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1. Synthesis and characterisations

All commercially available chemicals were purchased from Sigma-Aldrich, Alfa-Aesar, Acros Organics, ABCR
or Carbosynth Ltd., and used without further purification, unless stated otherwise. Solvents were utilized as
supplied unless otherwise stated. Anhydrous solvents (e.g. THF or CH,Cl;) were dried by passing through a
modified Grubbs system? manufactured by Anhydrous Engineering. Anhydrous DMF and DMSO were dried
by vacuum distillation from P,0s and CaH,, respectively.? Flash column chromatography was carried out
using chromatography grade silica 60 A (Sigma-Aldrich, particle size 35-70 micron). TLC analysis was
performed using pre-coated silica gel TLC plates (Merck silica gel 60 F254). Spots were visualised by means
of UV light (254 or 365 nm) or using solutions of phosphomolybdic acid, alizarin, potassium permanganate,
or ninhydrin. HPLC chromatography was performed using a Waters 600 controller with a Waters 2998
photodiode array detector. For analytical runs a XSELECT CSH Cis 5 um (4.6 x 150 mm) column was used,

and for preparative runs a XSELECT CSH Prep Cis 5 um OBD (19 x 250 mm) column was utilised.

IH-, 13C-, ¥F-, and 2D-NMR spectra were acquired at 298 K (unless otherwise specified) at 400, 500, or 600
MHz using the following spectrometers: Jeol ECS 400, Varian 400-MR, Varian VNMRS 500 equipped with a
triple resonance H observe probe or, X-observe probe, or a Varian VNMRS 600 equipped with a cryogenically
cooled H-observe triple resonance probe. Chemical shifts (&) are reported in parts per million (p.p.m.).
Residual solvent resonances were used as internal reference for 8-values in *H-, and **C-NMR,? while *°*F-NMR
spectra were externally referenced to CFsCOOH (-76.55 p.p.m.). ESI-HRMS (electrospray ionisation high
resolution mass spectrometry) was performed on a Bruker Daltonics micrOTOF Il and MALDI-MS (matrix-
assisted laser desorption/ionisation) was performed on an Applied Biosystems 4700 or a Bruker Daltonics

UltrafleXtreme.

L A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15,
1518-1520.
2W. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier, Oxford, 2009.
3 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I.
Goldberg, Organometallics, 2010, 29, 2176-2179.
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Figure S1. Numbering system for receptors (£)-2 and precursors (£)-7, as used for the assignment and
discussion of NMR spectra. Pyrenyl proton designations (red) are prefixed with “p” (i.e. p4, pla etc.) while

o _n
S

protons from the different spacers (green) are prefixed with an and suffixed by “a,b,c,d” to denote which
of the four spacers is involved. Protons from the triamine unit (pink) are prefixed “t” and protons from the
dendritic side-chains (blue) are prefixed with “d”. Special designations are used for some benzylic hydrogens

(e.g. tla—b is the proton on ethyl group 1 closer to spacer b).
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Protected receptors (+)-7. A 500 mL round-bottom flask was charged with a magnetic stirrer bar, tetraester
5% (158 mg, 21.2 umol) and dry and Nj-saturated tetrahydrofuran (THF, 190 mL). A solution of 1,3,5-
tris(aminomethyl)-2,4,6-triethylbenzene (5.3 mg, 21.2 umol) in dry and Nz-saturated THF (20 mL) and N,N’-
diisopropylethylamine (DIPEA, 10.5 uL, 63.6 umol) was then added in a dropwise manner over 12 h using a
syringe pump. After stirring for 12 more hours, saturated ammonium chloride (1 mL) was added to the
reaction mixture, and the mixture was left stirring for 10 min. The solvent was then evaporated to a volume
of around 10 mL. The remaining suspension was extracted with dichloromethane (DCM, 3 x 30 mL) and the
organic phase was washed with H,0 (3 x 30 mL), dried over MgSQ,, filtered and concentrated. The residue
was dissolved in acetone/water (70:30), passed through a 0.2 um filter, injected into a preparative HPLC
apparatus fitted with a reverse phase column and eluted with acetone/water (70:30 to 85:15 over 15 min,
85:15 to 100:0 over 60 min and then 100:0 for further 5 min). The component eluting at 46 min was collected
(see Figure S2 for trace), concentrated using a rotary evaporator (T < 30 °C) and freeze-dried to yield
protected receptors (£)-7 as a pale yellow solid (77.5 mg, 10.9 umol, 51%). The products were identified by
1 dimensional *H and *F-NMR as well as 2 dimensional {*H-*H}-NOESY, {*H-'H}-COSY, and {*H-13C}-HSQC, as
detailed below and in Figure S3 - Figure S12. H NMR (CHs0D, 600 MHz): 6 = 1.10 (m, 1H, t1B), 1.12 (m, 1H,

4P, Rios, T. S. Carter, T. J. Mooibroek, M. P. Crump, M. Lisbjerg, M. Pittelkow, N. T. Supekar, G.-J. Boons and
A. P. Davis, Angew. Chem., Int. Ed., 2016, 55, 3387-3392.
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t3B), 1.14 (m, 1H, t5B), 1.4 (s, 324H, d11), 1.75 — 2.43 (m, 192H, d2+d3+d7+d8), 2.44 (m, 1H, tla—d), 2.47
(m, 1H, tla—b), 2.58 (m, 1H, t3a—b), 2.62 (m, 1H, t5a—d), 2.64 (m, 1H, t3a—c), 2.67 (m, 1H, t5a—c), 4.19
(d, 1H, J = 12.9 Hz, t2a(in)), 4.23 (d, 1H, J = 13.2 Hz, t6a(out)), 4.58 (d, 1H, J = 14 Hz, t4a(in)), 4.59 (d, 1H,
téa(in)), 4.73 (d, 1H, t2a(out)), 4.77 (d, 1H, p6a(in)), 4.85 (d, 1H, t4a(out)), 4.86 (d, 1H, p8a(in)), 4.98 (d, 1H,
J=15.8 Hz, pla(in)), 4.98 (d, 1H, J = 13.9 Hz, p3a(in)), 5.55 (d, 1H, J = 15.7 Hz, pla(out)), 5.63 (d, 1H, /= 13.8
Hz, p8a(out)), 5.71 (d, 1H, J = 15.1 Hz, p3a(out)), 5.78 (d, 1H, J = 14 Hz, p6a(out)), 7.70 (s, 1H, s6b), 7.72 (s,
1H, s6d), 8.02 (s, 1H, s6c), 8.24 (s, 1H, p2), 8.27 (s, 1H, p7), 8.40 (d, 1H, J = 10.8 Hz, p10), 8.43 (s, 1H, s4b),
8.46 (d, 1H, J = 10.8 Hz, p5), 8.48 (d, 1H, p9), 8.48 (s, 1H, s2b), 8.50 (s, 1H, s4d), 8.56 (s, 1H, s2c), 8.57 (s, 1H,
s2d), 8.64 (d, 1H, J =9 Hz, p4), 8.65 (s, 1H, s4c), 8.69 (s, 1H, s2a), 8.82 (s, 1H, s6a), 8.86 (s, 1H, s4a) p.p.m.; *°F
NMR (CHsOD, 470 MHz) 6 = -154.49 (d, 2F, J = 19.2 Hz, oF), -160.32 (m, 1F, pF), -164.75 (m, 2F, mF) p.p.m.;
13C-NMR (CDs0D, 125 MHz): 6 = 17.38 (t3B), 17.44 (t5B), 17.76 (t1B), 24.59 (t3a), 24.76 (t5a), 25.64 (tla),
40.96 (t2a), 41.08 (t4a), 41.29 (t6a), 43.79 (p3a), 44.29 (pla), 44.64 (p6a), 46.26 (p8a), 125.72 (p5), 125.73
(p10), 126.51 (p9), 126.62 (p4), 129.33 (s6c), 129.52 (s6b), 129.62 (s6d), 131.36 (s2d), 131.41 (s4b), 132.41
(p2), 132.50 (s2c), 132.51 (s2b), 132.61 (s4c), 132.69 (s4d), 134.00 (s4a), 134.76 (p7), 134.83 (s2a), 134.90
(s6a) p.p.m.. HRMS (ESI): m/z calculated for CsgiHsgsFsN230g7NaK [M+Na*+K*]?* : 3596.06, found 3595.80.
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Figure S2. UV-Vis Chromatograms from preparative HPLC of protected receptors (£)-7. Top left = 254 nm; bottom left =352 nm; right

= 3D chromatogram.
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Figure $3. 'H-NMR (600 MHz) in CDsOD for protected receptors (+)-7.
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Figure S4. °F-NMR (470 MHz) in CD30D for protected receptors (+)-7.
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Figure S5. Partial {*H-'H}-NOESY (600 MHz) in CD30D for protected receptors (+)-7.
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Deprotected receptors (+)-2. A 10 mL round-bottom flask was charged with a magnetic stirrer bar, protected
receptors (£)-7 (17 mg, 2.38 umol) and dichloromethane (2.5 mL). The solution was cooled to 0 °C, and
trifluoroacetic acid (2 mL) was added in a dropwise manner. The solution was allowed to warm to room
temperature and left stirring for 24 hours, after which the solvents were removed by applying a gentle flow
of N2. H,0 (2 mL) was then added to the residue, which was sonicated and freeze-dried. To the remaining
solid, H,0 (2 mL) was added. Aqueous NaOH (0.2 g/mL) was added to the suspension until pH = 14. Then,
Amberlyst 15 (Hydrogen form) resin was added until the pH reached below 7 and a solid was formed. This
suspension was then neutralized with NaOH to pH = 7 (resulting in a clear solution), filtered through a 0.2
UM filter and freeze-dried, affording receptors (£)-2 (13.7 mg, 2.38 umol) as a brown solid in quantitative
yield. The products were identified by 1 dimensional *H and °F-NMR as well as 2 dimensional {*H-'H}-NOESY,
{*H-H}-COSY and {*H-H}-TOCSY as is detailed below and in Figure S13 - Figure S23. A dilution study of
receptors (+)-2 in the range 1 mM — 125 uM revealed that these molecules are monomeric at concentrations
< 0.5 mM (see Figure S24). 'H NMR (D0, 600 MHz): 6 = 0.05 (m, 1H, t1B), 0.98 (m, 1H, t5B), 0.99 (m, 1H,
tBb), 1.53 — 2.25 (m, 192H, d2+d3+d7+d8), 2.40 (m, 1H, tla—b), 2.54 (m, 1H, tla—d), 2.50 (m, 1H, t3a—c),
2.52 (m, 1H, t3a—b), 2.52 (m, 1H, t5a—d), 2.54 (m, 1H, t5a—c), 4.26 (m, 1H, t2a(in)), 4.28 (m, 1H, t6a(out)),
4.49 (m, 1H, t4a(in)), 4.55 (m, 1H, t4a(out)), 4.57 (m, 1H, t6a(in)), 4.60 (m, 1H, t2a(out)), 4.76 (d, 1H, p8ay(in)),

S16



4.73 (d, 1H, p3a(in)), 4.91 (d, 1H, J = 15.8 Hz, pla(in)), 5.50 (d, 1H, J = 14 Hz, p6a(out)), 5.57 (d, 1H, J = 15.7
Hz, pla(out)), 5.66 (d, 1H, /= 15.1 Hz, p3a(out)), 5.72 (d, 1H, J = 13.8 Hz, p8a(out)), 7.68 (s, 1H, s6b), 7.73 (s,
1H, s6d), 7.93 (s, 1H, s6c¢), 8.07 (s, 1H, s6a), 8.20 (s, 1H, s4a), 8.21 (s, 1H, p2), 8.23 (s, 1H, p7), 8.29 (s, 1H, s2b),
8.29 (s, 1H, s2d), 8.29 (s, 1H, s4d), 8.31 (s, 1H, s6c), 8.36 (s, 1H, s4b), 8.36 (d, 1H, p9), 8.36 (s, 1H, s4c), 8.45
(d, 1H, J = 10.7 Hz, p10), 8.47 (d, 1H, J = 11.2 Hz, p5), 8.55 (d, 1H, J = 9.4 Hz, p4), 8.87 (s, 1H, s2a) p.p.m.; °F
NMR (D,0O, 470 MHz): silent. MALDI-TOF (from 5% v/v formic acid in water): m/z calculated for
Ca231H299N23097Na [M (COOH-form) + Na*]*; 4972.9, found 4972.6; C31H301N2309sNa [M (COOH-form) + Na* +
H,0]*; 4991.0, found 4990.6; C232H301N2309sNa [M (COOH-form) + Na* + HCOOH]*; 5019.0, found 5018.8.

Separation of (+)-2 was attempted by Chiral Technologies Europe on Chiralpak analytical columns type IA, IB,
IF and ZWIX, all 250 mm long and with 3 mm internal diameter. The eluents tested were acetonitrile/water
(from 9:1 to 1:9), methanol/water ((from 9:1 to 1:9), and 0.2% formic acid in methanol/water (7:3 and 6:4).
The analyte was injected (10 pL of 0.1 mM solution) in acetonitrile/water (1:1) and the eluent was running
at 1 mL/min. Detection was achieved using a UV-VIS spectrophotometer. One single peak always eluted

either at the front or at several minutes, depending on the eluent.

In another attempt, GIcNAc separopore® 4B agarose resin (Bioworld)® was packed into a 1 ml borosilicate
FPLC column, and the column was fitted on an AKTA Purifier system (GE Biosciences) at ambient temperature.
Initially the receptor mixture was diluted to 0.1 mg/ml in H,O and 1 ml was loaded onto the column and
eluted with an isocratic flow rate of 1 ml/min for 60-180 min. The eluent was monitored at 215 and 280 nm.
As all the material eluted in the void volume of the column, the run was repeated (i) with incubation of (+)-2
on the column for 30 minutes before elution, and (ii) using a lower flow rate of 0.1 ml/ml. Neither measure
yielded any change. The attempted separation was repeated in 0.1% formic acid/H0, with isocratic elution
at 0.1 ml/min, but again all the material appeared in the void volume. GIcNAc separopore® 4B is used to
separate GIcNAc-binding lectins such as Wheat Germ Agglutinin, which binds to GIcNAc more weakly than
one enantiomer of 2. It thus seems that the presentation of the GIcNAc units on this column is incompatible

with binding to the synthetic lectin.

5 http://www.bio-world.com/productinfo/2_18_162_669/1315/N-Acetyl-glucosamine-GlcNAc-Separopore-Agarose-B-CL.html
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2. 1H NMR titrations

NMR spectra were recorded at 298 K and 600 MHz on a Varian VNMRS 600 equipped with a cryogenically
cooled 'H-observe triple resonance probe. Chemical shifts (&) are reported in parts per million (p.p.m.). A
solution of receptors (£)-2 in D,0 (99.9% -D, typically 0.15 mM of each receptor) was prepared and typically
400 uL was transferred into a new or thoroughly cleaned and dried NMR tube. This same receptor solution
was then used to prepare a stock solution of carbohydrate, ensuring that the concentration of (+)-2 did not
change during the subsequent titration. In the case of reducing sugars, the stock solution was left overnight
so that a and B forms could equilibrate. Aliquots of increasing volume were added from the stock solution
into the NMR tube and, after thorough mixing, the *H-NMR spectrum was recorded. The first addition
typically was 0.5 uL; subsequent additions were made using double the volume of the previous addition (i.e.
1.0, 2.0, 4.0, 8.0 uL, etc.). Signals due to receptor protons were observed to move, as expected for binding
with fast exchange on the 'H NMR timescale, although broadening was also observed in many cases. Where
feasible, changes in chemical shift (Ad) were fitted to a 1:1 binding model using a non-linear least squares
curve-fitting programme implemented within Excel. The programme yields binding constants K, and limiting
AS as output. An estimated error for K, could be obtained from individual data points by assuming the
determined K, and &us. The fits obtained were good in all cases (with r 2 0.999), and the thus obtained K,

and Ad were considered trustworthy. Spectra and analysis curves are shown in Figure S28 - Figure S34.
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Figure S25. Partial 'H NMR spectra from the titration of receptors (£)-2 (0.15 mM each, 400 uL) with N-acetyl-D-glucosamine 8 (0.90 mM then 501 mM). Peaks marked with empty and red circles were

analysed to give binding constants for the diastereomeric complexes (see Figure S26).

S31



0.140
0.120
0.100
0.080
0.060

Ad inp.p.m.

0.040
0.020
0.000

0.300

0.250

0.200

0.150

Ad inp.p.m.

0.100

0.050

0.000

] — o %
; Ka= 1276.93 £27.27 M-1 (2.14%)
] r= 0.99977
—— Adobs
~—o- Abcalc
T T T T T T T T T T T T T T T T T
0 20 40 60 80
[Glys In M

S T I Y T I

Ka= 81.31 £3.81 M-1 (4.68%)

r= 0.99987
—6e— Adobs
..... o Adcalc
2 40 60 80
[G]total in M

Figure $26. Data analysis for 'H NMR titration of receptors (+)-2 with N-acetyl-D-glucosamine 8 (see Figure S25). Top: K, = 1277

27 M1 (2.14 %); r = 0.99977; limiting AS = 0.117 p.p.m. Bottom: K, =81.3+4.9 M (4.68 %); r = 0.99987; limiting A = 0.331 p.p.m..
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Figure S27. Partial 'H NMR spectra from the titration of receptors (£)-2 (0.15 mM each, 400 uL) with D-glucose 9 (1.67 mM then 565 mM). Peaks marked with red circles were analysed to give the

binding constant of ~250 m1 for one of the diastereomeric complexes (see Figure S28). Peaks marked with empty circles are assigned to the second diastereomer. Their early movement during the

titration suggests a high binding constant, perhaps larger than that calculated for the first diastereomer.
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Figure S28. Data analysis for 1H NMR titration of one of the diastereomers of receptors (£)-2 with D-glucose 9 (see Figure S27) K, =

251.46 + 15.15 M1 (6.02 %); r = 0.99922 ; limiting A8 = 0.337 p.p.m..
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Figure $29. Partial 'H NMR spectra from the titration of receptors (+)-2 (0.15 mM each, 400 uL) with methyl-B-D-glucoside 10 (0.91 mM then 250 mM). Peaks marked with empty and red circles were

analysed to give the binding constant for one of the diastereomeric complexes (see Figure S30).
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Figure S30. Data analysis for 'H NMR titration of one of the enantiomers of receptors (+)-2 with methyl-B-D-glucoside 10 (see Figure
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Figure S31. Partial 'H NMR spectra from the titration of receptors (1)-2 (0.15 mM each, 400 uL) with L-mannose 12 (500 mM). Peaks marked with empty and red circles were analysed to give binding

constants for the diastereomeric complexes (see Figure S32).
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Figure $S32. Data analysis for IH NMR titration of receptors (+)-2 with L-mannose 12 (see Figure S31). Top: Peak marked with empty
circles in Figure S31, K, = 7.31 £ 0.25 M1 (3.41 %); r = 0.99943; limiting A5 = 0.653 p.p.m.. Bottom: Peak marked with red circles in
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Figure $33. Partial 'H NMR spectra from the titration of receptors (+)-2 (0.15 mM each, 400 uL) with a 1:1 mixture of D-mannose 11 (250 mM) and L-mannose 12 (250 mM).
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Figure S34. Data analysis for 'H NMR titration of receptors (+)-2 with a 1:1 mixture of D-mannose 11 and L-mannose 12 (see Figure
$33), assuming a 500 mM ‘mannose’ concentration. Top: Peak marked with empty circles in Figure S33, K, = 4.75 + 0.30 M1 (6.41
%); r=0.99975 ; limiting A8 = 0.300 p.p.m.. Middle: Peak marked with blue asterisk in Figure S33, K, = 4.75 £+ 0.21 M1 (4.45 %); r =
0.99991 ; limiting A8 = 0.262 p.p.m.. Bottom: Peak marked with red circle in Figure S33, K, = 4.75 + 0.25 M1 (5.30 %); r = 0.99971 ;
limiting AS = 0.533 p.p.m.. Fit for all three combined: K, = 4.75 + 0.25 M1 (5.23 %); r = 0.99975.

S40



3. Identifying the stronger-bound enantiomer from the (t)2 + 8 titration

Summary

To assist discussion, it is useful first to label the enantiomers of 2 according to standard practice.
Following Eliel et al.,® the bicyclic structure of 2 is considered planar chiral, in which chiral plane is
that containing the pyrene unit and pendant spacer. To assign a descriptor one first locates the
“pilot atom”. This is the out-of-plane atom which is closest to the plane and, compared to others at
the same distance, is closest to the atom which ranks highest according to CIP rules. In this case the
pilot atom is the N attached to p3a, which earns highest priority through its proximity to the CO
group on the pendant spacer (Figure S35). The sequence of in-plane atoms attached to the pilot
atom is labelled a,b,c, choosing atoms of highest CIP precedence where necessary. In this case cis
carbon p3a, rather than p2. When viewed from the pilot atom, the order of a,b,c (clockwise or
anticlockwise) determines whether the descriptor should be pR or pS (the prefix p denoting planar

chirality). The enantiomer shown in Figure S35 is therefore pS.

pilot atom 5a
NH 4a

Figure S35. Configurational assignment of planar chiral receptor 2, illustrated for the pS enantiomer.

5 E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994, pp
1121-1122.
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As we could not find an unambiguous NMR assignment of N-acetyl-D-glucosamine 8 in the
literature, it was decided to perform this characterisation as part of the present work. Spectra of 8
in D20 at 25 °C, and a full assignment of both anomeric forms are given in Figure S39 to

Figure saa.

To determine which enantiomer bound more strongly to N-acetyl-D-glucosamine 8 (see Figure S25
for the titration experiment) we analysed a mixture of (+)-2 + 8 by means of {*H-'H}-NOESY and -
TOCSY NMR spectroscopy at 600 MHz. The concentrations were selected to maximise the number
of resonances that could be resolved (particularly the inwards facing s6’s), while at the same time
having a reasonable concentration of the complex with the stronger binding receptor. We used a
0.42 mM total receptor concentration (so 0.21 mM of each enantiomer) and an N-acetyl-D-
glucosamine 8 concentration of 10.6 mM. This was chosen by gradually increasing the concentration
of 8; see stacked spectra in Figure S36. Under these conditions the receptor with binding constant
Ks = 1280 M will be approximately 93% bound, while the weaker binder (K, = 80 M) will be about
46% bound to 8. With the stronger bound complex about twice as populous as the weaker bound
complex, it is to be expected that the stronger bound complex could be (partially) assigned with
NMR spectroscopy and attributed to receptor pR-2 or pS-2. The resulting spectra are shown in
Figure s45 to

Figure s52 (NOESY, t = 500 ms) and

Figure s53 to

Figure s55 (TOCSY), including a nearly full assignment of the stronger bound enantiomer (and several
assignments of the weaker bound enantiomer). These spectra are also labelled with two capital
letters which represent the spectral region on the vertical and horizontal axes respectively: A (the
aromatic region of 7.65 — 8.70 p.p.m.), B (the methylene region of 4.30 — 6.20 p.p.m.), C (the
carbohydrate region of 3.20 — 3.90 p.p.m.) and D (the aliphatic region of 0.50 — 2.70 p.p.m.).”

7 NB: after fully processing the 2D spectra it appeared that the calibration was slightly in error. The chemical
shift values in Figures S45-S55 are thus offset by about 0.1 p. p. m.
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Figure $36. Partial 'H NMR spectra of the titration in D,0 employed to generate the solution of (+)-2 + 8 for structural studies. The

final total concentration of N-acetyl-D-glucosamine 8 is 10.6 mM. The concentration of receptors is 0.42 mM in total (0.21 mM of

each).

The entry point into the spin system of the complexes are the s6c protons (7.93 ppm). It is clear that
during the titration this resonance is shifted downfield for both enantiomers, but that the limiting
chemical shift for one is much larger than for the other; already early on in the ‘titration’ the visible
sbc integrates as one proton, meaning that the other s6¢ has shifted (to 8.19 ppm, as appeared
during the assignment). This is also the case for protons s6b, although the resonance of the major
species could not be identified. s6bminor is overlapped with s6dminor around 7.84 ppm. s6d (major)
can clearly identified at 7.76 ppm and s6a is essentially unperturbed and appears as a single peak at

8.07 ppm.

It was possible to almost completely assign the resonances for the enantiomer representing the
major species present. There were sufficient resolved nuclear Overhauser effect cross peaks (NOEs)
between this enantiomer and the carbohydrate. The resonances of the minor species were

obviously less abundant and were broadened (e.g. s6bminor, S6Cminor and S6dminor resonances) yielding
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only very weak NOEs. Only clearly distinguished NOEs of the major species were used in the analysis
to safeguard against possible confounding correlations arising from the minor species, however
weak these might be. A full labelling scheme for both enantiomers of 2, as well as the numbering
for D-GIcNACc (8), are shown in

Figure s37.

D-GIcNAc
8

Figure S37. Labelling system used for the enantiomers of 2 and for D-GIcNAc 8.

From the carbohydrate region (3.2 — 3.9 ppm, C), it is evident that the a and the B isomers were
present, but that the resonances of the B were broadened. These resonances were sharp in a
spectrum of pure D-GIcNAc (see Figure S39). None of the a protons display an NOE with any of the
receptor resonances whereas there are very clear NOEs with the other hydrogen atoms of D-GIcNAg;
B-2, B-5, B-6, B-6’, and B-Me. Potential NOEs with the anomeric proton B-1 (should come around
4.62 ppm) were obscured by the overlapping water resonance and indeed no such NOEs could be
observed. Protons B-3 (~3.48 ppm) and B-4 (~3.38 ppm) were be identified (although overlapping
with a-4). There were no NOEs discernible with B-3 and only two very weak NOEs with B-4 (NB: one
of these is crucial to differentiate between pR-2 and pS-2). This means they must be pointing towards

the aromatics, furthest away from other H-atoms.

The carbohydrate can be approximately positioned inside the cage by considering the NOEs with
the acetyl methyl resonance B-Me (1.976 ppm) and the carbohydrate’s methylene resonances B-6
(3.833 ppm) and B-6’ (3.679 ppm). NOEs to the B-Me indicate that this unit is emerging from the

largest portal, between tla/B and p2, and in close proximity to séd, pla and p10. The
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carbohydrate’s CH,OH is positioned in the smallest portal, between t5a/p and p7, and is also close

to s6c¢ (with B-6 pointing towards s6c and B-6’pointing towards t5a/p).

That the methylene (particularly B-6’) is placed close to t5a/B while B-Me is positioned close to p2
provides information on the orientation of D-GIcNAc relative to the triethylbenzene and pyrenyl
aromatics; B-1/3/5 point ‘downwards’ towards pyrene while B-2/4 point ‘upwards’ towards

triethylbenzene. Indeed, B-5 is close to p7 and p5, while B-2 is close to t1a/B.

The imaginary line B-Me—B-2—B-5—B-6/6" through D-GIcNAc is straight and can thus fit equally
well in both pR-2 and pS-2 with B-Me emerging from the largest (below t1a/B) and B-6/6’ from the
smallest (below t5a/B) portal (NB: the C5-C6 bond can rotate so that B-6/6’ can always point to
s6c). There are no NOEs observed with B-1 and B-3. This makes the NOE observed between B-4 and
t1p crucial (Figure S51); this NOE can only exist in [pR-2 - D-GIcNACc]. Indeed, in [pS-2 - D-GIcNAc] t1

is located opposite B-4. This NOE was also observed in a NOESY experiment at 35 °C.
It is therefore concluded that D-GIcNAc 8 in bound as the B-anomer preferentially by the pR

enantiomer of 2, in the orientation shown in Figure S38a. A 3D model consistent with the NOE data

is shown in Figure S38b.
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PR-2 + 3—D-GIcNAc 8

NaO

b)

Figure $38. a) The orientation of B-D-GIcNAc 8 in the stronger-binding pR enantiomer of 2, as deduced by 'H NMR NOE spectroscopy.
b) 3D model of the complex after minimisation with Spartan molecular modelling software (Spartan “16 v 2.0.3, molecular mechanics
minimisation using the MMFF force field with explicit aqueous solvation).
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NMR spectra and assignments of N-acetyl-D-glucosamine 8
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Figure $39. 'H NMR spectrum of 176 mM N-acetyl-D-glucosamine 8 in D,0 including assignments of the alpha (in blue) and beta (in red) anomers.
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Figure S40. 13C NMR spectrum of 176 mM N-acetyl-D-glucosamine 8 in D,0 including assignments of the alpha (in blue) and beta (in red) anomers.
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Figure S41. {*H-13C}-HSQC NMR spectrum of 176 mM N-acetyl-D-glucosamine 8 in D,0 including assignments of the alpha (in blue) and beta (in red) anomers.
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Figure S42. {*H-13C}-HMBC NMR spectrum of 176 mM N-acetyl-D-glucosamine 8 in D,0 including assignments of the alpha (in blue) and beta (in red) anomers. See

Figure S43 for a zoom-out.
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Figure S43. {*H-13C}-HMBC NMR spectrum of 176 mM N-acetyl-D-glucosamine 8 in D,0 including assignments of the alpha (in blue) and beta (in red) anomers. See

Figure S42 for a zoom-in.
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