_2O 9:1, N_2 atmosphere, 23^o C, 24h.; (a) Reactions reach full conversion of the starting material unless otherwise noted. (b) Determined by ¹H and ¹⁹F NMR; (c) Determined by Chiral HPLC; (d)Large amount of side product formation; (e) Reaction run at 0^o C, trace conversion. (f) 1.5 equiv boronic acid, less side product formation.

2-fluoro-N-phenyl-4-(p-tolyl)chroman-5-carboxamide 2a:

• ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.8 Hz, 1H), 7.25 - 7.14 (m, 4H), 7.08 - 6.91 (m, 7H), 6.06 (d, *J* = 55.8 Hz, 1H), 4.75 - 4.67 (m, 1H), 2.58 - 2.33 (m, 2H), 2.26 (s, 3H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.4

• ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 151.4, 141.4, 138.3, 137.1, 136.3, 129.3, 128.7, 128.7, 128.1,

128.1, 124.5, 121.7, 120.9, 120.0, 119.7, 104.9 (d, *J*=221.5), 34.0, 33.8, 21.0.

• HRMS (ESI): M+H⁺ found 362.1550; C₂₃H₂₁FNO₂ requires 362.1551

2-fluoro-N,4-diphenylchroman-5-carboxamide 2b:

¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, J = 7.8 Hz, 1H), 7.26 - 7.00 (m, 10H), 6.99 - 6.91 (m, 2H),
6.06 (d, J = 55.7 Hz, 1H), 4.78 (d, J = 5.6 Hz, 1H), 2.60 - 2.37 (m, 2H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.2

• ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 151.6, 144.6, 138.3, 137.1, 128.9, 128.8, 128.8, 128.3, 126.8, 124.7, 121.8, 120.8, 120.3, 119.9, 104.9 (d, *J*=221.7), 34.2, 34.0, 33.8.

• **HRMS** (ESI): M+H⁺ found 348.1392; C₂₂H₁₉FNO₂ requires 348.1394

2-fluoro-4-(naphthalen-2-yl)-N-phenylchroman-5-carboxamide 2c:

¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.51 (s, 1H), 7.44 - 7.37 (m, 3H), 7.29 - 7.27 (m, 1H), 7.25 - 7.21 (m, 2H), 6.98 (t, J = 7.6 Hz, 2H), 6.94 - 6.88 (m, 2H), 6.66 (d, J = 7.8 Hz, 2H), 6.09 (d, J = 55.6 Hz, 1H), 4.94 (d, J = 6.8 Hz, 1H), 2.67 - 2.48 (m, 2H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.3

¹³C NMR (151 MHz, CDCl₃) δ 167.1, 151.6, 141.9, 138.4, 136.8, 133.5, 132.4, 129.0 128.6, 128.4, 127.8, 127.6, 127.1, 126.6, 126.3, 125.9, 124.6, 121.7, 121.1, 120.2, 119.9, 104.9 (d, *J*=221.6), 34.4, 33.9, 33.7.

• **HRMS** (ESI): M+H⁺ found 398.1549; C₂₆H₂₁FNO₂ requires 398.1551

4-(4-bromophenyl)-2-fluoro-N-phenylchroman-5-carboxamide 2d:

¹H NMR (400 MHz, CD₂Cl₂) δ 7.38 (t, J = 7.9 Hz, 1H), 7.33 – 7.15 (m, 6H), 7.14 – 7.02 (m, 3H), 6.96 (d, J = 8.2 Hz, 2H), 6.06 (d, J = 55.3 Hz, 1H), 4.85 (d, J = 6.1 Hz, 1H), 2.58 – 2.42 (m, 2H).
¹⁹F NMR (377 MHz, CDCl₃): -118.2

• ¹³C NMR (101 MHz, CD₂Cl₂) δ 166.7, 151.8, 144.1, 138.1, 137.6, 131.5, 130.5, 129.2, 129.1, 125.1,

121.4, 121.3, 120.7, 120.4, 120.2, 105.3 (d, *J* = 221.2 Hz), 33.7 (d, *J* = 21.2 Hz), 33.3.

• **HRMS** (ESI): M+H⁺ found 426.0500; C₂₂H₁₈BrFNO₂ requires 426.0499

methyl 4-(2-fluoro-5-(phenylcarbamoyl)chroman-4-yl)benzoate 2e:

¹H NMR (400 MHz, CD₂Cl₂) δ 7.87 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.8 Hz, 1H), 7.26 - 7.13 (m, 6H), 7.08 - 7.01 (m, 4H), 6.96 (s, 1H), 6.06 (dt, J = 55.2, 2.3 Hz, 1H), 4.98 (dd, J = 7.1, 2.8 Hz, 1H), 3.82 (s, 3H), 2.60 - 2.47 (m, 2H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.2

• ¹³C NMR (101 MHz, CDCl₃) 167.0, 166.9, 151.7, 149.9, 138.0, 137.0, 129.9, 129.2, 129.0, 128.6,

128.5, 125.0, 121.4, 120.8, 120.4, 120.2, 104.8 (d, *J* = 223.2 Hz), 52.2, 33.8, 33.6 (d, *J* = 21.2 Hz).

• **HRMS** (ESI): M+H⁺ found 406.1446 ; C₂₄H₂₁FNO₄ requires 406.1449.

2-fluoro-4-(4-methoxyphenyl)-N-phenylchromane-5-carboxamide 2f:

¹H NMR (500 MHz, CDCl₃)δ 7.34 (t, J = 7.8 Hz, 1H), 7.24 – 7.18 (m, 3H), 7.17 – 7.13 (m, 1H), 7.09
– 6.97 (m, 5H), 6.92 (s, 1H), 6.73 (d, J = 8.7 Hz, 2H), 6.06 (dt, J = 55.8, 2.4 Hz, 1H), 4.70 (t, J = 4.7 Hz, 1H), 3.69 (s, 3H), 2.53 – 2.36 (m, 2H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.0

• ¹³C NMR (101 MHz, CD₂Cl₂) δ 167.0, 158.6, 151.8, 138.5, 137.8, 136.9, 129.6, 129.0, 128.9, 124.8, 121.8, 121.7, 120.4, 119.9, 114.0, 105.5 (d, *J* = 221.2 Hz), 55.5, 34.2 (d, *J* = 20.2 Hz), 33.4.

• **HRMS**(ESI): M+H⁺ found 378.1497; C₂₃H₂₁FNO₃ requires 378.1500.

tert-butyl (4-(2-fluoro-5-(phenylcarbamoyl)chroman-4-yl)phenyl)carbamate 2g:

• ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.9 Hz, 1H), 7.23 – 7.12 (m, 6H), 7.08 – 7.03 (m, 3H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.93 (s, 1H), 6.35 (s, 1H), 6.04 (d, *J* = 55.5 Hz, 1H), 4.72 (t, *J* = 4.8 Hz, 1H), 2.54 – 2.34 (m, 2H), 1.50 (s, 9H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.1

• ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 152.8, 151.6, 139.2, 138.3, 137.2, 137.1, 129.1, 129.1, 128.9,

124.8, 121.7, 121.3, 120.4, 119.9, 118.8, 105.0 (d, *J* = 221.8 Hz), 34.0 (d, *J* = 20.2 Hz), 33.6, 28.5.

• HRMS (ESI): M+H+ found 463.2033; C₂₇H₂₈FN₂O₄ requires 463.2028.

2-fluoro-4-(3-methoxyphenyl)-N-phenylchromane-5-carboxamide 2h:

¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, J = 7.9 Hz, 1H), 7.24 – 7.18 (m, 3H), 7.15 (ddd, J = 7.9, 4.4, 3.2 Hz, 2H), 7.07 – 7.03 (m, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.98 (s, 1H), 6.05 (dt, J = 55.9, 2.3 Hz, 1H), 4.71 (d, J = 6.7 Hz, 1H), 3.66 (s, 3H), 2.61 – 2.34 (m, 2H).

• ¹⁹F NMR (377 MHz, CDCl₃): -117.3

• ¹³C NMR (151 MHz, CDCl₃): δ 167.1, 160.0, 151.6, 146.3, 138.5, 137.3, 129.8, 129.0, 128.9, 124.8,

121.9, 120.8, 120.2, 119.9, 114.8, 111.9, 104.9 (d, *J* = 222.0 Hz), 55.4, 34.3, 33.9 (d, *J* = 19.6 Hz).

• **HRMS** (ESI): M+H⁺ found 378.1492; C₂₃H₂₁FNO₃ requires 378.1500.

methyl 2-fluoro-4-(p-tolyl)chromane-5-carboxylate 3:

¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.20 (d, J = 8.3 Hz, 1H), 7.01 (d, J = 7.7 Hz, 2H), 6.88 (d, J = 7.7 Hz, 2H), 6.03 (dt, J = 55.6, 2.1 Hz, 1H), 5.08 (d, J = 7.5 Hz, 1H), 3.54 (s, 3H), 2.59 – 2.38 (m, 3H), 2.27 (s, 3H).

• ¹⁹F NMR (377 MHz, CDCl₃): -119.2

• ¹³C NMR (151 MHz, CDCl₃) δ 167.6, 151.8, 142.1, 135.6, 131.7, 129.0, 128.2, 127.8, 125.0, 124.2, 121.7, 104.9 (d, *J* = 222.0 Hz), 52.11, 34.3 (d, *J* = 19.6 Hz), 33.9, 21.25.

• HRMS (ESI): M+Na+ found 323.1051 ; C₁₈H₁₇FO₃Na requires 323.1054.

6-fluoro-8-(p-tolyl)-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromene 4:

¹H NMR (500 MHz, CD₂Cl₂) δ 7.10 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.9 Hz, 2H), 6.51 (s, 1H), 6.31 (d, J = 0.8 Hz, 1H), 5.99 (ddd, J = 56.1, 4.1, 2.7 Hz, 1H), 5.89 (d, J = 1.4 Hz, 2H), 4.07 (t, J = 6.2 Hz, 1H), 2.53 - 2.32 (m, 2H), 2.31 (s, 3H).

• ¹⁹F NMR (377 MHz, CD₂Cl₂): -120.5

• ¹³C NMR (126 MHz, CD₂Cl₂) δ 147.7, 146.1, 143.2, 141.7, 136.6, 129.4, 128.51 (d, J = 2.5 Hz),

116.5, 108.8, 106.1 (d, *J* = 220.5 Hz), 101.8, 99.0, 37.2, 35.2 (d, *J* = 21.4 Hz), 21.1.

• HRMS (EI): M+ found 286.1007 ; C₁₇H₁₅FO₃ requires 286.1005.

2-fluoro-4-(p-tolyl)-3,4-dihydro-2H-benzo[h]chromene 5:

¹H NMR (500 MHz, CD₂Cl₂) δ 8.31 – 8.21 (m, 1H), 7.81 (dd, *J* = 7.2, 2.1 Hz, 1H), 7.53 (ddt, *J* = 10.7, 7.0, 3.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.02 (m, 3H), 6.36 – 6.17 (m, 1H), 4.34 (dd, *J* = 7.4, 4.3 Hz, 1H), 2.73 – 2.50 (m, 2H), 2.31 (s, 3H).

• ¹⁹F NMR (377 MHz, CD₂Cl₂): -121.4

• ¹³C NMR (126 MHz, CD₂Cl₂) δ 146.4, 141.8, 136.5, 134.0, 129.3, 128.7, 128.0, 127.9, 126.7, 126.3, 125.2, 121.9, 121.7, 118.2, 106.1 (d, *J* = 219.2 Hz), 37.3, 35.1 (d, *J* = 20.2 Hz), 21.1.

• HRMS (EI): M+ found 292.1264 ; C₂₀H₁₇FO requires 292.1263.

4-fluoro-N-phenyl-3-(p-tolyl)chroman-5-carboxamide 9a:

¹H NMR (500 MHz, CDCl₃) δ 8.01 (br d, J = 5.6 Hz, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.44 (td, J = 8.2, 2.1 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.22 – 7.16 (m, 4H), 7.14 (dd, J = 10.6, 4.2 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 5.96 (d, J = 50.6 Hz, 1H), 4.63 (ddd, J = 12.8, 10.7, 1.9 Hz, 1H), 4.40 (dd, J = 10.6, 4.1 Hz, 1H), 3.34 (dddd, J = 33.2, 12.9, 3.9, 2.1 Hz, 1H), 2.36 (s, 3H).

• ¹⁹F NMR (377 MHz, CDCl₃): -158.1

¹³C NMR (126 MHz, CDCl₃) δ 166.1, 139.1, 137.7, 137.6, 133.0, 131.8, 129.5, 129.4, 129.2, 129.1, 128.4, 128.4, 125.1, 124.7, 121.0, 120.9, 120.0, 120.0, 119.9, 84.7 (d, J=172.0), 64.1 (d, J=3.5), 42.6 (d, J=19.6), 21.1.

• HRMS (EI): M+ found 361.1480, C₂₃H₂₀FNO₂ requires 361.1481

4-fluoro-N,3-diphenylchroman-5-carboxamide 9b:

¹H NMR (600 MHz, CDCl₃) δ 8.03 (br s, 1H), 7.61 (d, J = 7.8 Hz, 2H), 7.45 (td, J = 8.2, 1.7 Hz, 1H), 7.40 - 7.30 (m, 8H), 7.14 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 6.00 (d, J = 50.6 Hz, 1H), 4.70 - 4.62 (m, 1H), 4.43 (dd, J = 10.6, 4.0 Hz, 1H), 3.37 (dd, J = 33.1, 11.5 Hz, 1H).

• ¹⁹**F NMR** (377 MHz, CDCl₃): -158.3

• ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 155.1, 155.1, 139.2, 137.8, 136.2, 131.9, 131.8, 129.2, 128.9, 128.6, 128.6, 128.0, 124.8, 121.0, 121.0, 120.1, 84.6 (d, J=171.8), 64.1 (d, J=2.7), 43.1 (d, J=19.3).

• HRMS (EI): M+ found 347.1319, C₂₂H₁₈FNO₂ requires 347.1322

4-fluoro-3-(naphthalen-2-yl)-N-phenylchroman-5-carboxamide 9c:

¹H NMR (400 MHz, CDCl₃) δ 8.06 (br s, 1H), 7.89 – 7.81 (m, 3H), 7.77 (s, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.53 – 7.40 (m, 4H), 7.32 (dd, *J* = 15.2, 7.5 Hz, 3H), 7.17 – 7.08 (m, 2H), 6.09 (d, *J* = 50.6 Hz, 1H), 4.77 (t, *J* = 11.7 Hz, 1H), 4.53 (dd, *J* = 10.6, 3.7 Hz, 1H), 3.53 (dd, *J* = 33.0, 11.8 Hz, 1H).

• ¹⁹F NMR (377 MHz, CDCl₃): -157.8

¹³C NMR (151 MHz, CDCl₃) δ 166.2, 155.1, 155.1, 139.2, 137.8, 133.6, 133.5, 132.9, 131.9, 131.9, 129.2, 128.6, 128.0, 127.8, 127.5, 127.5, 126.5, 126.3, 124.8, 121.1, 120.1, 116.5, 116.4, 84.6 (d, J=171.9), 64.2, 43.2 (d, J=19.4).

• **HRMS** (ESI): M+H⁺ found 398.1549; C₂₆H₂₁FNO₂ requires 398.1551

3-(4-bromophenyl)-4-fluoro-N-phenylchroman-5-carboxamide 9d:

¹H NMR (400 MHz, CD₂Cl₂) δ 7.93 (s, 1H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.53 – 7.42 (m, 3H), 7.40 – 7.27 (m, 3H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.17 – 7.09 (m, 2H), 6.00 (d, *J* = 50.7 Hz, 1H), 4.58 (t, *J* = 11.5 Hz, 1H), 4.39 (d, *J* = 9.7 Hz, 1H), 3.40 (dd, *J* = 32.4, 11.8 Hz, 1H).

• ¹⁹F NMR (377 MHz, CDCl₃): -158.7

¹³C NMR (101 MHz, CD₂Cl₂) δ 166.2, 155.3, 139.3, 138.2, 135.8, 132.1, 132.0, 131.7, 130.7, 129.4, 125.0, 122.0, 120.9, 120.2, 116.7 (d, *J* = 19.2 Hz), 84.3 (d, *J* = 172.7 Hz), 64.1, 42.8 (d, *J* = 20.2 Hz). **HRMS** (ESI): M+H⁺ found 426.0500; C₂₂H₁₈BrFNO₂ requires 426.0499

methyl 4-(4-fluoro-5-(phenylcarbamoyl)chroman-3-yl)benzoate 9e:

¹H NMR (400 MHz, CD₂Cl₂) δ 8.01 (d, J = 8.4 Hz, 2H), 7.93 (bs, 1H), 7.58 (d, J = 7.8 Hz, 2H) 7.50 – 7.39 (m, 3H), 7.35 – 7.26 (m, 3H), 7.12 (dd, J = 18.8, 7.9 Hz, 2H), 6.07 (d, J = 50.7 Hz, 1H), 4.64 (t, J = 11.8 Hz, 1H), 4.44 (dd, J = 10.6, 3.4 Hz, 1H), 3.88 (s, 3H), 3.47 (dd, J = 32.3, 12.3 Hz, 1H).

• ¹⁹F NMR (377 MHz, CDCl₃): -158.8

¹³C NMR (101 MHz, CD₂Cl₂) δ 166.9, 166.2, 155.4, 141.8, 139.3, 138.2, 132.1, 130.1, 129.4, 129.0, 125.0, 120.9, 120.2, 120.1, 116.7 (d, *J* = 19.2 Hz), 84.2 (d, *J* = 172.7 Hz), 64.1, 52.4, 43.3 (d, *J* = 19.2 Hz).

• **HRMS** (ESI): M+H⁺ found 406.1445 ; C₂₄H₂₁FNO₄ requires 406.1449.

4. Preparation and characterization of deuterated substrates

Synthesis of (1,1-2H₂)-1-bromoprop-2-yne

The deuteride alkyne was synthesized as described by Nag et al.⁷

Synthesis of (2,2-2H₂)-N-phenyl-2H-chromene-5-carboxamide

The deuterated chromene was synthesized via an analogous procedure as the non-deuterated substrate using the d_2 -propargyl bromide.

N-phenyl-2H-chromene-2,2-d2-5-carboxamide d2-1:

¹H NMR (400 MHz, CHCl₃) δ 7.61 (d, J = 8.1 Hz, 3H), 7.37 (t, J = 7.8 Hz, 2H), 7.21 – 7.06 (m, 3H),
6.89 (dd, J = 12.1, 9.0 Hz, 2H), 5.87 (d, J = 10.1 Hz, 1H).

• ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 155.0, 138.1, 133.8, 129.3, 129.0, 124.9, 123.3, 122.3, 120.9, 120.1, 119.9, 118.7.

• **HRMS** (ESI): M+H⁺ found 254.1146; C₁₆H₁₂²H₂NO₂ requires 254.1145.

2-fluoro-N-phenyl-4-(p-tolyl)chromane-2,3-d2-5-carboxamide d2-2a:

• ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.9 Hz, 1H), 7.19 (m, 4H), 7.04 (m, 3H), 7.00 – 6.94 (m, 4H), 6.92 (s, 1H), 4.69 (d, *J* = 7.5 Hz, 1H), 2.42 (dd, *J* = 38.4, 7.6 Hz, 1H), 2.25 (s, 3H).

• ¹⁹F NMR (377 MHz, CDCl₃): -118.5

• ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 151.6, 141.6, 138.4, 137.3, 136.5, 129.5, 128.9, 128.8, 128.3, 124.7, 121.9, 121.1, 120.2, 119.8, 33.9, 21.2.

• **HRMS** (ESI): M+H⁺ found 364.1675; C₂₃H₁₉²H₂FNO₂ requires 364.1676.

5. Preparation and characterization of 2-alkynyl derivatives

N-phenyl-2-(phenylethynyl)-4-(p-tolyl)chromane-5-carboxamide 8:

Procedure:

An adapted procedure from the literature was used.⁷ 2-pyranyl fluoride **2a** (17.8 mg, 0.050 mmol, 1.0 eq) and trifluoroborate salt **7** (12.5 mg, 0.060 mmol, 1.2 eq) were added to a 1 dram vial with a septum cap and placed under an atmosphere of N₂. The solids were dissolved in 0.3 mL of dry acetonitrile and stirred. To the vial, boron trifluoride etherate (8 μ l, 0.065 mmol, 1.3 eq) was added via syringe. A yellow solution resulted. The solution was stirred for 20 minutes. The contents of the vial were diluted with CH₂Cl₂ and washed 2 times with a saturated solution of NaHCO₃. The organic layer was separated, dried over Na₂SO₄, and concentrated. The crude solid was purified by silica chromatography (15:1 pentane/ ethyl acetate) to afford **8** as a colorless powder (13 mg, 59%).

¹H NMR (600 MHz, CDCl₃) δ 7.44 (dd, J = 7.9, 1.7 Hz, 2H), 7.35 – 7.27 (m, 4H), 7.20 (dd, J = 8.4, 7.3 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 7.08 – 7.03 (m, 1H), 7.03 – 6.96 (m, 4H), 6.92 (s, 1H), 5.04 (dd, J = 11.0, 2.5 Hz, 1H), 4.74 (dd, J = 5.3, 3.3 Hz, 1H), 2.52 (ddd, J = 13.8, 11.0, 5.3 Hz, 1H), 2.32 (t, J = 2.9 Hz, 1H), 2.30 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 167.3, 154.8, 142.3, 138.3, 137.5, 136.9, 132.1, 129.8, 128.9, 128.9, 128.7, 128.6, 128.5, 124.6, 122.3, 120.6, 120.6, 120.0, 119.7, 86.8, 86.1, 63.0, 37.6, 37.0, 21.2.
HRMS (ESI): M+Na+ found 466.1778; C₃₁H₂₅NO₂Na requires 466.1785.

6. Experimental Data Set for Statistical Analysis

Table 4: Screening of sp²-Nitrogen based bidentate ligands

Procedure D : $Pd(OAc)_2$ (2.2 mg, 0. 010 mmol, 0.10 equiv) was added to a solution of Ligand (0.011 mmol, 0.11 equiv) in CH₂Cl₂ (1 ml) and the reaction mixture was stirred for 30 min. The catalyst solution was then added to a solution of chromene **1** (25.0 mg, 0.100 mmol, 1.00 equiv), *p*-tolyl phenylboronic acid (27 mg, 0.200 mmol, 2.00 equiv), bis(2-ethylhexyl) hydrogen phosphate (12.8 mg, 0.040 mmol, 0.40 equiv), Selectfluor (71.0 mg, 0.200 mmol, 2.00 equiv) and *tert*-butyl catechol (0.6 mg, 0.004 mmol, 0.04 equiv) in CH₂Cl₂ (0.8 ml)/water (0.2 ml). The reaction mixture was vigorously stirred for 24 h. The reaction mixture was diluted with CH₂Cl₂, dried with Na₂SO₄, filtered through celite, and concentrated under reduce pressure. Then, a known amount of 4-fluorobenzoic acid as an internal standard was added to the crude extract. Yield and regioselectivity was determined using ¹⁹F NMR (CD₂Cl₂, 400 MHz, d1=10). The reaction was repeated twice and results obtained are described in Table

2. *Note:* In the above Table 1- and 2-represents first and second run, respectively. The percentage figure represents total yield (A+B) of the reaction.

Procedure: The general **procedure D** was followed with the following modification. Ligand L (0.011 mmol, 0.11 equiv) and different boronic acids (0.022 mmol, 0.22 equiv) as described in the Table 4 were used. The yields and selectivities were obtained by ¹⁹F NMR using 4-fluorobenzoic acid as an internal standard and are described below each substrate in Table 4.

Table 6: Screening of different chromene substrates for Hammett plot

Procedure: The general **procedure D** was followed with the following modification. Ligand L and the chromene substrates as shown in the table above were used and the corresponding yield and selectivity obtained is described below each substrate. The yields and selectivities were obtained by ¹⁹F NMR using 4-fluorobenzoic acid as an internal standard. The product formation was later confirmed by LCMS.

7. Spectral data

¹H NMR (400 MHz, CDCl₃) of methyl 3-(prop-2-yn-1-yloxy)benzoate

¹H NMR (300 MHz, CDCl₃) of N-phenyl-2H-chromene-5-carboxamide 1

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) of **9a:**

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **9b:**

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) of **9c**:

¹H 2D NOESY spectrum of 8:

6. Copies of Chiral HPLC Analysis HPLC Analysis of **2a**

HPLC Analysis of **2b**

HPLC Analysis of 2c

HPLC Analysis of 2d

HPLC Analysis of 2e

HPLC Analysis of **2f**

HPLC Analysis of 2g

HPLC Analysis of **2h**

HPLC Analysis of 8

9. X-ray crystallographic data for rac-2d :

X-ray crystallography quality crystals of **rac-2d** were grown by solvent layering from CHCl₃ and *n*-pentane. A colorless needle 0.01 x 0.02 x 0.06 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.7% complete to 67.00° in q. A total of 24648 reflections were collected covering the indices, -18 < -18, -14 < -14 < -11 < -12 < -12. 3399 reflections were found to be symmetry independent, with an Rint of 0.0469. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1)/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2011) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014.

Crystal data and structure	e refinement for <i>rac-2d</i> .
----------------------------	----------------------------------

Identification code	shelx		
Empirical formula	C22 H17 Br F N O2		
Formula weight	426.27		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 15.3026(6) Å	α= 90°.	
	b = 12.0184(4) Å	$\beta = 90.552(3)^{\circ}.$	
	c = 10.1214(4) Å	$\gamma = 90^{\circ}$.	
Volume	1861.37(12) Å ³		
Ζ	4		
Density (calculated)	1.521 Mg/m ³		
Absorption coefficient	3.238 mm ⁻¹		
F(000)	864		
Crystal size	$0.060 \ge 0.020 \ge 0.010 \text{ mm}^3$		
Theta range for data collection	2.888 to 68.325°.		
Index ranges	-18<=h<=18, -14<=k<=14, -11<=l<=12		
Reflections collected	24648		
Independent reflections	3399 [R(int) = 0.0469]		
Completeness to theta = 67.000°	99.7 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.7531 and 0.6139		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	3399 / 0 / 244		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0372, wR2 = 0.0915		
R indices (all data)	R1 = 0.0447, WR2 = 0.0963		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.870 and -0.325 e.Å ⁻³		

	Х	У	Z	U(eq)
C(1)	1366(2)	-2975(2)	9430(3)	21(1)
C(2)	2218(2)	-3351(2)	9158(3)	23(1)
C(3)	2366(2)	-4394(2)	8630(3)	25(1)
C(4)	1664(2)	-5106(2)	8371(3)	26(1)
C(5)	823(2)	-4749(2)	8586(3)	25(1)
C(6)	680(2)	-3686(2)	9094(3)	23(1)
C(7)	-386(2)	-2307(2)	9520(3)	27(1)
C(8)	233(2)	-1759(2)	10480(3)	26(1)
C(9)	1195(2)	-1850(2)	10055(3)	22(1)
C(10)	2993(2)	-2631(2)	9515(3)	23(1)
C(11)	4292(2)	-1739(2)	8571(3)	28(1)
C(12)	4440(2)	-950(3)	7600(3)	34(1)
C(13)	5193(2)	-298(3)	7664(4)	42(1)
C(14)	5783(2)	-435(3)	8692(4)	42(1)
C(15)	5629(2)	-1215(3)	9650(4)	40(1)
C(16)	4888(2)	-1887(3)	9598(3)	33(1)
C(17)	1513(2)	-890(2)	9198(3)	21(1)
C(18)	1516(2)	-926(2)	7825(3)	26(1)
C(19)	1861(2)	-63(2)	7087(3)	28(1)
C(20)	2215(2)	845(2)	7741(3)	24(1)
C(21)	2200(2)	921(2)	9092(3)	24(1)
C(22)	1849(2)	54(2)	9813(3)	24(1)
N(1)	3519(2)	-2401(2)	8484(2)	26(1)
O(1)	-190(1)	-3413(2)	9261(2)	27(1)
O(2)	3128(1)	-2322(2)	10653(2)	27(1)
F(1)	-365(1)	-1730(1)	8314(2)	31(1)
Br(1)	2791(1)	1982(1)	6774(1)	33(1)

Table 7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for *rac*-2d. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(6)	1.393(4)
C(1)-C(2)	1.410(4)
C(1)-C(9)	1.516(4)
C(2)-C(3)	1.383(4)
C(2)-C(10)	1.509(4)
C(3)-C(4)	1.396(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.376(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.394(4)
C(5)-H(5)	0.9500
C(6)-O(1)	1.383(3)
C(7)-O(1)	1.389(3)
C(7)-F(1)	1.405(3)
C(7)-C(8)	1.502(4)
C(7)-H(7)	1.0000
C(8)-C(9)	1.542(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(17)	1.526(4)
C(9)-H(9)	1.0000
C(10)-O(2)	1.226(3)
C(10)-N(1)	1.353(4)
C(11)-C(12)	1.385(4)
C(11)-C(16)	1.389(4)
C(11)-N(1)	1.428(4)
C(12)-C(13)	1.395(4)
C(12)-H(12)	0.9500
C(13)-C(14)	1.381(5)
C(13)-H(13)	0.9500
C(14)-C(15)	1.371(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.392(4)
С(15)-Н(15)	0.9500

Table 8. Bond lengths [Å] and angles [°] for *rac-2d*.

_

C(16)-H(16)	0.9500
C(17)-C(18)	1.390(4)
C(17)-C(22)	1.391(4)
C(18)-C(19)	1.386(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.384(4)
C(19)-H(19)	0.9500
C(20)-C(21)	1.371(4)
C(20)-Br(1)	1.902(3)
C(21)-C(22)	1.383(4)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
N(1)-H(1)	0.8800
C(6)-C(1)-C(2)	116.8(2)
C(6)-C(1)-C(9)	121.2(2)
C(2)-C(1)-C(9)	122.1(2)
C(3)-C(2)-C(1)	121.5(2)
C(3)-C(2)-C(10)	118.7(2)
C(1)-C(2)-C(10)	119.7(2)
C(2)-C(3)-C(4)	119.9(3)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-H(3)	120.0
C(5)-C(4)-C(3)	119.9(3)
C(5)-C(4)-H(4)	120.0
C(3)-C(4)-H(4)	120.0
C(4)-C(5)-C(6)	119.6(3)
C(4)-C(5)-H(5)	120.2
C(6)-C(5)-H(5)	120.2
O(1)-C(6)-C(1)	123.2(2)
O(1)-C(6)-C(5)	114.7(2)
C(1)-C(6)-C(5)	122.1(2)
O(1)-C(7)-F(1)	107.5(2)
O(1)-C(7)-C(8)	113.9(2)
F(1)-C(7)-C(8)	109.1(2)
O(1)-C(7)-H(7)	108.8

F(1)-C(7)-H(7)	108.8
C(8)-C(7)-H(7)	108.8
C(7)-C(8)-C(9)	112.8(2)
C(7)-C(8)-H(8A)	109.0
C(9)-C(8)-H(8A)	109.0
C(7)-C(8)-H(8B)	109.0
C(9)-C(8)-H(8B)	109.0
H(8A)-C(8)-H(8B)	107.8
C(1)-C(9)-C(17)	112.3(2)
C(1)-C(9)-C(8)	110.4(2)
C(17)-C(9)-C(8)	114.6(2)
C(1)-C(9)-H(9)	106.3
С(17)-С(9)-Н(9)	106.3
C(8)-C(9)-H(9)	106.3
O(2)-C(10)-N(1)	124.5(3)
O(2)-C(10)-C(2)	121.6(2)
N(1)-C(10)-C(2)	113.9(2)
C(12)-C(11)-C(16)	120.5(3)
C(12)-C(11)-N(1)	118.6(3)
C(16)-C(11)-N(1)	120.9(3)
C(11)-C(12)-C(13)	119.5(3)
С(11)-С(12)-Н(12)	120.2
C(13)-C(12)-H(12)	120.2
C(14)-C(13)-C(12)	120.1(3)
C(14)-C(13)-H(13)	119.9
С(12)-С(13)-Н(13)	119.9
C(15)-C(14)-C(13)	119.9(3)
C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	121.1(3)
C(14)-C(15)-H(15)	119.5
C(16)-C(15)-H(15)	119.5
C(11)-C(16)-C(15)	118.9(3)
C(11)-C(16)-H(16)	120.6
C(15)-C(16)-H(16)	120.6
C(18)-C(17)-C(22)	117.9(2)

C(18)-C(17)-C(9)	123.3(2)
C(22)-C(17)-C(9)	118.8(2)
C(19)-C(18)-C(17)	121.4(3)
C(19)-C(18)-H(18)	119.3
C(17)-C(18)-H(18)	119.3
C(20)-C(19)-C(18)	118.8(3)
C(20)-C(19)-H(19)	120.6
C(18)-C(19)-H(19)	120.6
C(21)-C(20)-C(19)	121.3(3)
C(21)-C(20)-Br(1)	118.5(2)
C(19)-C(20)-Br(1)	120.1(2)
C(20)-C(21)-C(22)	119.1(2)
C(20)-C(21)-H(21)	120.5
C(22)-C(21)-H(21)	120.5
C(21)-C(22)-C(17)	121.5(3)
C(21)-C(22)-H(22)	119.3
C(17)-C(22)-H(22)	119.3
C(10)-N(1)-C(11)	124.4(2)
C(10)-N(1)-H(1)	117.8
C(11)-N(1)-H(1)	117.8
C(6)-O(1)-C(7)	117.4(2)

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	29(1)	20(1)	14(1)	4(1)	1(1)	1(1)
C(2)	28(1)	24(1)	16(1)	4(1)	2(1)	0(1)
C(3)	29(1)	25(1)	20(1)	2(1)	3(1)	4(1)
C(4)	39(2)	20(1)	20(1)	0(1)	2(1)	2(1)
C(5)	34(1)	22(1)	19(1)	3(1)	0(1)	-4(1)
C(6)	28(1)	23(1)	17(1)	5(1)	0(1)	0(1)
C(7)	27(1)	27(1)	28(2)	5(1)	4(1)	3(1)
C(8)	29(1)	24(1)	24(1)	2(1)	5(1)	2(1)
C(9)	27(1)	21(1)	19(1)	2(1)	1(1)	0(1)
C(10)	25(1)	22(1)	21(2)	1(1)	1(1)	3(1)
C(11)	26(1)	31(1)	28(2)	-8(1)	6(1)	-3(1)
C(12)	37(2)	38(2)	28(2)	-2(1)	5(1)	-6(1)
C(13)	44(2)	40(2)	42(2)	-6(2)	16(2)	-13(1)
C(14)	31(2)	48(2)	48(2)	-17(2)	10(1)	-11(1)
C(15)	24(1)	53(2)	43(2)	-16(2)	3(1)	-1(1)
C(16)	30(1)	38(2)	30(2)	-4(1)	3(1)	1(1)
C(17)	22(1)	19(1)	21(1)	0(1)	0(1)	2(1)
C(18)	36(2)	19(1)	22(1)	-1(1)	-1(1)	-2(1)
C(19)	42(2)	24(1)	18(1)	1(1)	1(1)	-2(1)
C(20)	26(1)	21(1)	25(1)	3(1)	2(1)	2(1)
C(21)	26(1)	22(1)	23(1)	-5(1)	1(1)	-1(1)
C(22)	29(1)	25(1)	19(1)	-4(1)	2(1)	-1(1)
N(1)	27(1)	30(1)	19(1)	-2(1)	2(1)	-4(1)
O(1)	26(1)	23(1)	31(1)	2(1)	1(1)	-2(1)
O(2)	28(1)	33(1)	20(1)	-2(1)	0(1)	-1(1)
F(1)	35(1)	31(1)	26(1)	7(1)	-2(1)	4(1)
Br(1)	42(1)	26(1)	32(1)	8(1)	4(1)	-6(1)

Table 9. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for *rac*-2d. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(3)	2946	-4627	8443	30
H(4)	1767	-5836	8048	31
H(5)	343	-5223	8389	30
H(7)	-991	-2264	9881	33
H(8A)	167	-2109	11359	31
H(8B)	76	-964	10564	31
H(9)	1554	-1827	10886	27
H(12)	4032	-854	6896	41
H(13)	5301	241	6998	51
H(14)	6295	12	8737	51
H(15)	6034	-1300	10360	48
H(16)	4793	-2437	10255	39
H(18)	1276	-1555	7384	31
H(19)	1856	-95	6149	34
H(21)	2428	1560	9528	29
H(22)	1838	105	10749	29
H(1)	3375	-2677	7707	31

Table 10. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for *rac-2d*.

Table 11. Hydrogen bonds for *rac-2d* [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

10. DFT of cis- and trans- 1,3-arylfluorination Products

Density functional theory (DFT) calculations were performed with Gaussian 09 revision D01. Geometry optimizations were carried out at the B3LYP level of theory with the 6-31G(d) basis set. Optimized geometries were verified as a minima by frequency computations (zero imaginary frequencies). Single-point energy calculations on the optimized geometries were then evaluated using different density functionals and the triple-zeta valence quality def2-TZVPP basis set, within the SMD/IEF-PCM model (dichloromethane). The thermal corrections evaluated from the unscaled vibrational frequencies at the B3LYP/6-31G(d) level on the optimized geometries were then added to these electronic energies to obtain the free energies.

Level of theory	$\Delta G_{trans}(H)$	$\Delta G_{cis}(H)$	ΔΔG (kcal/mol)
B3LYP-D3/Def2TZVPP//B3LYP/6-31G(d)	-	-	0.2
	1193,784844	1193,785210	
M062X/Def2TZVPP//B3LYP/6-31G(d)	-	-	0.4
	1193,255521	1193,256118	
wB97XD/Def2TZVPP//B3LYP/6-31G(d)	-	-	0.1
	1193,338696	1193,338928	

Cartesian coordinates

.

CIS			
С	2.063478000	-3.498878000	9.462858000
С	3 383647000	-3 921528000	9 188372000
ĉ	3 627527000	-5 138860000	8 543560000
č	2 564965000	-5.150000000 5.062666000	0.04000000
C	2.004000000	-5.902000000	0.100411000
C	1.260913000	-5.566418000	8.424425000
С	1.020531000	-4.344933000	9.063853000
С	-0.671707000	-2.772870000	9.674276000
С	0.303289000	-2.160004000	10.658846000
С	1 767114000	-2 174542000	10 154978000
ĉ	4 563655000	-3 107308000	9 665544000
č	4.303033000	2 25080000	9.0000044000
Č	0.700021000	-2.20000000	0.793077000
C	7.517474000	-2.128112000	7.613282000
С	8.755738000	-1.493016000	7.628204000
С	9.264367000	-0.971008000	8.819092000
С	8.515427000	-1.094025000	9.989920000
С	7 272332000	-1 727235000	9 992764000
õ	2 143215000	-0.950619000	9 314909000
č	1 025407000	0.000010000	7 022760000
č	1.923407000	-0.072700000	7.933700000
C	2.2/1420000	0.273260000	7.219439000
С	2.849776000	1.380849000	7.852350000
С	3.068179000	1.300325000	9.232746000
С	2.727642000	0.153360000	9.948594000
Ν	5.525946000	-2.918544000	8.699594000
0	-0.312647000	-4 070431000	9 295043000
õ	4 654800000	-2 692870000	10 81630/000
Ē	4.034033000	1 090774000	0.010334000
Г О	-0.759018000	-1.900774000	0.0000000
C	3.253307000	2.607289000	7.067239000
н	4.650571000	-5.461139000	8.371595000
Н	2.757251000	-6.912937000	7.675755000
Н	0.409424000	-6.178700000	8.145350000
н	-1.683984000	-2.861643000	10.077877000
н	0 232785000	-2 747454000	11 582811000
н	-0.013904000	-1 139076000	10 890364000
L L	2 402673000	2 136823000	11 0/3061000
	2.402073000	-2.130023000	0.001470000
н	7.126441000	-2.532621000	6.681470000
н	9.322568000	-1.407454000	6.704986000
Н	10.230746000	-0.475227000	8.832793000
Н	8.899407000	-0.691437000	10.923660000
Н	6.690896000	-1.816573000	10.899136000
н	1 466154000	-1 705656000	7 411855000
н	2 084078000	0 308508000	6 148065000
ü	2.004070000	2 1/0733000	0.754256000
	0.000010000	2.140733000	9.754250000
н	2.928013000	0.111205000	11.010/5/000
н	5.272655000	-3.229550000	7.771171000
Н	2.630678000	2.734583000	6.175120000
Н	4.296347000	2.539965000	6.729311000
н	3.168156000	3.516858000	7.671781000

trans

tiuns			
С	2.147467000	-3.435812000	9.428133000
С	3.457745000	-3.906447000	9.189522000
Ċ	3 670352000	-5 127200000	8 538224000
č	2 585702000	5 808307000	8 113882000
0	2.000702000	-5.090397000	0.113002000
C	1.291133000	-5.446375000	8.322280000
С	1.078532000	-4.221077000	8.968294000
С	-0.566919000	-2.605673000	9.666016000
F	-1.809000000	-2.772686000	10.228436000
С	0 427256000	-2 173687000	10 718509000
Č.	1 861852000	-2 126423000	10 147427000
č	4 654675000	3 120700000	0.686473000
0	4.004070000	-3.129700000	9.000473000
C	6.926267000	-2.405997000	8.870318000
С	7.725975000	-2.363540000	7.716784000
С	8.989005000	-1.780358000	7.754507000
С	9.474927000	-1.231138000	8.942631000
С	8.678377000	-1.274653000	10.087362000
Ċ	7 409911000	-1 855090000	10 067172000
č	2 107456000	-0.886067000	9 28611/000
č	1 950417000	-0.000007000	7 010192000
Č	1.030417000	-0.00000000	7.910162000
C	2.043601000	0.319333000	7.173028000
С	2.507979000	1.491414000	7.779422000
С	2.771414000	1.452366000	9.155719000
С	2.578684000	0.286731000	9.893088000
Ν	5.662294000	-3.023675000	8.753482000
0	-0.238542000	-3.862091000	9.103771000
0	4 722068000	-2 663113000	10 819190000
č	2 748537000	2 748899000	6 977097000
ы	4 682600000	5 405746000	8 300882000
	4.002033000	-3.433740000	7 60070000
	2.754046000	-0.000040000	7.023730000
н	0.426028000	-6.016228000	7.998912000
н	-0.671856000	-1.874292000	8.855539000
Н	0.374879000	-2.899829000	11.538591000
Н	0.131023000	-1.196381000	11.111159000
Н	2.545154000	-2.065779000	10.996527000
н	7.353053000	-2.789743000	6.787161000
н	9 592923000	-1 756816000	6 851379000
н	10 460554000	-0 775762000	8 974308000
н	9 044471000	-0.850/3/000	11 018682000
ц Ц	6 702511000	1 8827/3000	10.053477000
	1 50550000	1 746264000	7 200752000
	1.505596000	-1.740304000	7.399753000
н	1.831873000	0.317197000	6.105819000
Н	3.140704000	2.345479000	9.655530000
Н	2.803103000	0.282440000	10.957369000
Н	5.436375000	-3.370249000	7.830746000
Н	2.209053000	2.725849000	6.024590000
Н	3.814664000	2.877228000	6.747112000
н	2.428114000	3.642281000	7.524958000

11. DFT for Statistical Analysis DFT Calculations

Compounds were geometrically optimized, with an ultrafine integration grid and ideal gas phase approximation using Gaussian 09 software.⁹ DFT calculations of benzoic acid (as surrogates for arylboronic acid) ground state structures were performed using M06-2x functional and a triple zeta potential basis set (JUN-CC-PVTZ).¹⁰ DFT calculations of PdLCl₂ complexes were performed using B3LYP functional and LANL2DZ basis set for the palladium atom and 6-31G(d,p) basis set for other atoms. NBO charges¹¹ and torsion angles were obtained from the geometry optimized structures. Hammett values were acquired from the compilation made by Hansch, Leo, and Taft.¹²

According to Curtin-Hammett principle,¹³ the relative rate of formation of competing products (X and Y) is logarithmically related to the difference in transition state energies, represented by the measured $\Delta\Delta G^{\ddagger}$ (equation 1), where R is the gas constant and T is temperature. To derive measured $\Delta\Delta G^{\ddagger}$ values, product ratios resulting from differences in selectivity were obtained experimentally.

measured
$$\Delta\Delta G^{\ddagger} = -RT ln\left(\frac{X}{Y}\right)$$
 (1)

R	Trial 1 rr	Trial 2 rr	Average rr	Measured ΔΔG [‡]
p-Me	8.2	7.5	7.9	1.22
Н	7.6	8.2	7.9	1.22
p-COMe	30.0	28.0	29.0	1.99
p-CO ₂ Me	17.7	20.8	19.3	1.75
p-OMe	15.2	13.4	14.3	1.58
p-F	10.8	11.7	11.3	1.43
p-CF₃	17.8	16.4	17.1	1.68
p-Br	14.0	12.0	13.0	1.52

Table 12. Regioselectivity ratios (rr) of 1,3- vs 2,1-arylfluorinated product and corresponding measured $\Delta\Delta G^{\ddagger}$ from reactions run with various arylboronic acids.

m-OMe	16.2	16.5	16.4	1.66
m-CO ₂ Me	27.0	36.0	31.5	2.04
m-Cl	7.6	8.3	8.0	1.23

 $\Delta\Delta G^{\ddagger}$ is reported in kcal/mol.

Table 13. Calculated parameters for benzoic acids as surrogates for arylboronic acids.

R	v _{сон}	V _{C=0}	NBO _c	NBO ₌₀	NBO _o	NBO _H
p-Me	1395.02	1844.66	0.78588	-0.60618	-0.70599	0.50033
Н	1394.60	1847.85	0.80516	-0.60208	-0.70358	0.50087
p-COMe	1399.86	1851.01	0.80289	-0.59612	-0.69999	0.50263
p-CO₂Me	1397.72	1851.64	0.80291	-0.59567	-0.70074	0.50254
p-OMe	1396.68	1839.37	0.80480	-0.61182	-0.70667	0.49976
p-F	1396.19	1847.75	0.80562	-0.60242	-0.70414	0.50193
p-CF ₃	1401.11	1854.66	0.78303	-0.59324	-0.70152	0.50390
p-Br	1395.33	1849.58	0.80491	-0.59850	-0.70255	0.50251
m-OMe	1396.67	1847.51	0.80599	-0.60040	-0.70218	0.50019
m-CO₂Me	1404.11	1850.19	0.80428	-0.59917	-0.70153	0.50178
m-Cl	1394.82	1852.53	0.80547	-0.59554	-0.70118	0.50252

Table 14. Regioselectivity ratios (rr) of 1,3- vs 2,1-arylfluorinated product and corresponding measured $\Delta\Delta G^{\ddagger}$ from reactions run with various ligands.

R	Trial 1 rr	Trial 2 rr	Average rr	Measured ΔΔG [‡]	NBO _{Pd}	N-Pd-N angle
bpyH	47	42	44.5	2.25	0.69727	79.18
bpytBu	16	19	17.5	1.70	0.69774	79.02
bpyMeO	9	7	8.0	1.23	0.69592	79.05
bpyCHO	26	28	27.0	1.95	0.70455	79.44
bpyBr	16	14	15.0	1.60	0.69882	79.09
phenH	17	20	18.5	1.73	0.69779	80.13
phenMe	4	4.5	4.25	0.86	0.69779	79.80
phenPh	15	17	16.0	1.64	0.69909	79.71
phenOMe	11	10	10.5	1.39	0.69662	79.93
dipyridylketone	0.16	0.21	0.19	-0.99	0.67595	88.93
diazafluorenone	0.83	0.71	0.77	-0.15	0.68843	81.95

 $\Delta\Delta G^{\ddagger}$ is reported in kcal/mol.

Table 14. Calculated parameters of PdLCl₂ complexes.

R NBO_{Pd} N-Pd-N angle

bруH	0.69727	79.18
bpytBu	0.69774	79.02
bpyMeO	0.69592	79.05
bруCHO	0.70455	79.44
bpyBr	0.69882	79.09
phenH	0.69779	80.13
phenMe	0.69779	79.80
phenPh	0.69909	79.71
phenOMe	0.69662	79.93
dipyridylketone	0.67595	88.93
diazafluorenone	0.68843	81.95

Table 15. Regioselectivity ratios (rr) of 1,3- vs 2,1-arylfluorinated product and corresponding measured $\Delta\Delta G^{\ddagger}$ from reactions run with various chromene derivatives.

R	Trial 1 rr	Trial 2 rr	Average rr	log(1,3 vs 2,1)	σ
p-MeO	7.4	6.9	7.15	0.85	-0.268
p-Me	6.5	7.5	7	0.85	-0.170
Н	8.2	7.5	7.85	0.89	0.000
p-F	9.4	9	9.2	0.96	0.062
p-Cl	13.8	12	12.9	1.11	0.227
p-Br	10	9.4	9.7	0.99	0.232
m-Cl	12.6	14	13.3	1.12	0.373
p-Ac	15	14.2	14.6	1.16	0.502

Cartesian Coordinates of Geometry Optimized Structures benzoic acids p-Me

	0		
	ОН		
С	0.01585300	-1.18043900	-0.00046100
С	0.69479800	0.03528100	-0.00007300
С	-0.02119700	1.22592400	-0.00038400
С	-1.40566400	1.20074200	-0.00086500
С	-2.09820700	-0.00711500	-0.00092100
С	-1.36715300	-1.19470100	-0.00098400
С	2.17540700	0.10956600	0.00027900
0	2.81336200	1.12865700	0.00040300
Н	0.52268400	2.16035600	-0.00047100
0	2.76678400	-1.10215000	0.00051500
Н	3.72007700	-0.94452100	0.00078200
Н	0.57432800	-2.10515500	-0.00062500
С	-3.60005100	-0.04406700	0.00137000
Н	-3.97456200	-0.59589800	-0.86127400
Н	-3.97199100	-0.54629100	0.89513400
Н	-4.02137700	0.95861300	-0.02558100

H H	-1.89366300 -1.95937100	-2.14100400 2.13069400	-0.00165800 -0.00141400
Н			
\sim			
	Н		
С	-0.44402200	-1.19534300	0.00000300
С	0.21414500	0.03015800	0.00000100
С	-0.51131500	1.21709800	-0.00000900
С	-1.89521100	1.17807200	-0.00001800
С	-2.55361800	-0.04512600	-0.00001800
С	-1.83002100	-1.22936000	-0.00000600
С	1.69655400	0.12263600	0.00001000
0	2.31942600	1.15033800	0.00001000
Н	0.02644800	2.15487200	-0.00000900
0	2.30214000	-1.08088000	0.00002000
Н	3.25377400	-0.91298100	0.00002600
Н	0.12950800	-2.11060000	0.00001300
Н	-2.34520100	-2.17929700	-0.00000400
Н	-2.46171800	2.09828100	-0.00002400
Н	-3.63440400	-0.07475400	-0.00002000
р-СОМе			
	\cap		

OH [] 0 00000000 0.75387100 -1.19713600 -0.00010900 1.39803500 0.03767500 0.00005600 0.66028200 1.21495300 0.00016400 -0.72312400 1.15915000 0.00010600 -1.37448200 -0.07194600 -0.00005800 -0.62781100 -1.24769700 -0.00016200 0.14936200 0.00012300 2.88194100 Ō 3.48709000 1.18679100 0.00026300 Н 1.18540900 2.15963000 0.00029300 0 3.49953700 -1.04561000 0.00001000 Н 4.45023800 -0.87123500 0.00006400 Н 1.33804100 -2.10549500 -0.00019100 Н -1.15363100 -2.19196200 -0.00028500 Η -1.29081500 2.07893000 0.00019200 С -2.87314700 -0.18115500 -0.00012000 0 -3.40427000 -1.26515900 -0.00020300 С -3.68588100 1.08881600 -0.00007700 Н 1.68978600 0.87979700 -3.45333100 Н 1.69002800 -3.45308200 -0.87971900 Н 0.83000300 -0.00025300 -4.73979800

p-CO₂Me

	0		
	П ОН		
Me ^{-O}			
С	1.22816500	1.20896200	0.00018000
С	1.81363100	-0.05345800	-0.00001800
С	1.02324200	-1.19778400	-0.00019500
С	-0.35543300	-1.08354400	-0.00017500
С	-0.94165300	0.17882000	0.00002400
С	-0.15098200	1.32253100	0.00020100
С	3.29119900	-0.23094400	-0.00004700
0	3.85017900	-1.29384200	-0.00019900
Н	1.50643900	-2.16452500	-0.00034800
0	3.96152600	0.93566000	0.00011500
Н	4.90337700	0.71864000	0.00008300
Н	1.85261600	2.08993700	0.00031700
Н	-0.63432700	2.28913300	0.00035700
Н	-0.98025000	-1.96402600	-0.00031200
С	-2.42295600	0.36026800	0.00006800
0	-2.97034900	1.43069500	0.00024500
0	-3.08436900	-0.80237400	-0.00011300
С	-4.50750000	-0.69047900	-0.00008100
Н	-4.84232700	-0.15419300	-0.88556900
Н	-4.88534000	-1.70712700	-0.00064300
Н	-4.84235700	-0.15518100	0.88599300

p-OMe

Í	Y OH		
MeO			
С	-0.54036400	-1.25921700	-0.00000100
С	-1.10322000	0.01844700	0.00001000
С	-0.27295300	1.13031900	0.00003700
С	1.10518200	0.98855300	0.00005900
С	1.65889000	-0.29081900	0.00006200
С	0.82810500	-1.41383700	0.00002300
С	-2.56500500	0.23625900	-0.00001300
0	-3.10388200	1.31210600	-0.00000200
Н	-0.72332700	2.11335600	0.00003000
0	-3.27191500	-0.91314400	-0.00005100
Н	-4.20495200	-0.66250400	-0.00006400
Н	-1.18431500	-2.12656000	-0.00002100
Н	1.28665600	-2.39234900	0.00002000
Н	1.73158200	1.86698300	0.00006100
0	2.98595500	-0.54028400	0.00005700
С	3.86948900	0.56222200	-0.00011000
Н	4.87193800	0.14617600	-0.00032700
Н	3.73002700	1.17697800	-0.89167400
Н	3.73038400	1.17693400	0.89154100

p-F

	0		
	Мон		
F			
С	-0.02419300	-1.18621600	0.00000600
С	0.64653300	0.03313600	0.00000300
С	-0.07009400	1.22634300	-0.00000600
С	-1.45265600	1.20957700	-0.00001400
С	-2.09278900	-0.01675200	-0.00001100
С	-1.40848900	-1.21753200	-0.00000100
С	2.12719200	0.11305200	0.00001100
0	2.75798600	1.13593600	0.00000900
Н	0.47468000	2.15990100	-0.00000800
0	2.72118000	-1.09608900	0.00002000
Н	3.67462700	-0.93852200	0.00002400
Н	0.53959700	-2.10729900	0.00001300
Н	-1.96052200	-2.14590900	0.00000100
Н	-2.03835900	2.11710000	-0.00002200
F	-3.43070800	-0.04152100	-0.00001800

p-CF₃

p-Br

СССОНОННН	0.99439000 0.30449000 -3.24420100 -3.88061600 -1.60244700 -3.82770300 -4.78274700 -1.63533600 0.84429300	0.00511500 -1.19763200 0.10341400 1.12224900 2.16282000 -1.10986500 -0.96167200 -2.10508200 -2.13290900	0.00000300 -0.0000600 -0.00001000 -0.00000700 0.0000600 -0.00001800 -0.00002000 -0.00001600 -0.00001600
Н	0.89042900	2.14708700	0.00001400
Br m-OMe	2.88606200	-0.01563400	0.00000900
)Η		
ÓMe	0.00740000	0 70707700	0 00000 400
C C	-0.06746300	-0.16787900	0.00020400
C	0.80094100	1.54713600	-0.00000100
С	-0.49090000	2.03256500	0.00005200
С	-1.58137300	1.16620200	0.00015500
	-1.36808400	-0.20794700	0.00024700
0	2.40505400	0.37475100	-0.00007100
Ĥ	1.65728000	2.20519200	-0.00009600
0	2.49293100	-1.67245900	-0.00001500
Н	3.43442600	-1.88994700	-0.00015300
H	0.08346900	-1.77713700	0.00025600
Н	-0.66722400	3.09927400	0.00000600
	-2.58171400	1.57 183900	0.00018700
C	-3 69063600	-0.67415900	-0 00054100
Ĥ	-4.31807500	-1.55999000	-0.00025500
Н	-3.90295100	-0.07866100	0.89039500
Н	-3.90198100	-0.07985900	-0.89250800

С	-2.20389200	0.18119700	0.00000000
0	-3.12893800	0.94968500	0.00000100
0	-2.35410200	-1.14796500	0.00000000
С	-3.70597000	-1.60591100	0.00000000
Н	-4.22515000	-1.24568100	0.88574300
Н	-4.22515100	-1.24567600	-0.88574000
Н	-3.65230100	-2.68919200	-0.00000300
Н	0.04487500	-1.38661700	0.00000000
С	2.72341100	-0.82831600	0.00000000
0	2.34239100	-2.11904200	0.00000000
0	3.87874600	-0.49944300	0.00000000
Н	3.15004100	-2.64987900	0.00000000

Н	3.90827800	1.04697300	-0.00013500
С	0.43836600	2.66065500	0.00007500
С	1.55887000	3.48660200	0.00004600
Н	3.71773400	3.51956700	-0.00007200
Н	-0.58132200	3.03328000	0.00012300
Н	1.43011900	4.56274800	0.00008300
Ν	0.54985300	-1.32530700	0.00002400
Ν	0.54984300	1.32530900	0.00003400
Pd	-1.05274600	-0.00000400	0.00000800
CI	-2.66331900	1.67456000	-0.00001000
CI	-2.66330900	-1.67457600	-0.00005700

bipy*t*Bu

tBu	<i>,t</i> Bu		
	\neg		
	\rightarrow		
7	=n´N/		
	Pd		
С	-2.65822100	-0.82469600	-0.00055600
С	-0.73816000	0.49431600	-0.00017700
С	-1.51348200	1.65521800	0.00010000
С	-2.90884200	1.58383300	0.00003100
С	-3.47126100	0.29921600	-0.00040100
Н	-3.04348200	-1.83939900	-0.00076200
Н	-1.02054200	2.61642900	0.00045600
Н	-4.54565600	0.15861100	-0.00055000
С	0.73814800	0.49432500	-0.00010500
С	1.51345800	1.65523600	-0.00045700
С	2.90881800	1.58386500	-0.00017100
Н	1.02050600	2.61644100	-0.00100600
С	2.65822300	-0.82466700	0.00065600
С	3.47125000	0.29925300	0.00051400
Н	3.04349400	-1.83936600	0.00100900
Н	4.54564600	0.15866000	0.00088200
N	-1.32070500	-0.72869200	-0.00040100
Ν	1.32070700	-0.72867600	0.00031500
С	-3.80486800	2.82400200	0.00030400
C	3.80484300	2.82403600	-0.00027400
С	4.69249200	2.79821400	1.26386100
Н	5.345/0200	3.67631500	1.27864000
Н	4.08195500	2.81060100	2.1/191/00
Н	5.32730200	1.908/9300	1.29685800
C	4.69637800	2.79566400	-1.26159900
н	4.08865300	2.80594900	-2.17156400
н	5.34940100	3.67390100	-1.27624100
Н	5.33158800	1.90640500	-1.29076600
	-4.69536400	2.79608600	1.26237700
п	-4.08688800	2.80073300	2.17183000
п	-5.34840900	3.07430400	1.27723100
	-5.33049900	1.900/9900	1.29239300
С Ц	-4.09000900	2.19113000	1 27765000
	-0.0407 1000	3.07307000	-1.21100900 2 17165200
	-4.003//0UU	2.009/3000	1 2052100
	-0.02047000	1.900000000	-1.29021000
U U	-2.99234300	4.12002000	0.00170400

Н	-2.35847100	4.21468300	-0.88676700
Н	-3.67472300	4.98325600	0.00211000
Н	-2.35940900	4.21320900	0.89114600
С	2.99232500	4.12886000	-0.00292300
Н	2.35995000	4.21278100	-0.89272700
Н	2.35789500	4.21518500	0.88518300
Н	3.67470800	4.98328900	-0.00324700
Pd	0.00001100	-2.33033100	-0.00001500
CI	-1.68092200	-3.93873800	-0.00057300
CI	1.68096600	-3.93871400	0.00060100

bipyCHO

Н-	-≪	н		
	<			
	P CI	CI		
С		0.26055400	-2.66200300	0.00016600
С		-1.07991400	-0.73742300	0.00013800
С		-2.23689100	-1.50911000	0.00006000
С		-2.12815200	-2.90173400	0.00000500
С		-0.86184200	-3.48590300	0.00009400
Н		1.28017100	-3.03488100	0.00020400
Н		-3.22577900	-1.06711900	-0.00001000
Н		-0.74036200	-4.56438300	0.0008000
С		-1.07981600	0.73749500	0.00010300
С		-2.23669400	1.50932800	0.00013600
С		-2.12778000	2.90193700	-0.00000300
Н		-3.22563600	1.06745900	0.00026500
С		0.26089900	2.66190700	-0.00017400
С		-0.86139500	3.48594600	-0.00020400
Н		1.28056500	3.03465200	-0.00029500
Н		-0.73977900	4.56441000	-0.00034900
Ν		0.14678600	-1.32744100	0.00013400
Ν		0.14695700	1.32735800	0.00000200
С		-3.36317700	-3.73669100	-0.00019800
С		-3.36270200	3.73704700	0.00006400
0		-4.48024200	-3.26540700	-0.00032500
0		-4.47982500	3.26590000	0.00029200
Н		-3.19095600	-4.83241000	-0.00024200
Н		-3.19034700	4.83274500	-0.00010000
Pd		1.74447200	-0.00010800	-0.00005100
CI		3.35387100	-1.66958700	0.00015300
CI		3.35390600	1.66937200	-0.00009400

С	-3.48951300	-0.25876700	0.00019600
Н	-3.03976700	1.87577700	0.00031000
Н	-4.56554200	-0.14103200	0.00029100
Ν	1.32468100	0.75198400	0.00009200
Ν	-1.32469400	0.75195600	0.00011500
Br	3.96571300	-3.07869500	-0.00003200
Br	-3.96564500	-3.07877900	-0.00005600
Pd	-0.00002600	2.35634400	0.00001600
CI	-1.67621900	3.96011600	-0.00008600
CI	1.67612500	3.96016000	-0.00015900

phenH

	=N, I Pd			
	CI	CI		
C		1.33559800	3.45201000	0.00034100
С		2.57163100	2.83587700	0.00017800
С		2.64605100	1.42484600	0.00002500
C		1.42470900	0.71548600	0.00016800
С		0.16455400	2.67145200	0.00025700
С		3.87441200	0.68213000	-0.00030800
C		1.42472000	-0.71548000	0.00011400
C		2.64606900	-1.42482900	-0.00012700
C		3.87442100	-0.68210000	-0.00039500
С		2.57165600	-2.83586000	-0.00011600
Н		3.48656400	-3.42064200	-0.00022300
C		1.33562600	-3.45200000	0.00007600
С		0.16457500	-2.67145100	0.00016200
Н		4.81008500	1.23241300	-0.00046700
Н		1.24739100	4.53236400	0.00045400
Н		3.48653800	3.42066200	0.00018700
Н		-0.83473100	3.09625000	0.00016000
Н		4.81010100	-1.23237200	-0.00062600
Н		1.24742500	-4.53235500	0.00009900
Н		-0.83468700	-3.09628500	0.00015900
Ν		0.21568700	1.34363700	0.00024000
Ν		0.21570400	-1.34363300	0.00020500
Pd		-1.38198900	-0.00000400	-0.00000100
CI		-2.97266300	-1.69066100	0.00015500
CI		-2.97269400	1.69063900	-0.00045300

phenMe

Н ₃ С Н ₃ С-		3 CH ₃	
С	3.47196900	0.92685900	-0.00001000
С	2.86123100	2.18143600	0.00000700
С	1.43792900	2.24080800	0.00001100
С	0.71567000	1.02995900	0.00000000

С	2.66109200	-0.22824000	-0.00001500
С	0.68287100	3.46215200	0.00002500
С	-0.71567600	1.02995500	-0.00000200
С	-1.43794200	2.24079900	-0.00000200
С	-0.68289100	3.46214800	0.00001800
С	-2.86124200	2.18141800	-0.00001500
С	-3.47197300	0.92683700	-0.00000800
С	-2.66109000	-0.22825700	-0.00000400
Н	1.21311900	4.40713300	0.00004000
Н	3.08385200	-1.22887700	-0.00002200
Н	-1.21314500	4.40712500	0.00003500
Н	-3.08384300	-1.22889700	-0.00000100
Ν	1.33642200	-0.18117700	-0.00000900
N	-1.33642000	-0.18118600	-0.00000500
С	3.66002000	3.45766100	0.00001700
Н	3.42669000	4.06473300	-0.88157700
Н	3.42664100	4.06475100	0.88158600
Н	4.73235500	3.26865600	0.00004900
С	-3.66004700	3.45763100	-0.00002200
Н	-3.42700200	4.06452100	0.88177600
Н	-3.42640300	4.06491000	-0.88138700
Н	-4.73238000	3.26860800	-0.00042600
С	4.96930400	0.74264600	-0.00002600
Н	5.43091900	1.19655900	-0.88318200
Н	5.43094900	1.19662700	0.88307900
Н	5.22478400	-0.31883400	0.00001000
С	-4.96930700	0.74262600	-0.00000300
Н	-5.43093900	1.19662600	0.88309900
Н	-5.43093300	1.19652800	-0.88316000
Н	-5.22479200	-0.31885300	0.00005300
Pd	0.00000600	-1.77962300	-0.00000100
CI	-1.69527800	-3.37237900	0.00001500
CI	1.69529900	-3.37236900	0.00000300

Ph /==	∽, Ph		
\searrow	\succ		
	$\langle \rangle$		
\=_Ń,	Ň—″		
Pď			
CI	CI		
С	-3.44492900	0.25288500	-0.05854300
С	-2.86169800	-1.00698400	0.00274200
С	-1.43545400	-1.07820300	0.00722600
С	-0.71730600	0.13928200	-0.00645500
С	-2.65954300	1.41348200	-0.07325100
С	-0.68262800	-2.29963800	0.00068600
С	0.71733200	0.13910000	0.00660500
С	1.43517200	-1.07856800	-0.00700900
С	0.68203400	-2.29981100	-0.00029500
С	2.86143500	-1.00770900	-0.00266200
С	3.44498700	0.25202000	0.05849200
С	2.65989400	1.41281400	0.07319800
Н	-1.22044200	-3.23919300	-0.00912100
Н	-4.52458300	0.34983800	-0.05881800
Н	-3.07981800	2.41426200	-0.09826500

Н	1.21961000	-3.23950100	0.00963600
Н	4.52466400	0.34870600	0.05865000
Н	3.08042300	2.41349000	0.09812600
Ν	-1.33267300	1.35534000	-0.03492300
Ν	1.33300800	1.35500500	0.03495600
С	3.71786800	-2.21484700	-0.06072500
С	4.74577200	-2.38807700	0.87833700
С	3.55178300	-3.17410500	-1.07247500
С	5.57911000	-3.50322100	0.81637000
Н	4.87485000	-1.65382200	1.66752400
С	4.39151500	-4.28421000	-1.13654100
Н	2.78158700	-3.03210400	-1.82382000
С	5.40377100	-4.45394700	-0.19031400
Н	6.36392800	-3.63013900	1.55542600
Н	4.25995100	-5.01262400	-1.93056000
Н	6.05502100	-5.32092800	-0.23978100
С	-3.71843200	-2.21391300	0.06074300
С	-3.55280500	-3.17310400	1.07263000
С	-4.74614100	-2.38700800	-0.87855600
С	-4.39280100	-4.28301400	1.13660300
Н	-2.78275300	-3.03119900	1.82414300
С	-5.57974000	-3.50196300	-0.81668300
Н	-4.87486100	-1.65280200	-1.66784700
С	-5.40486000	-4.45262500	0.19014200
Н	-4.26159500	-5.01137800	1.93072800
Н	-6.36440100	-3.62878400	-1.55592200
Н	-6.05631300	-5.31945700	0.23953500
Pd	0.00036800	2.95235900	-0.00000800
CI	-1.68976800	4.54765300	-0.05244000
CI	1.69091100	4.54722400	0.05237700

phenOMe

Ν	0.37337600	1.33894800	0.00013500
Ν	0.37324500	-1.33898700	0.00011800
0	-3.17159500	3.48519700	-0.00006200
0	-3.17194000	-3.48488000	-0.00008700
С	-3.16818900	-4.91287400	0.00003500
Н	-4.21583700	-5.21128600	-0.00015300
Н	-2.67300900	-5.30313100	-0.89554400
Н	-2.67337200	-5.30297100	0.89588300
С	-3.16766600	4.91318900	-0.00003800
Н	-4.21527600	5.21172900	-0.00018900
Н	-2.67274900	5.30328900	0.89575500
Н	-2.67248300	5.30331800	-0.89567200
Pd	1.97113600	-0.00009500	0.00003200
CI	3.56052300	1.69967500	-0.00013200
CI	3.56034900	-1.70002700	-0.00013500

dipyridylketone

	U U			
\sim	\checkmark	\sim		
\searrow	∕_Pd	\checkmark		
	α'	:1		
С	01 0	-3 70963500	0 90845900	0 93719400
č		-2.63814000	0.02238900	0.86410500
Č		-1.31412500	1.61193600	-0.19407500
С		-2.36312100	2.53430800	-0.19089300
С		-3.57790500	2.18044800	0.38759200
Н		-4.63233100	0.58532300	1.40541900
Н		-2.71014900	-1.00068600	1.20876600
Н		-2.19582300	3.50482800	-0.64037900
Н		-4.40308300	2.88467000	0.40837300
С		0.00000300	2.09432400	-0.74656200
С		1.31412600	1.61193900	-0.19406000
С		2.36310900	2.53432600	-0.19082800
С		2.63815400	0.02236500	0.86406200
С		3.57789200	2.18045800	0.38765500
Н		2.19580400	3.50486300	-0.64027700
С		3.70963700	0.90844400	0.93719600
Н		2.71017200	-1.00072600	1.20867800
Н		4.40305900	2.88469200	0.40847800
Н		4.63233500	0.58530000	1.40541100
0		0.00000800	3.02543100	-1.53576600
N		1.46385500	0.37075100	0.30993700
N.		-1.46384300	0.37076300	0.30996700
Pd		0.00000000	-1.08623700	-0.00860300
CI		-1.65386200	-2.6//41100	-0.39968000
CI		1.65385600	-2.67740000	-0.399/4800

diazafluorenone

O II			
Pd			
	0 28008100	2 76205500	0 00010000
C	1 55521100	-3 36317200	-0.00010300
C	2 73399000	-2 59354100	-0.00006200
č	2.58104500	-1.21174100	0.00010700
C	1.27987700	-0.72178700	0.00015400
H	-0.63719200	-3.32794500	-0.00021400
Н	1.61416100	-4.44567100	-0.00024000
Н	3.71248100	-3.06242700	-0.00014700
С	2.58102000	1.21177000	0.00011100
С	2.73393700	2.59357300	-0.00005200
С	1.55514200	3.36318000	-0.00012300
С	0.28902500	2.76293800	-0.00010600
С	1.27986200	0.72179000	0.00015500
Н	3.71241900	3.06247900	-0.00013300
Н	1.61407100	4.44568000	-0.00022500
Н	-0.63726000	3.32790900	-0.00021300
С	3.51035400	0.00002400	0.00008600
0	4.71916000	0.00003700	0.00003500
N	0.15027400	1.42186100	-0.00002500
N	0.15030300	-1.42188100	-0.00002300
Pd	-1.48695700	-0.00000800	0.00000700
CI	-3.03433200	1.71358600	0.00001200
CI	-3.03432900	-1.71360400	0.00003100

12. References

- 1) Ishikawa, T.; Nagai, K.; Ohkubo, N.; Ishii, H. Heterocycles 1994, 39, 9119-9123.
- Aissoui, H.; Boss, C.; Gude, M.; Koberstein, R.; Lehmann, D.; Sifferlen, T.; Traschel, D. 3-Aza-Bicylco[3.1.0]Hexane Derivatives, U.S. patent IB 2007/053497, Sept 28, 2007.
- 3) Efe, C.; Lykakis, I. N.; Stratakis, M. Chem. Commun. 2011, 47, 803.
- 4) Lykakis, I. N.; Efe, C.; Gryparis, C.; Stratakis, M. Eur. J. Org. Chem. 2011, 2334-2338.
- Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O'Neill, J.; Junk, K. W. Org. Lett. 2007, 9, 3933-3935.
- 6) Mezzailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133-4136.
- Nag, S.; Lehnman, L.; Kettschau, G.; Toth, M.; Heinrich, T.; Thiele, A.; Varrone, A.; Halldin, C. *Bioorg. Med. Chem.* 2013, *21*, 6634-6641.
- 8) Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X. Org. Lett. 2011, 13, 42-45.
- Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford CT, 2009
- 10) Schäfer, A.; Huber, C.; Ahlrichs, R., J. Chem. Phys. 1994, 100, 5829.
- E. D. Glendening, J., K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold *NBO 6.0*, Theoretical Chemistry Institute, University of Wisconsin, Madison 2013.
- 12) Hansch, C.; Leo, A.; Taft, R. W., Chem. Rev. 1991, 91, 165.
- 13) Seeman, J. I., J. Chem. Edu. 1986, 63, 42.