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Materials and chemicals

KOD Hot Start DNA Polymerase was obtained from Novagen. Restriction enzyme Dpn I was bought from 
NEB. The oligonucleotides were synthesized by Life Technologies. Plasmid preparation kit was ordered 
from Zymo Research, and PCR purification kit was bought from QIAGEN. DNA sequencing was 
conducted by GATC Biotech. All commercial chemicals were purchased from Sigma-Aldrich, Tokyo 
Chemical Industry (TCI) or Alfa Aesar. 

Method

Construction of the expression plasmid of WT MAO-N 

The full length WT MAO-N gene was PCR amplified from the synthetic WT MAO-N gene with 6-His tag 
purchased from GENEWIZ, Inc (www.genewiz.com) by the following primers (forward primer: 5’- 
CATGCATGCCATGGGCACCAGCCGCGACGGCTATCAGTGGA -3’; reverse primer: 5’-
CGCCGCGGATCCTCAGTGGTGGTGGTGGTGGTGCAGGC-3’). The recombinant WT MAO-N gene was 
generated by the insertion of the PCR product into pRSF-Duet-1 vector via Nco I and BamH I sites with 
an C-terminal 6-His tag and verified by sequencing.

The selection of mutagenesis residues

The homology model of WT MAO-N was built using the X-ray crystal structure of the D3 variant of MAO-
N from Aspergillus Niger (PDB: 2VVL) as template using the modeling package in the Accelrys Discovery 
Studio 4.1. Then substrate was modeled into the active center. All the residues lining the active center 
were selected to be within 5 Å of the docked substrate. The substrate access tunnel was determined 
using the Caver program on clustered structures of the homology model, the minimum probe radius 
was 0.7 Å and the coordinate of starting point was X:-0.874, Y:-16.474 and Z: -31.969. The residues 
surrounding the substrate access tunnel were selected for mutagenesis.

PCR based methods for library construction of MAO-N

Libraries were constructed using the Over-lap PCR and megaprimer approach with KOD Hot Start 
polymerase. 50 µL reaction mixtures typically contained 30 µL water, 5 µL KOD hot start polymerase 
buffer (10×), 3 µL 25 mM MgSO4, 5 µL 2 mM dNTPs, 2.5 µL DMSO, 0.5 µL (50~100 ng) template DNA, 
100 µM primers Mix (0.5 µL each) and 0.5 µL KOD hot start polymerase. The PCR conditions for short 
fragment: 95 °C 3 min, (95 °C 30 sec, 56 °C 30 sec, 68 °C 40 sec) × 30 cycles, 68 °C 120 sec. For mega-
PCR: 95 °C 3 min, (95 °C 30 sec, 60 °C 30 sec, 68 °C 5 min 30 sec) × 28 cycles, 68 °C 10 min. The PCR 
products were analyzed on agarose gel by electrophoresis and purified using a Qiagen PCR purification 
kit. 2 µL NEB CutSmart™ Buffer and 2 µL Dpn I were added in 50 µL PCR reaction mixture and the 
digestion was carried out at 37 °C for 7 h. After Dpn I digestion, the PCR products 1.5 µL were directly 
transformed into electro-competent E. coli BL21(DE3) to create the final library for Quick Quality 
Control and screening.

Primer design and library creation of MAO-N

Primer design and library construction depend upon the particular amino acid chosen, and in the case 
of MAO-N involves twenty-three residues, which were divided into six groups (Fig. S2-Fig. S7): 1) 
Amplification of the short fragments of MAO-N using mixed primers F1/R1, F2/R2, F3/R3, F4/R4 and 
F5/R5 for Library A, B, C, D and E respectively. Amplification of the short fragments of MAO-N using 
mixed primers F6/R6 and F7/R7 for Library F; 2) Over-lap PCR using the PCR products of F6/R6 and 
F7/R7 as template and mixed primers F6/R7; 3) Amplification of the whole plasmid pRSF-MAO-N using 
the PCR products of F1/R1, F2/R2, F3/R3, F4/R4, F5/R5 and over-lap PCR product of step2 as 
megaprimers, leading to the final variety plasmids for library generation. Other Libraries (Figure S8-S9) 
were created using the same procedure as mentioned above and all the primers used are listed in Table 
S4. The PCR products were digested by Dpn I and transformed into electro-competent E. coliBL21 (DE3) 
to create the library for screening. The transformants were plated on HiBond-C Extra membranes 
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placed on LB agar plates containing 50 µg/ml kanamycin and 0.5 mM IPTG, respectively. The plates 
were incubated at 30°C for 24 hours. The resulting first round of mutant libraries were screened with 
the 1, 2 or 3 as substrate as described below. 

Screening of the mutant libraries

The plate assay method described by Turner group was followed. Specifically, the Hi-BondC Extra 
membranes containing the clones were pulled from the LB agar plates and kept at -20°C for 24 hours 
to lyse the cells. The membranes were incubated at room temperature for 12 hours with an assay 
mixture containing 1 tablet of diaminobenzidine (DAB), 1 ml of potassium phosphate buffer (1 M, pH 
7.0), 20 µL of screening substrate (100 mM) solution, 30 µL of horseradish peroxidase (5 mg/mL), 10 
mL of 2% agarose and water up to 20 mL. Positive clones were picked and inoculated on LB agar plates 
(50 µg/ml kanamycin) every two hours. The selected positive clones were subjected to activity 
measurement (see below activity assay) and the mutations were identified by DNA sequencing and 
amino acid sequence verification.

Activity assay 

The enzyme specific activities were assayed using a SPECTRAMAX M2e (MD, USA) at 30°C. Initial rates 
of the reaction were measured via the absorbance of a dye (ε = 29.4 mmol L–1 cm–1) at 510 nm , which 
was produced by the action of horseradish peroxidase with the liberated hydrogen peroxide from the 
oxidation of the amine by MAO-N or variants, 4-aminoantipyrine, and 2,4,6-tribromo-3-
hydroxybenzoicacid. The assay mixture (0.2 mL total volume) contained 174 μL of phosphate buffer (50 
mM, pH 7.4), 2 μL of a 2, 4, 6-tribromo-3-hydroxybenzoic acid stock solution (20 mg/mL in DMSO), 2 μL 
of 4-aminoantipyrine stock solution (15 mg/mL in H2O), 2 μL of an amine stock solution (0.5 M in 
DMSO), and 2 μL of a horseradish peroxidase stock solution (5 mg/mL). The reaction was started by the 
addition of 20 g of enzyme in 20 l of phosphate buffer (50 mM, pH 7.4). One enzyme unit (U) was 
defined as the amount of enzyme that produced 1 μmol of hydrogen peroxide per min. The activity 
assays were performed in triplicate with the supernatant extract of vector PRSF-duet induced 
expression as control experiments.

Expression and purification of WT MAO-N and positive mutants

The WT and positive mutants were inoculated in 5 mL LB containing 50 µg/mL kanamycin and cultured 
overnight at 37 °C with shaking. The overnight cultures were scaled up to 800 mL TB containing 50 
µg/mL kanamycin and induced by 0.5% lactose at 28°C for 20-22 hours. Then the cultures were 
harvested by centrifugation at 6,000  g and resuspended in a PBS buffer (20 mM, pH 7.4) containing 
500 mM NaCl, 20 mM imidazole. The cell pellets were disrupted by sonication and the cell debris was 
removed by centrifugation at 15,000  g for 60 min. The soluble protein samples were loaded onto a 
nickel affinity column (GE Healthcare) and washed with 20~500 mM imidazole solution containing 500 
mM NaCl and 20 mM PBS buffer (pH 7.4). The purified proteins were desalted and concentrated with 
centrifugation filtration devices. The protein concentrations were determined by Bradford method.

Determination of kinetic parameters

The kinetic parameters were obtained by measuring the initial velocities of the enzymatic reaction and 
curve-fitting according to the Michaelis-Menten equation. The activity assay was performed in a 
mixture containing a varying concentration of 1 (0.25-10 mM) and 2 (0.5-10 mM). All experiments were 
conducted in triplicate.

Preparative scale deracemization of substrates using recombinant cells of MAO-N mutants 

Deracemization of substrate 1, 2, 4 and 5 were carried out as follows: Cell pellet from E. coli cultures (5 
g) containing mutant LG-I-D11 or LG-J-B4 was resuspended in 98 mL of phosphate buffer (100 mM, pH 
7.4). Substrate 1(147 mg, 1.0 mmol) or 2 (104 mg, 0.5 mmol) or 4 (161 mg, 1mmol) or 5 (175 mg, 1mmol) 
in 2 mL of DMSO and borane–ammonia complex (124 mg, 4 mmol) were added and mixed. The mixture 
was shaken at 200 rpm and 30°C on an orbital shaker and the reaction was monitored by chiral HPLC 
analysis. When deracemization was finished, the pH of the reaction mixture was carefully adjusted to 
11 with 5 M NaOH solution. The suspension was extracted three times with 100 mL of ethyl acetate 
and the phase separation was facilitated by centrifugation (6000 g, 15 min). The combined organic layer 
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was dried over anhydrous sodium sulfate and filtered. Removal of the solvent and purification by 
preparative thin layer chromatography gave the product.

Deracemization of 1 (147 mg) gave 108 mg product (73% isolated yield), which was identified as S 
isomer by comparison of the retention time on a HPLC with that of the authentic sample. The ee value 
(>99%) was determined by chiral HPLC analysis performed on an Agilent 1200 using Chiracel AD-H 
column (4.6 mm × 250 mm, DAICEL CHIRAL TECHNOLOGIES CO.LTD). A mixture of hexane, ethanol and 
hexane containing 0.5% diethylamine (88:2:10) was used as eluent at 1.0 mL/min of flow rate and the 
column temperature was controlled at 30°C. [1] The retention times for (S)- and (R)-1 were 10.879 and 
13.751 min, respectively. [α]25

D = -57.4° (c = 0.6, EtOH); lit. [α]20
D = -76.6° (c = 0.1, EtOH). [2] 1H NMR 

(400 MHz, CDCl3): δ 7.05 - 7.20 (m, 4 H), 4.17 (q, J=6.6 Hz, 1 H), 3.30 (dt, J=12.4, 5.3 Hz, 1 H), 3.06 (ddd, 
J=12.7, 8.3, 4.9 Hz, 1 H), 2.86 - 2.97 (m, 1 H), 2.75 - 2.82 (m, 1 H), 1.50 (d, J=6.8 Hz, 3 H). 13CNMR (100 
MHz, CDCl3): δ 139.57, 134.30, 129.19, 126.19, 126.04, 125.91, 51.46, 41.39, 29.44, 22.33. 

Deracemization of 2 (104 mg) gave 90 mg product (86% isolated yield), which was identified as S isomer 
by comparison of the retention time on a HPLC with that of the authentic sample. The ee value (93.4%) 
was determined by chiral HPLC analysis performed on an Agilent 1200 using Chiracel OD-H column (4.6 
mm × 250 mm, DAICEL CHIRAL TECHNOLOGIES CO.LTD). A mixture of hexane and isopropanol (97:3) 
was used as eluent at 1.0 mL/min of flow rate and the column temperature was controlled at 40°C. [3] 
The retention times for (S)- and (R)-2 were 8.597 and 13.172 min, respectively. [α]25

D = +47.7° (c = 1.0, 
CH2Cl2); lit. [α]20

D = +33.9° (c = 1.0, CH2Cl2). [3] 1H NMR (400 MHz, CDCl3): δ7.22 - 7.35 (m, 5 H), 7.14 
(d, J=3.9 Hz, 2 H), 6.99 - 7.07 (m, 1 H), 6.75 (d, J=7.8 Hz, 1 H), 5.12 (s, 1 H), 3.22 - 3.31 (m, 1 H), 2.98 - 
3.13 (m, 3 H), 2.79 - 2.89 (m, 1 H). 13CNMR (100 MHz, CDCl3): δ 144.49, 137.92, 135.30, 129.03, 128.44, 
128.14, 127.47, 126.34, 125.70, 61.84, 41.97, 29.57.

Deracemization of 4 (161 mg) gave 129 mg product (80% isolated yield), which was identified as S 
isomer by comparison of the retention time on a HPLC with that of the authentic sample. The ee value 
(>99%) was determined by chiral HPLC analysis performed on an Agilent 1200 using Chiracel OD-H 
column (4.6 mm × 250 mm, DAICEL CHIRAL TECHNOLOGIES CO.LTD). A mixture of 
hexane/isopropanol/diethylamine (99:1:0.1) was used as eluent at 0.5 mL/min of flow rate and the 
column temperature was controlled at 40°C. [4] The retention times for (S)- and (R)-4 were 18.465 and 
21.592 min, respectively. [α]25

D = -57.4° (c = 1.0, EtOH); lit. [α]20
D = -71.1° (c = 0.8, EtOH). [5] 1H NMR (400 

MHz, CDCl3): δ 7.03 - 7.18 (m, 4 H), 3.98 (dd, J=8.4, 3.5 Hz, 1 H), 3.90 (br. s., 1 H), 3.24 - 3.34 (m, 1 H), 
3.03 (ddd, J=12.5, 7.8, 4.9 Hz, 1 H), 2.73 - 2.95 (m, 2 H), 1.95 (dqd, J=14.4, 7.3, 7.3, 7.3, 4.0 Hz, 1 H), 1.81 
(dquin, J=14.9, 7.5, 7.5, 7.5, 7.5 Hz, 1 H), 1.03 (t, J=7.5 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ 138.20, 
134.68, 129.20, 126.20, 126.16, 125.96, 56.92, 40.82, 29.28, 28.68, 10.46.

Deracemization of 5 (175 mg) gave 142 mg product (81% isolated yield), which was identified as S 
isomer by comparison of the retention time on a HPLC with that of the authentic sample. The ee value 
(>99%) was determined by chiral HPLC analysis performed on an Agilent 1200 using Chiracel OD-H 
column (4.6 mm × 250 mm, DAICEL CHIRAL TECHNOLOGIES CO.LTD). A mixture of 
hexane/isopropanol/N,N-diethylamine (99:1:0.1) was used as eluent at 0.5 mL/min of flow rate and the 
column temperature was controlled at 40°C. [4] The retention times for (S)- and (R)-5 were 12.111 and 
12.969 min, respectively. [α]25

D = -112.8° (c = 0.5, EtOH). Literature values for (R)-5: [α]20
D = 113.8 ° (c = 

0.5, CHCl3). [6] 1H NMR (400 MHz, CDCl3): δ 7.05 - 7.17 (m, 4 H), 4.00 (d, J=3.4 Hz, 1 H), 3.30 - 3.39 (m, 1 
H), 3.25 (br. s., 1 H), 2.84 - 2.99 (m, 2 H), 2.64 - 2.74 (m, 1 H), 2.30 - 2.41 (m, 1 H), 1.13 (d, J=6.8 Hz, 3 
H), 0.77 (d, J=6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ 137.93, 135.87, 129.09, 126.00, 125.90, 125.83, 
60.90, 42.29, 32.34, 29.90, 20.20, 15.83.

General procedure for the deracemization

Deracemization of substrate 6, 7, 8, 9, 10, 11 and 12 were carried out as follows: Cell pellet from E. coli 
cultures (25 mg) containing mutant LG-I-D11 or LG-J-B4 was resuspended in 0.5 mL of phosphate buffer 
(100 mM, pH 7.4) containing borane–ammonia complex (80 mmol/L). Substrate in DMSO (5 μL, 1 mol/L) 
were added and mixed. The mixture was shaken at 200 rpm and 30°C on an orbital shaker for 24 h. 
HPLC samples were prepared as follows: aqueous NaOH-solution (50 μL, 5 M) was added to the reaction 
mixture in the Eppendorf tube, followed by 0.8 mL of methyl tert-butyl ether. After vigorous mixing, 
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the sample was centrifuged at 13000 x g for 1 minute. The organic phase was separated, dried over 
sodium sulfate and analyzed by chiral HPLC.

The configuration of 6, 7, 8, 9, 10 and 12 was determinate by comparison with literature HPLC retention 
time. The configuration of 11 was assigned by analogy with the other compounds.

Modelling and molecular dynamics simulation

The 3D structural models of WT MAO-N ,LG-F-B6, LG-J-B4 and LG-I-D11 were constructed based on X-
ray crystal structures of the mutation Aspergillus niger MAO-N (PDB ID: 2VVL and 2VVM) using 
Schrodinger2015-3 [7] Energy minimization of the constructed model was done using AMBER16 [8]. 
Active site pocket volumes were calculated in Accelrys Discovery Studio 4.1 by searching for cavities. 
AMBER16 was used to carry out molecular dynamics simulation of final model using ff14SB.redq force 
field. The MD trajectories were further analyzed, along with the binding energy, to identify relevant 
binding poses and structures of entrance and exit channels that were sampled in the simulation. All 
atom molecular dynamics simulations have been performed using AMBER16 molecular dynamics 
package [8]. The bonded and non-bonded description of the interactions between the various atoms has 
been described using the AMBER16 force fields which include the ff14SB.redq force field parameters. 
The ANTECHAMBER module and GAFF2 with AM1-BCC charges[9] are used to obtain force field 
parameters for ligands. Initially, we perform a series of energy minimization steps to eliminate any bad 
contacts in the initially built structures. During the minimization, protein and FAD are restrained with 
harmonic force constants 200 kcal/mol. The minimization step involves 2500 steps steepest descent 
followed by 2500 steps of conjugate gradient method. After the energy minimization, the system is 
slowly heated up to 300 K in 100 ps MD using 1 fs integration time step, while restraining the solute 
with 20 kcal/mol harmonic force constant. After this, we perform 200 ps NPT equilibration of the 
structures with no harmonic restraints. Finally, 50 ns NPT production simulations are performed at 300 
K and 1 atm pressure with 2 fs integration time step. We have implemented periodic boundary 
condition across the system using a TIP3P water box [10]. We use Particle Mesh Ewald (PME) techniques 
integrated with AMBER package to account for the long range part of the electrostatic interactions [11]. 
During the dynamics, all the bonds involving hydrogen are restrained using the SHAKE algorithm [12]. 
Langevin thermostat with collision frequency of 1 ps-1 is used to maintain the constant temperature 
while the pressure is controlled by anisotropic Monte-Carlo barostat [13]. The accelerated GPU version 
of PMEMD [14] was performed on Nvidia K40 series cards. We have employed CPPTRAJ [15] functionality 
of AMBERTOOLs [8] to perform various analyses on the equilibrium MD simulation trajectories. The 
images and graphics of the structures shown here were generated using the software packages VMD 
[16], Grace (version 5.1.25) [17] and PyMOL [18].

Supplementary Schemes，Figures and Tables
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Scheme S1. Oxidation of amine 3 catalyzed by the monoamine oxidase MAO-N.
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Figure S2. Primer design and library creation of WT MAO-N for library A. NDT were used as the 
building blocks.

Figure S3. Primer design and library creation of WT MAO-N for library B. NDT were used as the 
building blocks.

Figure S1. The directed evolution strategy of M
AO

-N
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Figure S4. Primer design and library creation of WT MAO-N for library C. NDT were used as the 
building blocks.

Figure S5. Primer design and library creation of WT MAO-N for library D. NDT were used as the 
building blocks.

Figure S6. Primer design and library creation of WT MAO-N for library E. NDT were used as the 
building blocks.

Figure S7. Primer design and library creation of WT MAO-N for library F. NDT were used as the 
building blocks.
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Figure S8. Primer design and library creation of WT MAO-N for library G. NDT were used as the 
building blocks.

Figure S9. Primer design and library creation of WT MAO-N for library H. NDT were used as the 
building blocks.

Figure S10. SDS-page of purified WT MAO-N and relative mutants. M: Marker, 1: WT MAON, 2: LG-
F-B7, 3: LG-J-B4, 4: LG-F-G6, 5: LG-I-D11, 6: LG-F-B6 and 7: LG-F-B5.
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Figure. S11 Kinetic analysis of MAON mutants (LG-I-D11 for substrate 1, LG-J-B4, LG-F-B7 and LG-F-B6 
for substrate 2). Reactions were carried out in the presence of varying concentrations of 1 (0.25-
10mM), and 2 (0.5-10mM). The Km and Vmax were determined from non-linear regression plots. 
Results are means ± SEM of triplicate experiments.

Figure S12. HPLC spectra of racemic 1, the product of variants LG-I-D11 ((S)-1) and MAO-N D5 (58.8% 
ee).
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Figure S13. HPLC spectra of racemic 2 and the product of variants LG-J-B4 ((S)-2) and LG-I-D11 ((S)-2).

Figure S14. NMR spectra of the product (S)-1.
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Figure S15. NMR spectra of the product (S)-2.

Figure S16. HPLC spectra of racemic 4 and the product (S)-4.

Figure S17. HPLC spectra of racemic 5 and the product (S)-5.



 14 / 27

Figure S18. NMR spectra of the product (S)-4.
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Figure S19. NMR spectra of the product (S)-5.

Figure S20. HPLC spectra of racemic 6 and the product of LG-J-B4
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Figure S21. HPLC spectra of racemic 6 and the product of LG-I-D11

Figure S22. HPLC spectra of racemic 7 and the product of LG-J-B4

Figure S23. HPLC spectra of racemic 7 and the product of LG-I-D11
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Figure S24. HPLC spectra of racemic 8 and the product of LG-J-B4

Figure S25. HPLC spectra of racemic 8 and the product of LG-I-D11
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Figure S26. HPLC spectra of racemic 9 and the product of LG-I-D11

Figure S27. HPLC spectra of racemic 10 and the product of LG-J-B4

Figure S28. HPLC spectra of racemic 10 and the product of LG-I-D11



 19 / 27

Figure S29. HPLC spectra of racemic 11 and the product of LG-J-B4

Figure S30. HPLC spectra of racemic 11 and the product of LG-I-D11
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Figure S31. HPLC spectra of racemic 12 and the product of LG-I-D11

Figure S32. The green balls represent the tunnels of LG-F-B4 (A) and LG-J-B6 (B).
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Figure S33. The superimposition of the binding models of the respective complexes (R)-1 and (S)-1 
to LG-I-D11.

Figure S34. The rmsd compute of LG-I-D11-R1 (A) and LG-I-D11-S1 (B).

Table S1. Results of screening libraries of MAO-N for amine 3 using code NDT.

Library Code Mutation Activity

template WT –

LG-A-A1 L213I/C214I –

LG-A-A2 L213V/C214L +A

LG-A-A3 L213V/C214I +

template WT –

B LG-B-B8 F128H +
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template WT –

C ND

template WT –

LG-D-D1 M242L ++

LG-D-D7 M242R +D

LG-D-D8 M242G +

template WT –

LG-E-E4 Y365L/I367L +
E

LG-E-E6 Y365L/I367H –

template WT –

LG-F-E2 T354N/W430S ++

LG-F-F10 W430S +++

LG-F-G4 W230I/T354H –
F

LG-F-G6 W230R/W430C ++

ND: not detected; –: Activity is similar or lower than wtMAO-N; +, ++, +++, ++++: Activity is 

higher than wtMAO-N and increase gradually.

Table S2. Results of screening libraries of MAO-N for amine 1 using code NDT. 

Library Code Mutation Activity

template WT ND

A ND

template WT ND

B ND

template WT ND



 23 / 27

C ND

template WT ND

D ND

template WT ND

E ND

template WT ND

LG-F-A5 W430C +

LG-F-D12 W230L/W430G +

LG-F-F10 W430S +

LG-F-G4 W230I/T354H +

F

LG-F-G6 W230R/W430C ++

template LG-F-G6 W230R/W430C ++

F→G LG-I-D11 W230R/W430C/C214L ++++

template LG-F-G6 W230R/W430C ++

F→H ND

template LG-I-D11 W230R/W430C/C214L ++++

F→G→H ND

ND: not detected; –: Activity is similar or lower than wtMAO-N; +, ++, +++, ++++: Activity is 

higher than wtMAO-N and increase gradually.

Table S3. Results of screening libraries of MAO-N for amine 2 using code NDT.  

Library Code Mutation Activity

template WT ND

A ND
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template WT ND

B ND

template WT ND

C ND

template WT ND

D ND

template WT ND

E ND

template WT ND

LG-F-B7 W230I/T354S/W430R ++

LG-F-C7 W430G +

LG-F-D8 W230L/T354R/W430R +

LG-F-F8 W230I/T354S/W430N +

LG-F-G4 W230I/T354H +
F

LG-F-G6 W230R/W430C +

template LG-F-B7 W230I/T354S/W430R ++

F→G ND

template LG-F-B7 W230I/T354S/W430R ++

F→H LG-J-B4 W230I/T354S/W430R/M242R/Y365V ++++

template LG-J-B4 W230I/T354S/W430R/M242R/Y365V ++++

F→H→G ND
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ND: not detected; –: Activity is similar or lower than wtMAO-N; +, ++, +++, ++++: Activity is 

higher than wtMAO-N and increase gradually.

Table S4. List of primers for MAO-N libraries A-H.

Library Primers Sequence (5' to 3')

F1 AGATGGGTGGCNDTNDTGTTCATTGGCATCAAT
A

R1 GGGTGCCACCGCTAHNAHNTAAAATGAAAGCCT

F2 CGCTGTCTCCATCANDTAACTTTTCACGTGGCGTGAATCACNDTCAACTGCGTACCAATC
B

R2 TTCGCGTCTGTAHNAHNGCACACCAGATGCGTA

F3 TACGTACATGACGNDTGAAGCGNDTGATGAACTGCTGCGTAGCG
C

R3 AAATTTATAGGAAHNAHNACAATCCATACAGCCC

F4 GTATCAGGGCTGTNDTGATNDTTTAATCTCCTATAAATTTA
D

R4 CTTCCGCATGCACAHNGGTAHNCATGTTAACATGGCCTG

F5 TTCAACAAATTATGCNDTGCTNDTGGCGATGGCACGACCCCAG
E

R5 AGCACCATCGATAHNACTACGAHNACCTAAGGCCCAATCG

F6 TGAATTTCTGCATNDTTGGGCAATGTCGGGTTA

R6 TGAACGGATAGGCGATACCAHNCCATGAACGCATATCCT

F7 AGGATATGCGTTCATGGNDTGGTATCGCCTATCCGTTCA

F

R7 CTGGGCGGCTGAAGAAAHNCGCGCCTTTGGCAAATT

F8
GCGTGAATCACNDTCAACTGCGTACCAA

G

R8 GGGTGCCACCGCTAHNAHNTAAAATGAAAGCCT

F9 ATCAGGGCTGTNDTGATTGTTTAATCTC
H

R9 TCGTGCCATCGCCAHNAGCAHNGCATAATTTGTTGAACG
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Table S5 HPLC columns, conditions and retention times.

Compound Column Eluent Flow(mL/min)

Retention

time

(min)

reference

rac-6
CHIRALPAK CR(+)

(4.0mm×150mm)

HClO4(pH3):MeOH

(90:10)
0.5

13.0(S)

17.3(R)
[20]

rac-7
CHIRALPAK CR(+)

(4.0mm×150mm)

HClO4(pH3): MeOH

(90:10)
0.5

18.7(S)

24.6(R)
[20]

rac-8
CHIRALCEL OD-H

(4.6mm×250mm)

Hexane: iPrOH

(90:10)
1.0

10.5(S)

12.8(R)
[3]

rac-9
CHIRALPAK IC

(4.6mm×250mm)

Hexane:iPrOH: 
diethylamine

(90:10: 0.1)

1.0
7.0(S)

7.7(R)
[21]

rac-10
CHIRALPAK IC

(4.6mm×250mm)

Hexane:iPrOH: 
diethylamine

(90:10: 0.1)

1.0
5.0(S)

4.6(R)
[22]

rac-11
CHIRALPAK IC

(4.6mm×250mm)

Hexane:iPrOH: 
diethylamine

(90:10: 0.1)

1.0
6.5(S)

8.6(R)
[21]

rac-12
CHIRALCEL OD-H

(4.6mm×250mm)

Hexane:iPrOH

(98:2)
0.8

7.2(S)

6.4(R)
[23]

Table S6: The MM-GBSA predicted binding free energy for LG-I-D11-R1 and LG-I-D11-S1.

1ELE 2VDW 3INT 4GAS 5GBSUR 6GB 7GBSOL 8GBELE 9GBTOT

R1 -8.57 -26.36 0.49 -34.43 -2.17 12.91 10.74 4.34 -23.69

S1 -4.85 -24.18 0.57 -28.46 -2.01 13.78 11.76 8.92 -16.70

1ELE - non-bonded electrostatic energy + 1,4-electrostatic energy; 2VDW – non-bonded van der Waals energy + 

1,4-van der Waals energy; 3INT – bond, angle, dihedral energies; 4GAS – ELE + VDW + INT; 5GBSUR –Free 



 27 / 27

energy for GB calculations; 6GB – reaction field energy calculated by GB; 7GBSOL – GBSUR + GB; 8GBELE – 

GB + ELE; 9GBTOT – GBSOL + GAS.
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