Supporting Information for

Organocatalytic Activation of Isocyanides: *N***-Heterocyclic Carbene-Catalyzed Enaminone Synthesis from Ketones**

Jungwon Kim and Soon Hyeok Hong *

Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea

Contents:

1.	General Information	S2
2	Initial Observation of (Z)-Enaminone Synthesis	S 2
3.	General Procedure for the Synthesis of Enaminones (3)	S 3
4.	Optimization Tables (Table S1–4)	S 3
5	Experimental Procedures for the Control Experiments	S5
6.	Experimental Procedure for the Gram-Scale Reaction	S 7
7.	Crystallographic Data of 3sa	S 8
8.	Spectroscopic Data	S 9
9.	References	S19
10.	NMR Spectra	S20

1. General Information

Unless otherwise noted, all reactions were performed in a 4mL screw-capped reaction vial. All anhydrous solvents were purchased from commercial suppliers and degassed with dry argon before use. NMR spectra were recorded in CDCl₃ or DMSO-d₆, and the residue solvent signals were used as reference. Chemical shifts were reported in ppm, and coupling constants in Hz. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet). Unless otherwise note, all reagents and solvents as well as all starting ketones, benzyl bromide, 2b', and 2c were purchased from commercial suppliers and used as received without further purification. Previously reported isocyanides (2a, 2b, 2d, 2e, 2f, 2g, 2i, and 2j) were prepared from their corresponding amines by methods described in the literature,¹ and their identity was confirmed by comparison with reported data. New isocyanide 2h was synthesized by a previously reported method, and its structure was confirmed by spectroscopic analysis.¹ The free carbene (IMes) was synthesized from the corresponding salt (IMesHCl), according to a previous method.² All enaminone products were purified by silica gel column chromatography (hexane/EtOAc with 3% NEt₃). We are grateful to the Organic Chemistry Research Center of Sogang University for HRMS-ESI analysis, the Korea Basic Science Institute (KBSI) for HRMS-EI analysis, and the Research Institute of Pharmaceutical Science (SNU) for single-crystal X-ray diffraction analysis.

2. Initial Experiment of (Z)-Enaminone Synthesis

Scheme S1. Reaction between 1a and 2a

IMesHCl (54.5mg, 0.16 mmol) and NaOtBu (23.1 mg, 0.24 mmol) were charged in a 25 mL Schlenk tube under argon atmosphere. The tube was then sealed with a rubber septum, and 1,4-dioxane (1.6 mL) was added. The mixture was stirred for 5 min. at room temperature, and a solution of **1a** (93.5 μ l, 0.8 mmol) and **2a** (95.6 μ l, 0.8 mmol) in 1,4-dioxane (1.6 mL) was added via syringe. The mixture was stirred for 24 h at 50 °C. After cooling to room S2

temperature, the volatiles were removed in vacuo and the remaining residue was purified by flash column chromatography (silica gel, hexane/ethyl acetate) to afford **3aa** as a yellow solid (36.1 mg, 19 % yields).

3. General Procedure for the Synthesis of Enaminone (3)

IMesHCl (10.2mg, 0.03 mmol) and the base were charged in a 4 mL vial under argon atmosphere. The vial was then sealed with a Teflon-lined septum, and the ketone (0.2 mmol), aryl isocyanide (0.3 mmol), and DMA (2.4 mL) were added via syringe. The solution was stirred for the indicated time at 80 °C. After cooling to room temperature, the volatiles were removed in vacuo and the remaining residue was purified by flash column chromatography (silica gel, hexane/ethyl acetate in 3% triethylamine) to afford the corresponding enaminone.

4. Optimization Tables

Table S1 - Solvent

Ph 1a	+ Me NC	IMesHCI (20 mol%) NaOtBu (30 mol%) Solvent (0.25 M) 50 °C, 24 h 3aa	Me N CI ⁻ IMesHCI
	Entry	Solvent	Yield 3aa (%)
_	1	1,4-Dioxane	30
	2	MeCN	19
	3	THF	35
	4	Isopropyl acetate	25
	5	DCM	13
	6	1,2-DCE	Trace
	7	Benzene	33
	8	Toluene	36
	9	o-Xylene	38
	10	<i>p</i> -Xylene	32
	11	Cyclohexane	32
	12	Hexane	38
	13	DMF	42
	14	DMA	43
_	15	DMSO	40

Ph 1a	+ NC -		IMesHCI (20 mol%) Base (30 mol%) DMA (0.25 M) 50 °C, 24 h	O HI Ph 3a	Me	CI ⁺ IMesHCI
-	Entry	Base	Yield 3aa (%)	Entry	Base	Yield 3aa (%)
-	1	NaOtBu	39	11	Cs ₂ CO ₃	45
	2	LiOtBu	27	12	K ₃ PO ₄	48
	3	KOtBu	37	13	K ₂ HPO ₄	N. R.
	4	NaOMe	45	14	KH ₂ PO ₄	N. R.
	5	LiHMDS	38	15	NaOAc	N. R.
	6	KHMDS	32	16	CsOAc	30
	7	NaH	45	17	TEA	N. R.
	8	Li ₂ CO ₃	N. R.	18	DIPEA	N. R.
	9	Na ₂ CO ₃	7	19	Pyridine	N. R.
	10	K_2CO_3	45			

Table S3 – NHC Salt

Entry	NHC Salt	Х	Yield	Entry	NHC Salt	Yield
			(%)			(%)
1		Cl	45	7		N. R.
2	X- X-	BF ₄	42		BF4-	
3		PF ₆	32	8		N. R.
4		Cl	N. R.			
5		BF ₄	N. R.	9	Y.S	N. R.
6		PF ₆	N. R.		∕ ^N ≦∕ Γ	

Ph + Me 1a	NC 2a x equiv.	IMesHCI (y mol%) NaOtBu (z mol%) DMA (m M) T °C, t h			%) %) Pr	° V	HN 3aa	Me	
	Entry	Х	у	Z	m	Т	t	Yield 3aa (%)	-
	1	1.0	20	30	0.25	50	24	46	-
	2	1.5	20	30	0.25	50	24	58	
	3	2.0	20	30	0.25	50	24	54	
	4	1.0	20	25	0.25	50	24	47	
	5	1.0	20	20	0.25	50	24	48	
	6	1.0	15	20	0.25	50	24	50	
	7	1.0	10	20	0.25	50	24	42	
	8	1.5	15	20	0.25	50	48	64	
	9	1.5	15	20	0.25	80	48	81	
	10	1.5	15	20	0.125	80	48	87	
	11	1.5	15	20	0.125	80	24	92	
	12	1.5	15	20	0.125	80	12	94	
	13	1.5	15	20	0.125	80	6	91	
	14	1.5	15	20	0.125	80	3	74	
	15	15	15	20	0 083	80	6	93	

Table S4 - Equivalence & Time & Temperature

5. Experimental Procedures for the Control Experiments

Scheme S2. Reaction between 1a and 2a with IMes

IMes (9.1mg, 0.03 mmol) was charged in a 4 mL vial under argon atmosphere. The vial was then sealed with a Teflon-lined septum, and **1a** (23.4 μ l, 0.2 mmol), **2a** (48 μ l, 0.3 mmol), and DMA (2.4 mL) were added via syringe. The solution was stirred for 6 h at 80 °C. After cooling to room temperature, the volatiles were removed in vacuo and the remaining residue was purified by flash column chromatography (silica gel, hexane/ethyl acetate with 3% NEt₃) to afford the corresponding enaminone **3aa** in 76% yields.

Scheme S3. Reaction between 1a and 2b'

Additive (0.04 or 0.2 mmol) was charged in a 4 mL vial under argon atmosphere. The vial was then sealed with a Teflon-lined septum, and **1a** (23.4 μ l, 0.2 mmol), **2b'** (44.5 μ l, 0.3 mmol), and DMA (2.4 mL) were added via syringe. The solution was stirred for 6 h at 80 °C. After cooling to room temperature, the volatiles were removed in vacuo and the remaining residue was purified by flash column chromatography (silica gel, hexane/ethyl acetate with 3% NEt₃) to afford the corresponding enaminone **3ab**.

Scheme S4. Direct alkylation reaction with in-situ generated enolate anion

Additive (0.5 mmol) and THF (2 mL) were charged in a 10 mL Schlenk tube under argon atmosphere, and the tube was then sealed with rubber septum. **1a** (58.3 μ L, 0.5 mmol) was slowly added to the solution under argon flow at room temperature, and the solution was further stirred for 1.5 h at room temperature. Benzyl bromide (71.4 μ L, 0.6 mmol) was added in the reaction mixture under argon flow, and the solution was further stirred for 3 h at room temperature. After the reaction was finished, the reaction mixture was diluted with ethyl acetate (10 mL), washed with aqueous sat. NaHCO₃ solution (10 mL) and brine (10 mL), dried with MgSO₄, and concentrated in vacuo. The crude mixture was analysed by ¹H-NMR using nitromethane as an internal standard.

Scheme S5. Reaction of 2a with in-situ generated enolate anion

KOtBu (56 mg, 0.5 mmol) and THF (1 mL) were charged in a 25 mL Schlenk tube under Ar atmosphere, and the tube was then sealed with rubber septum. **1a** (58.3 μ L, 0.5 mmol) was slowly added to the solution under argon flow at room temperature, and the solution was further stirred for 1.5 h at room temperature. After removing all volatiles via manifold vacuum (white solid **1a**' was observed), **2b** (120 μ L, 1.0 mmol), and DMA (6 mL) were added in the tube under argon flow. The solution was stirred for 6 h at 80 °C. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (20 ml), washed with aqueous sat. NaHCO₃ solution (20 mL x 2) and brine (20 mL), dried with MgSO₄, and concentrated in vacuo. The crude mixture was purified by flash column chromatography (silica gel, hexane/ethyl acetate with 3% NEt₃) to afford the corresponding enaminone **3aa** in 55% yields.

6. Experimental Procedure for the Gram-Scale Reaction

Scheme S6. Gram-Scale Reaction of 1f with 2a

IMesHCl (511 mg, 1.5 mmol), K_2CO_3 (276 mg, 2.0 mmol), and DMA (80 mL) were charged in a 250 mL oven-dried round-bottom flask (RBF) under Ar atmosphere, and the flask was then sealed with rubber septum. **1f** (1.38 mL, 10 mmol) and **2a** (1.8 mL, 15 mmol) were added to the solution under argon flow, and the solution was further stirred for 24 h at 80 °C. After reaction was finished, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (170 mL). The organic solution was washed with aqueous 5% LiCl solution (250 mL x 4) and aqueous sat. NaCl solution (250 mL), dried with MgSO₄ and concentrated in vacuo. The residual mixture was further purified by flash column chromatography (silica gel, hexane/ethyl acetate with 3% NEt₃) to afford the corresponding enaminone **3fa** in 75% yield.

7. Crystallographic Data of 3sa

Figure 1. Solid-state structure of **3sa** at 50 % probability ellipsoids.

Single crystals of **3sa** were obtained by slow evaporation of sat. DMA solution of **3sa**, and one of them was chosen for the analysis by X-ray diffractometer.

1503347
C ₁₇ H ₁₇ ON
251.31
101(2)
monoclinic
$P2_1/n$
6.39890(8)
11.27072(15)
19.0731(3)
90
92.0107(13)
90
1374.71(3)
4
1.214
0.587
536.0
$0.289 \times 0.148 \times 0.031$
$CuK\alpha \ (\lambda = 1.54184)$
9.116 to 152.968
$-7 \le h \le 5, -14 \le k \le 14, -23 \le l \le 23$
16312
2863 [$R_{int} = 0.0287$, $R_{sigma} = 0.0191$]
2863/0/174
1.048
$R_1 = 0.0411, wR_2 = 0.1095$
$R_1 = 0.0441, wR_2 = 0.1128$
0.26/-0.27

Table S5 – Crystal data and structure refinement for 3sa.

8. Spectroscopic Data

2-fluoro-1-isocyano-4-methylbenzene (2h)

NC ¹H NMR (499 MHz, CDCl₃) δ 7.27 (t, J = 7.7 Hz, 1H), 7.00 (d, J = 10.2 Hz, H), 6.97 – 6.94 (m, 1H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.38, 157.12 (d, J = 255.9 Hz), 142.27 (d, J = 7.3 Hz), 127.44, 125.30 (d, J = 3.5 Hz), 116.98 (d, J = 18.1 Hz), 112.64 (d, J = 14.8 Hz), 21.36 (d, J = 1.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -119.26; HRMS-EI (m/z) [M]⁺ calcd for C₈H₆FN, 135.0484; found: 135.0483.

(Z)-1-phenyl-3-(p-tolylamino)prop-2-en-1-one (**3aa**)

¹H NMR (499MHz, CDCl₃) δ 12.15 (d, *J* = 11.7 Hz, 1 H), 7.94 (d, *J* = 7.8 Hz, 2 H), 7.44 – 7.52 (m, 4 H), 7.15 (d, *J* = 8.3 Hz, 2 H), 7.02 (d, *J* = 8.3 Hz, 2 H), 6.00 (d, *J* = 7.8 Hz, 1 H), 2.33 (s, 3 H). Identity confirmed by comparing with reported literature.³

(Z)-1-(4-methoxyphenyl)-3-(p-tolylamino)prop-2-en-1-one (**3ba**)

¹H NMR (400 MHz, CDCl₃) δ 12.08 (d, J = 11.8 Hz, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.45 (dd, J = 11.8 Hz, 7.9 Hz, 1H), 7.14 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.95 (d, J = 7.9 Hz, 1H), 3.86 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃)

δ 189.92, 162.50, 144.79, 138.10, 133.24, 132.18, 130.34, 129.38, 116.33, 113.74, 93.06, 55.49, 20.86; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₇NNaO₂, 290.1151; found: 290.1150.

(Z)-1-(4-chlorophenyl)-3-(p-tolylamino)prop-2-en-1-one (3ca)

¹H NMR (400 MHz, CDCl₃) δ 12.14 (d, *J* = 12.3 Hz 1H), 7.87 (d, *J* = 6.7 Hz, 2H), 7.51 (dd, *J* = 11.4 Hz, 7.5 Hz, 1H), 7.42 (d, *J* = 6.7 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.02 (d, *J* = 7.2 Hz, 2H), 5.95 (d, *J* = 7.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.38, 145.84,

145.82, 137.79, 137.76, 133.85, 130.42, 128.78, 116.62, 93.00, 20.93; HRMS-ESI (m/z) $[M+Na]^+$ calcd for C₁₆H₁₄ClNNaO, 294.0656; found: 294.0658.

(Z)-1-(4-iodophenyl)-3-(p-tolylamino)prop-2-en-1-one (**3da**)

O HN

¹H NMR (400 MHz, CDCl₃) δ 12.15 (d, *J* = 12.0 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.50 (dd, *J* = 12.5 Hz, 7.7 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 8.3 Hz, 2H), 5.93 (d, *J* = 7.7 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 189.70, 145.88, 138.80,

137.76, 133.88, 130.43, 128.97, 116.64, 98.82, 92.92, 20.92.; HRMS-ESI (m/z) $[M+H]^+$ calcd for C₁₆H₁₅INO, 364.0913; found: 364.0913.

(Z)-4-(3-(p-tolylamino)acryloyl)benzonitrile (3ea)

¹H NMR (400 MHz, CDCl₃) δ 12.24 (d, *J* = 12.2 Hz, 1H), 7.99 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.56 (dd, *J* = 12.6 Hz, 7.7 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 5.95 (d, *J* = 7.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.35, 146.76,

143.03, 137.39, 134.42, 132.41, 130.48, 127.82, 118.58, 116.87, 114.64, 93.10, 20.94; HRMS-ESI (m/z) $[M+Na]^+$ calcd for $C_{17}H_{14}N_2NaO$, 285.0998; found: 285.0997.

(Z)-1-(2-methoxyphenyl)-3-(p-tolylamino)prop-2-en-1-one (**3fa**)

¹H NMR (499 MHz, CDCl₃) δ 12.05 (d, J = 12.6 Hz, 1H), 7.71 (dd, J = 7.6 Hz, 1.8 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.05 – 6.96 (m, 4H), 6.01 (d, J = 7.8 Hz, 1H), 3.92 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.73, 157.67, 144.39, 138.15, 133.30,

131.96, 130.33, 130.19, 120.74, 116.47, 111.67, 98.48, 55.80, 20.87; HRMS-ESI (m/z) $[M+Na]^+$ calcd for $C_{17}H_{17}NNaO_2$, 290.1151; found: 290.1152.

(Z)-1-(2-bromophenyl)-3-(p-tolylamino)prop-2-en-1-one (**3ga**)

¹H NMR (400 MHz, CDCl₃) δ 11.92 (d, *J* = 11.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.46 (dd, *J* = 12.5 Hz, 7.7 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 8.2 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 5.63 (d, *J* = 7.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.01, 145.51, 142.63, 137.69,

133.98, 133.63, 130.74, 130.41, 129.25, 127.38, 119.50, 116.76, 97.19, 20.92.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₆H₁₄BrNNaO, 338.0151; found: 338.0152.

(Z)-1-(benzo[d][1,3]dioxol-5-yl)-3-(p-tolylamino)prop-2-en-1-one (**3ha**)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 12.04 (d, J = 11.7Hz, 1H), 7.52 (d, J = 8.2Hz, 1H), 7.49 – 7.41 (m, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.1 Hz, 1H), 6.03 (s, 2H), 5.90 (d, J = 7.8 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.41, 150.60, 148.11, 145.00, 138.02, 134.14, 133.40, 130.37, 122.79, 116.42, 108.01, 107.63, 101.71, 93.04, 20.88; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₅NNaO₃, 304.0944; found: 304.0943.

(Z)-1-(furan-2-yl)-3-(p-tolylamino)prop-2-en-1-one (**3ia**)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 11.91 (d, *J* = 11.6 Hz, 1H), 7.53 (s, 1H), 7.45 (dd, *J* = 12.5, 7.8 Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 3.4 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.51 (dd, *J* = 3.3, 1.5 Hz, 1H), 5.90 (d, *J* = 7.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.96, 153.96, 145.30, 145.02, 137.84, 133.56, 130.36, 116.39, 113.97, 112.22, 112.20, 93.11, 20.88.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₄H₁₃NNaO₂, 250.0838; found: 250.0836.

(Z)-1-(thiophen-2-yl)-3-(p-tolylamino)prop-2-en-1-one (**3ja**)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 11.87 (d, *J* = 11.6 Hz, 1H), 7.63 (d, *J* = 3.7 Hz, 1H), 7.54 (d, *J* = 4.9 Hz, 1H), 7.44 (dd, *J* = 12.5, 7.7 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.11 (t, *J* = 3.9 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 2H), 5.86 (d, *J* = 7.7 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.72, 146.44, 145.01, 137.88, 133.57, 131.46, 130.40, 128.90, 128.12, 116.37, 93.37, 20.89; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₄H₁₃NNaOS, 266.0610; found: 266.0610.

(Z)-1-(1-methyl-1H-pyrrol-2-yl)-3-(p-tolylamino)prop-2-en-1-one (3ka)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 11.53 (d, J = 11.9Hz, 1H), 7.29 (dd, J = 12.3, 8.1 Hz, 1H), 7.12 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 8.3 Hz, 2H), 6.86 - 6.82 (m, 1H), 6.76 (s, 1H), 6.14 - 6.10 (m, 1H), 5.79 (d, J = 8.1 Hz, 1H), 4.02 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 183.62, 142.89, 138.50, 132.54, 132.11, 130.27, 129.76, 116.04, 115.95, 107.76, 95.08, 37.68, 20.83.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₅H₁₆N₂NaO, 263.1155; found: 263.1156.

(Z)-1-(pyridin-2-yl)-3-(p-tolylamino)prop-2-en-1-one (**3la**)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 12.16 (d, J = 12.0 Hz, 1H), 8.66 (d, J = 4.1Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.60 (dd, J = 12.3, 7.7 Hz, 1H), 7.39 (dd, J = 7.7, 4.8 Hz, 1H), 7.15 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 7.7 Hz, 2H), 6.71 (d, J = 7.7 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.35, 155.40, 148.82, 146.35, 137.81, 137.04, 133.84, 130.40, 125.83, 121.76, 116.65, 92.93, 20.90.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₅H₁₄N₂NaO, 261.0998; found: 261.0998.

(Z)-1-(naphthalen-2-yl)-3-(p-tolylamino)prop-2-en-1-one (**3ma**)

Me ¹H NMR (400 MHz, CDCl₃) δ 12.23 (d, *J* = 11.9 Hz, 1H), 8.45 (s, 1H), 8.04 (d, *J* = 8.6 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.7 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.59 – 7.49 (m, 3H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.04 (d, *J* = 8.3 Hz, 2H), 6.16 (d, *J* = 7.8 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.74, 145.42, 137.95, 136.75, 135.05, 133.62, 132.95, 130.41, 129.47, 128.31, 128.12, 127.83, 127.72, 126.57, 124.10, 116.55, 93.61, 20.93; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₂₀H₁₇NNaO, 310.1202; found: 310.1204.

(1E,4Z)-1-phenyl-5-(p-tolylamino)penta-1,4-dien-3-one (**3na**)

^{Me} ¹H NMR (499 MHz, CDCl₃) δ 12.18 (d, J = 12.3 Hz, 1H), 7.60 – 7.54 (m, 3H), 7.44 – 7.33 (m, 4H), 7.14 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 15.9 Hz, 2H), 5.50 (d, J = 7.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 189.07, 145.09, 139.47, 137.92, 135.64, 133.62, 130.40, 129.74, 128.94, 128.17, 127.86, 116.47, 97.83, 20.91;

(Z)-1-cyclopropyl-3-(p-tolylamino)prop-2-en-1-one (**3oa**)

^{Me} ¹H NMR (499 MHz, CDCl₃) δ 11.56 (d, J = 10.9 Hz, 1H), 7.18 (dd, J = 12.4, 7.7 Hz, 1H), 7.10 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 5.41 (d, J = 7.7 Hz, 1H), 2.29 (s, 3H), 1.83 – 1.78 (m, 1H), 1.05 – 1.02 (m, 2H), 0.85 – 0.81 (m, 2H); 13C NMR (75 MHz, CDCl₃) δ 200.48, 142.57, 138.06, 132.86, 130.16, 115.94, 96.65, 20.70, 20.53, 9.89; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₃H₁₅NNaO, 224.1046; found: 224.1043.

(Z)-2-((p-tolylamino)methylene)-2,3-dihydro-1H-inden-1-one (**3pa**)

¹H NMR (499 MHz, CDCl₃) δ 11.35 (d, J = 11.3 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.55 – 7.46 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 3.66 (s, 2H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.32, 148.75, 141.02, 139.28, 138.16, 132.90, 132.16, 130.39, 127.21, 125.81,

122.94, 115.82, 107.75, 30.89, 20.87; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₅NNaO, 272.1046; found: 272.1048.

(Z)-2-((p-tolylamino)methylene)-3,4-dihydronaphthalen-1(2H)-one (**3qa**)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ 11.97 (d, J = 11.4 Hz, 1H), 8.03 (d, J = 7.6Hz, 1H), 7.44 – 7.31 (m, 3H), 7.22 (d, J = 7.4 Hz, 1H), 7.13 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.3 Hz, 2H), 2.92 (t, J = 6.5 Hz, 2H), 2.68 (t, J = 6.5 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.55, 142.37, 142.08, 138.33, 135.32, 132.78, 131.90, 130.35, 127.98, 126.94, 126.67, 116.10, 104.83, 29.99, 27.86, 20.89.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₈H₁₇NNaO, 286.1202; found: 286.1201.

(Z)-6-((p-tolylamino)methylene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (**3ra**)

^{Me} ¹H NMR (499 MHz, CDCl₃) δ 12.01 (d, J = 11.6 Hz, 1H), 7.61 (dd, J = 7.3, 1.7 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.28 (d, J = 12.2 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 2.74 (t, J = 7.0 Hz, 2H), 2.32 (s, 3H), 2.18 (t, J = 6.8 Hz, 2H), 1.95 (quint, J = 6.9

Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 197.10, 143.03, 141.71, 138.93, 138.25, 132.84, 130.69, 130.31, 128.58, 127.49, 126.75, 116.15, 107.64, 31.01, 30.64, 28.11, 20.83; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₉H₁₉NNaO, 300.1359; found: 300.1360.

(E)-2-methyl-1-phenyl-3-(p-tolylamino)prop-2-en-1-one (3sa)

¹H NMR (499 MHz, DMSO-d₆) δ 8.96 (d, J = 13.1 Hz, 1H), 7.52 – 7.42 (m, 5H), 7.40 (d, J = 13.1 Hz, 1H), 7.06 (d, J = 8.3, 2H), 6.85 (d, J = 8.4 Hz, 2H), 2.20 (s, 3H), 1.93 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ

194.83, 145.59, 141.37, 139.72, 131.58, 130.37, 130.10, 128.52, 116.26, 109.97, 20.67, 10.34; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₇NNaO, 274.1202; found: 274.1200.

(E)-1-phenyl-2-((p-tolylamino)methylene)butan-1-one (**3ta**)

¹H NMR (499 MHz, DMSO-d₆) δ 9.01 (d, *J* = 13.2 Hz, 1H), 7.50 – 7.40 (m, 5H), 7.32 (d, *J* = 13.2 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 2.48 (t, *J* = 7.3 Hz, 2H), 2.19 (s, 3H), 1.03 (t, *J* = 7.4 Hz, 2H), 2.19 (s, 3H), 1.03 (t, *J* = 7.4 Hz), 3.5 Hz, 2H), 2.48 (t, *J* = 7.3 Hz, 2H), 2.19 (s, 3H), 1.03 (t, *J* = 7.4 Hz), 3.5 Hz, 2H), 3.5 Hz, 2H), 3.5 Hz, 3.5 Hz, 3.5 Hz, 3.5 Hz, 3.5 Hz, 3.5 Hz), 3.5 Hz, 3.5 Hz, 3.5 Hz, 3.5 Hz), 3.5 Hz, 3.5 Hz), 3.5 Hz, 3.5 Hz), 3.5 Hz),

3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 194.21, 144.40, 141.03, 139.29, 131.04, 129.88, 129.62, 128.04, 116.05, 115.80, 20.22, 16.75, 13.14; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₈H₁₉NNaO, 288.1359; found: 288.1358.

(E)-1-phenyl-2-((p-tolylamino)methylene)pentan-1-one (**3ua**)

¹H NMR (499 MHz, DMSO-d₆) δ 8.96 (d, J = 13.3 Hz, 1H), 7.50 – 7.42 (m, 5H), 7.05 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 2.46 (t, J = 7.3 Hz, 2H), 2.19 (s, 3H), 1.49 – 1.41 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H);

¹³C NMR (75 MHz, DMSO-d₆) δ 194.52, 144.98, 141.10, 139.32, 131.07, 129.89, 129.62, 128.04, 115.87, 114.49, 25.16, 21.18, 20.19, 13.88.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₉H₂₁NNaO, 302.1515; found: 302.1517.

(*E*)-1-phenyl-2-((p-tolylamino)methylene)hexan-1-one (**3va**)

O N H Me ¹H NMR (499 MHz, DMSO-d₆) δ 8.94 (d, J = 13.2 Hz, 1H), 7.51 – 7.40 (m, 5H), 7.33 (d, J = 13.2 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 2.49 (t, J = 7.3 Hz, 2H), 2.19 (s, 3H), 1.47 – 1.31 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 194.46,

144.79, 141.10, 139.33, 131.02, 129.86, 129.60, 128.04, 128.01, 115.85, 114.75, 30.39, 23.12, 22.23, 20.17, 14.14; HRMS-ESI (m/z) $[M+Na]^+$ calcd for C₂₀H₂₃NNaO, 316.1672; found: 316.1670.

(E)-1-phenyl-2-((p-tolylamino)methylene)heptan-1-one (3wa)

 $\begin{array}{c} \begin{array}{c} & & \mbox{Me} & \mbox{}^{\rm Me} & \mbox{}^{\rm H}\ {\rm NMR}\ (499\ {\rm MHz},\ {\rm DMSO-d_6})\ \delta\ 8.94\ ({\rm d},\ J=13.2\ {\rm Hz},\ 1{\rm H}),\ 7.50-7.39 \\ & ({\rm m},\ 5{\rm H}),\ 7.32\ ({\rm d},\ J=13.2\ {\rm Hz},\ 1{\rm H}),\ 7.05\ ({\rm d},\ J=8.3\ {\rm Hz},\ 2{\rm H}),\ 6.83\ ({\rm d},\ J=8.4\ {\rm Hz},\ 2{\rm H}),\ 2.47\ ({\rm t},\ J=7.6\ {\rm Hz},\ 2{\rm H}),\ 2.19\ ({\rm s},\ 3{\rm H}),\ 1.46-1.38\ ({\rm m},\ 2{\rm H}),\ 1.38-1.28\ ({\rm m},\ 4{\rm H}),\ 0.88\ ({\rm t},\ J=7.0\ {\rm Hz},\ 3{\rm H});\ ^{13}{\rm C}\ {\rm NMR}\ (101\ {\rm MHz},\ {\rm DMSO-d_6})\ \delta\ 194.45,\ 144.76,\ 141.09,\ 139.32,\ 131.02,\ 129.87,\ 129.61,\ 128.02,\ 115.84,\ 114.77,\ 31.34,\ 27.77,\ 23.30,\ 22.27,\ 20.17,\ 14.06;\ {\rm HRMS-ESI\ (m/z)\ [M+Na]^+\ calcd\ for\ C_{21}{\rm H}_{25}{\rm NNaO},\ 330.1828;\ found:\ 330.1827. \end{array}$

<u>3-methyl-1-phenyl-2-((p-tolylamino)methylene)butan-1-one (3xa)</u>

 141.66, 139.44, 130.84, 129.85, 129.75, 128.21, 127.98, 118.84, 115.65, 25.10, 20.31, 20.20; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₉H₂₁NNaO, 302.1515; found: 302.1515.

(2Z,2'Z)-1,1'-(1,3-phenylene)bis(3-(p-tolylamino)prop-2-en-1-one) (**3ya**)

¹H NMR (499 MHz, CDCl₃) δ 12.18 (d, *J* = 12.4 Hz, 2H), 8.48 (t, *J* = 1.6 Hz, 1H), 8.07 (dd, *J* = 7.7, 1.8 Hz, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.53 (dd, *J* = 12.4, 7.7 Hz, 2H), 7.16 (d,

J = 8.1 Hz, 4H), 7.03 (d, J = 8.4 Hz, 4H), 6.07 (d, J = 7.8 Hz, 2H), 2.33 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 190.20, 145.78, 139.60, 137.86, 133.78, 130.42, 130.27, 128.80, 126.25, 116.63, 93.38, 20.91.; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₂₆H₂₄N₂NaO₂, 419.1730; found: 419.1732.

(2Z,2'Z)-1,1'-(pyridine-2,6-diyl)bis(3-(p-tolylamino)prop-2-en-1-one) (**3za**)

^{Me} ^{NH} O ^{NH} O

(m/z) [M+Na]⁺ calcd for C₂₅H₂₃N₃NaO₂, 420.1682; found: 420.1684.

Diethyl 2-((p-tolylamino)methylene)malonate (3Aa)

¹H NMR (499 MHz, CDCl₃) δ 10.97 (d, J = 13.7 Hz, 1H), 8.50 (d, J = 13.8 Hz, 1H), 7.17 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H). Identity confirmed by comparing with reported

literature.⁴

(Z)-2-phenyl-3-(p-tolylamino)acrylonitrile (**3Ba**)

^{Me} ¹H NMR (499 MHz, DMSO) δ 9.61 (d, J = 12.9 Hz, 1H), 8.05 (d, J = 12.9 Hz, 1H), 7.50 (dd, J = 8.4, 1.1 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.28 (d, J = 8.5Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 2.25 (s, 3H). Identity confirmed by comparing with reported literature.⁵

(Z)-1-phenyl-3-(phenylamino)prop-2-en-1-one (**3ab**)

⁰ HN ¹H NMR (400 MHz, CDCl₃) δ 12.15 (d, J = 10.8 Hz, 1H), 7.95 (d, J = 7.0 Hz, 2H), 7.56 – 7.44 (m, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.04 (d, J = 7.8 Hz, 1H). Identity confirmed by comparing with reported literature.⁶

(Z)-3-((4-methoxyphenyl)amino)-1-phenylprop-2-en-1-one (**3ac**)

OMe ¹H NMR (499 MHz, CDCl₃) δ 12.20 (d, J = 11.9 Hz, 1H), 7.95 - 7.91 (m, 2H), 7.52 - 7.39 (m, 4H), 7.05 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 5.97 (d, J = 7.7 Hz, 1H), 3.79 (s, 3H). Identity confirmed by

comparing with reported literature.⁷

(Z)-3-((4-chlorophenyl)amino)-1-phenylprop-2-en-1-one (**3ad**)

^{CI} ¹H NMR (499 MHz, CDCl₃) δ 12.14 (d, J = 11.6 Hz, 1H), 7.93 (d, J = 7.0 Hz, 2H), 7.54 – 7.42 (m, 4H), 7.31 (d, J = 8.9 Hz, 2H), 7.03 (d, J = 8.9 Hz, 2H), 6.05 (d, J = 7.9 Hz, 1H). Identity confirmed by comparing with

reported literature.7

(Z)-3-((4-bromophenyl)amino)-1-phenylprop-2-en-1-one (**3ae**)

^{Br} ¹H NMR (400 MHz, CDCl₃) δ 12.13 (d, *J* = 11.5 Hz, 1H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.55 – 7.40 (m, 6H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.06 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.42, 144.47, 139.54, 139.11,

132.84, 131.92, 128.63, 127.48, 117.94, 116.25, 94.46; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₅H₁₂BrNNaO, 323.9994; found: 323.9991.

(Z)-3-((2-methoxyphenyl)amino)-1-phenylprop-2-en-1-one (**3af**)

¹H NMR (400 MHz, CDCl₃) δ 12.22 (d, J = 11.4 Hz, 1H), 7.97 (d, J = 7.1Hz, 2H), 7.54 (dd, J = 12.7, 7.9 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.17 (d, J = 7.7 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H), 6.94 (dd, J = 12.9, 7.8 Hz, 2H), 6.06 (d, J = 7.8 Hz, 1H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.82, 148.57, 143.70 (d, J = 3.8 Hz), 139.52, 131.47, 129.88, 128.43, 127.45, 123.59, 121.14, 113.32, 111.20, 94.19 (d, J = 3.8 Hz), 56.00 (d, J = 4.9 Hz); HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₆H₁₅NNaO₂, 276.0995; found: 276.0996.

(Z)-3-([1,1'-biphenyl]-2-ylamino)-1-phenylprop-2-en-1-one (**3ag**)

¹H NMR (400 MHz, CDCl₃) δ 12.03 (d, J = 10.9 Hz, 1H), 7.86 (d, J = 6.9 Hz, 2H), 7.61 – 7.31 (m, 11H), 7.28 (d, J = 8.1 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 5.97 (d, J = 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.64, 144.88, 144.86, 139.39, 138.01, 137.92, 132.18, 131.41, 129.35, 129.16, 128.80, 128.33, 128.13, 127.43, 123.74, 115.32, 94.48; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₂₁H₁₇NNaO, 322.1202; found: 322.1203.

(Z)-1-phenyl-3-((4-vinylphenyl)amino)prop-2-en-1-one (**3ah**)

¹H NMR (499 MHz, CDCl₃) δ 12.19 (d, J = 11.9 Hz, 1H), 7.94 (d, J = 7.1Hz, 2H), 7.55 – 7.43 (m, 4H), 7.39 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5Hz, 2H), 6.67 (dd, J = 17.6, 10.9 Hz, 1H), 6.04 (d, J = 7.8 Hz, 1H), 5.68 (d, J = 17.6 Hz, 1H), 5.20 (d, J = 10.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.12, 144.62 (d, J = 3.7 Hz), 139.80, 139.27, 136.02, 133.37, 131.73, 128.57, 127.74, 127.44, 116.40, 113.01, 94.06 (d, J = 3.7 Hz); HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₅NNaO, 272.1046; found: 272.1048. ^{Me} ¹H NMR (400 MHz, CDCl₃) δ 12.17 (d, J = 11.5 Hz, 1H), 7.95 (d, J = 7.1Hz, 2H), 7.52 – 7.43 (m, 4H), 7.09 (t, J = 8.2 Hz, 1H), 6.94 (t, J = 11.0 Hz, 1H), 6.93 (s, 1H), 6.07 (d, J = 7.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.18, 152.40 (d, J = 245.7 Hz), 144.61, 139.21, 134.30 (d, J = 6.9 Hz), 131.72, 128.53, 127.49, 126.36 (d, J = 11.0 Hz), 125.39 (d, J = 3.3 Hz), 116.86 (d, J = 18.6Hz), 115.62 (d, J = 1.4 Hz), 94.46, 20.89; ¹⁹F NMR (376 MHz, CDCl₃) δ -130.9; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₆H₁₄FNNa, 278.0952; found: 278.0951.

(Z)-3-(naphthalen-1-ylamino)-1-phenylprop-2-en-1-one (**3aj**)

¹H NMR (499 MHz, CDCl₃) δ 13.08 (d, *J* = 11.0 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 6.8 Hz, 2H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.74 (dd, *J* = 11.8, 7.7 Hz, 1H), 7.62 (t, *J* = 8.1 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.54 – 7.45 (m, 4H), 7.31 (d, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 7.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.52, 146.32, 146.30, 139.35, 136.58, 134.45, 131.78, 128.61, 127.52, 126.84, 126.77, 125.92, 124.98, 124.29, 121.18, 111.16, 94.82; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₉H₁₅NNaO, 296.1046; found: 296.1047.

9. References

- (1) Pooi, B.; Lee, J.; Choi, K.; Hirao, H.; Hong, S. H. J. Org. Chem. 2014, 79, 9231.
- (2) Arduengo, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530.
- (3) Katritzky, A. R.; Barcock, R. A.; Long, Q.-H.; Balsubramanian, M.; Malhotra, N.; Greenhill, J. V. *Synthesis* **1993**, *1993*, 233.
- (4) Heikkilä, T.; Ramsey, C.; Davies, M.; Galtier, C.; Stead, A. M. W.; Johnson, A. P.; Fishwick, C.
- W. G.; Boa, A. N.; McConkey, G. A. J. Med. Chem. 2007, 50, 186.
- (5) Kim, S.; Hong, S. H. Adv. Synth. Catal. 2015, 357, 1004.
- (6) Haak, E. Eur. J. Org. Chem. 2007, 2007, 2815.
- (7) Yang, J.; Wang, C.; Xie, X.; Li, H.; Li, Y. Eur. J. Org. Chem. 2010, 2010, 4189.

10. NMR Spectra

¹³C NMR (CDCl₃, 75 MHz)

¹H NMR (CDCl₃, 499 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 75 MHz)

¹³C NMR (CDCl₃, 101 MHz)

S26

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (CDCl₃, 75 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹³C NMR (DMSO-d₆, 75 MHz)

¹³C NMR (DMSO-d₆, 75 MHz)

¹³C NMR (DMSO-d₆, 75 MHz)

¹³C NMR (DMSO-d₆, 101 MHz)

¹³C NMR (CDCl₃, 75 MHz)

¹³C NMR (CDCl₃, 75 MHz)

¹H NMR (CDCl₃, 499 MHz)

¹H NMR (DMSO, 499 MHz)

¹H NMR (CDCl₃, 499 MHz)

¹H NMR (CDCl₃, 400 MHz)

¹H NMR (CDCl₃, 400 MHz)

¹H NMR (CDCl₃, 499 MHz)

¹H NMR (CDCl₃, 400 MHz)

¹³C NMR (CDCl₃, 101 MHz)

¹⁹F NMR (CDCl₃, 376 MHz)

¹³C NMR (CDCl₃, 101 MHz)