Supporting Information for

Pairwise Hydrogen Addition in the Selective Semihydrogenation of Alkynes on

Silica-Supported Cu Catalysts

Oleg G. Salnikov,^{a,b} Hsueh-Ju Liu,^c Alexey Fedorov,^c Dudari B. Burueva,^{a,b} Kirill V. Kovtunov,^{a,b,†} Christophe Copéret,^c Igor V. Koptyug^{a,b,†}

^a International Tomography Center, SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia

^b Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia

^c Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093

Zürich, Switzerland

Table S1. Comparison of Cu/SiO₂₋₇₀₀ catalyst performance in 1-butyne hydrogenation with parahydrogen in two tests at 350 °C and 3.8 mL/s gas flow rate. Between these tests the catalyst was held in H₂ atmosphere at room temperature for ~ 4.5 hours.

# of	V %	c 0/	c 0/	c 0/	SE (СЦ)		(СЦ)	<i>(</i> сц)
test	Λ, /0	3 _{1-butene} , 70	32-butene, 70	S _{butane} , 70			ψ_p (CII)	$\psi_p(CH_2)$
1	81	98.5	0.9	0.3	25	13	0.18	0.09
2	13	100	0	0	120	56	0.85	0.41

Table S2. The results obtained in 1-butyne hydrogenation with parahydrogen over Cy_3P-Cu/SiO_{2-700} catalyst: 1-butyne conversion (*X*), selectivity to 1-butene ($S_{1-butene}$), signal enhancements (SE) calculated for vinyl CH and CH₂ protons of 1-butene, and lower estimates of percentages of pairwise hydrogen addition calculated using SE values.

Temperature,	Flow rate,	X %	S _{1-butene} ,	SE (CH)	SE (CH ₂)	(СН) ^а	(CH ²)9
°C	mL/s	Λ, /0	%			Ψ_p (CII)	$\Psi_p(CH_2)$
250	6.5	≤2.8 ^b	100	89 ^b	68 ^b	0.64 ^b	0.49 ^b
350	3.8	6.9	100	69	38	0.50	0.27
350	5.1	4.3	100	200	105	1.4	0.76
350	6.5	≤1.7 ^b	100	370 ^b	280 ^b	2.7 ^b	2.0 ^b
450	3.8	11	100	23	12	0.17	0.09
450	5.1	10	100	33	19	0.24	0.14
450	6.5	8.5	100	61	45	0.44	0.32

^aThe difference in percentages of pairwise addition between CH and CH_2 groups is explained by different relaxation rates of these protons.

^bThe signals of thermally polarized 1-butene were below the noise level. Therefore, the upper estimates of conversion and lower estimates of SE and percentages of pairwise hydrogen addition were calculated using the signal-to-noise ratio (this assumes that the signals of butane do not exceed the level of noise in the spectra).

Figure S3. (a) Scheme of 1-butyne hydrogenation. (b) ¹H NMR spectra acquired in 1-butyne hydrogenation with parahydrogen over Cy_3P-Cu/SiO_{2-700} catalyst at 350 °C with 6.5 mL/s gas flow rate and (c) after rapid interruption of the gas flow. Both spectra were acquired with 8 signal accumulations.

Table S4. The r	esults o	btained i	n 1-butene	hydrogenation	with	parahydrogen	over Cu/SiO ₂₋₇₀₀
catalyst: 1-buten	e conve	ersion (X),	and selective	vities to differer	it reac	tion products (S	;).
	_	-	-1	_	-	-	

Temperature,	Flow rate,	V 0/	S _{2-butene} ,	S _{butane} ,
°C	mL/s	Λ, 70	%	%
150	1.3	78	68	32
150	2.5	80	72	28
150	3.8	7	36	64
150	2.5 ^a	3	11	89
250	1.3	84	74	26
250	2.5	61	69	31
250	3.8	57	69	31
250	5.1	45	57	43
300	2.5	79	77	23
300	3.8	67	72	28
300	5.1	75	68	32
300	8.0	86	56	44
350	2.5	72	73	27
350	3.8	71	67	33
450	2.5	82	67	33
450	3.8	79	64	36

^aAfter partial catalyst deactivation (see the main article).

Figure S5. (a) The reaction scheme of 1-butene hydrogenation. (b) ¹H NMR spectrum acquired in 1-butene hydrogenation with parahydrogen over Cu/SiO₂₋₇₀₀ catalyst at 300 °C while the gas was flowing at 5.1 mL/s flow rate. The spectrum was acquired with 8 signal accumulations.

Table S6. The results obtained in 2-butyne hydrogenation with parahydrogen over Cu/SiO₂₋₇₀₀ catalyst: 2-butyne conversion (X), and selectivities to different reaction products (S).

Temperature,	Flow rate,	V 0/	S _{2-butene} ,	S _{butane} ,
°C	mL/s	Λ, /0	%	%
250	2.5	63	72	28
250	3.8	31	77	23
350	2.5	63	79	21

Table S7. The results obtained in 2-butyne hydrogenation with parahydrogen over Cy_3P-Cu/SiO_{2-700} catalyst: 2-butyne conversion (*X*), and selectivities to different reaction products (*S*).

Temperature, °C	Flow rate, mL/s	X, %	S _{2-butene} , %	S _{butane} , %
250	0.4	27	100	0
250	5.1	28	100	0
300	0.4	40 ^a	100	0

^aThis value was estimated from the NMR spectrum of a flowing gas; partial suppression of NMR signals due to incomplete relaxation of protons to 7.1 T magnetic field was not taken into account. Therefore, the conversion estimated here is less accurate.

Figure S8. (a) Scheme of 2-butyne hydrogenation. (b) ¹H NMR spectra acquired in 2-butyne hydrogenation with parahydrogen over Cy_3P-Cu/SiO_{2-700} catalyst at 300 °C with flowing gas (6.5 mL/s flow rate). Red trace – spectrum detected right after the temperature was increased to 300 °C, blue trace – spectrum after catalyst deactivation (see main article).

Figure S9. (a) The reaction scheme of 2-butyne hydrogenation. (b) ¹H NMR spectra acquired in 2-butyne hydrogenation with parahydrogen over Pd/TiO₂ (red trace), Rh/TiO₂ (blue trace) and Cy₃P-Cu/SiO₂₋₇₀₀ (green trace) catalysts.