Copper-catalysed sulfonylative Suzuki-Miyaura cross-coupling

Yiding Chen and Michael C. Willis*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom.

Supporting Information

Content

1.	Ge	neral Information:	2				
2.	Op	timisation on copper(I) catalysed biarylsulfone synthesis	3				
	1.1	Catalyst screening	3				
	1.2	Ligand screening	4				
	1.3	Solvent screening	6				
3.	Syr	thesis of biarylsulfones	7				
	GENERAL PROCEDURE A for the synthesis of biarylsulfones:						
4.	Syr	hthesis of <i>tert</i> -butyl 2-(arylsulfonyl)acetate	1				
	GENE	RAL PROCEDURE B for the synthesis of tert-butyl 2-(arylsulfonyl)acetate	1				
5.	Syr	thesis of $ heta$ -hydroxysulfones	4				
	GENE	RAL PROCEDURE C for the synthesis of <i>β</i> -hydroxysulfones	4				
6.	Syr	thesis of sulfonamides	7				
GENERAL PROCEDURE D for the synthesis of sulfonamides							
7.	Syr	thesis of sulfonyl fluorides	0				
(GENE	RAL PROCEDURE E for the synthesis of sulfonyl fluorides	0				
8.	Ref	erences:	2				
9.	^{1}H	NMR and ¹³ C NHR spectra	3				

1. General Information:

All procedures below were conducted under inert nitrogen atmosphere unless stated otherwise. Reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros and Fluorochem and were used as supplied unless stated otherwise. 1,2-Dichloroethane and 1,4-dioxane were distilled from CaH₂. All dry solvents i.e. THF, MeOH, MeCN and toluene were dried over 4 Å molecular sieves and through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system. Other solvents, i.e. sulfolane, DMF, DMA, DMSO, DMI (1,3-dimethyl-2-imidazolidinone), DMPU (1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone) and work-up solvents, were employed directly from commercial sources, i.e. Sigma-Aldrich unless stated otherwise. Petroleum ether refers to the fractions of petrol collected between 40-60 °C b.p.

Reactions were monitored *via* thin layer chromatography (TLC) on pre-coated aluminium plates (Merck Kieselgel 60 F_{254}). Products were visualized by UV light (254 nm) and/or with KMnO₄ stain. Flash column chromatography was conducted using silica gel 60 (Geduran Si 60, 40-63 μ m) with head pressure from nitrogen tap.

¹H NMR, ¹³C NMR and ¹⁹F NMR data were obtained from a Bruker Avance AV 500 or a Bruker Avance AV 400 NMR spectrometer. Chemical shifts (δ) are referenced to the residual solvent as CDCl₃ or DMSO-*d*₆ in the unit of parts per million (ppm). Coupling constants *J* are quoted in the unit of hertz (Hz). Proton and carbon multiplicity is recorded as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br). All compounds examined were dried *in vacuo* to remove residual solvents. Determination of inseparable compounds were carried out on 500 MHz ¹H NMR, 125 MHz ¹³C NMR spectra.

Low resolution mass spectra (LRMS) were recorded on a Fisons Platform II spectrometer. High resolution mass spectrometry (HRMS) was performed on a Bruker MicroTof spectrometer using electrospray ionization method (ESI) or on a Micromass LCT spectrometer using filed ionization method (FI) or electron ionization (CI).

Infra-red spectra were recorded neat on a Bruker Tensor 27 FT-IR spectrometer using a PIKE Miracle ATR module.

All compounds listed in the paper are >98% purity. Some sulfone products appear to be very hydroscopic therefore contain 0.2-0.5 mol equivalents of water (2-5 wt%) present in the ¹H NMR spectra as shown below.

2. Optimisation on copper(I) catalysed biarylsulfone synthesis

1.1 Catalyst screening

	+ DABSO +	Cu(l) L	
Me		DMF	Me
1a	2a		За

Entry	Cu catalyst (mol%)	Ligand (mol%)	HPLC Yield of 3a (%)
1	CuBr (40%)	-	11
2	Cul (40%)	-	4
3	Cul (40%)	1,10-phenanthroline (40%)	6
4	CuOAc (40%)	-	13
5	Cu ₂ O (40%)	-	25
6	Cu ₂ O (10%)	1,10-phenanthroline (20%)	27
7	CuSCN (20%)	-	5
8	CuSCN (20%)	1,10-phenanthroline (20%)	3
9	CuFe ₂ O ₄ (10%)	-	7
10	CuFe ₂ O ₄ (10%)	1,10-phenanthroline (10%)	7
11	Cu(IPr) (10%)	-	Trace
12	Cu(IPr) (10%)	1,10-phenanthroline (20%)	Trace
13	Cu-thiophene-carboxylate (10%)	-	19
14	Cu-thiophene-carboxylate (10%)	1,10-phenanthroline (20%)	13
15	Cu-methylsalicylate (10%)	1,10-phenanthroline (20%)	9
16	(CuOTf)₂PhH (10%)	-	26
17	(CuOTf)₂PhH (10%)	1,10-phenanthroline (20%)	42
18	CuCF₃Phen (10%)	-	37
19	Cu(MeCN)4BF4 (10%)	-	23
20	Cu(MeCN)4BF4 (10%)	1,10-phenanthroline (10%)	32

Reaction conditions: 1a (0.2 mmmol, 1.0 eqiv.), DABSO (0.3 mmol, 1.5 equiv.), 2a (0.6 mmol, 3.0 equiv.), DMF (1 mL), 110 °C, N₂, 14 h.

Reaction conditions: 1a (0.2 mmmol, 1.0 eqiv.), DABSO (0.3 mmol, 1.5 equiv.), 2a (0.6 mmol, 3.0 equiv.), Cu(MeCN)₄BF₄ (0.02 mmol, 10 mol%), DMF (1 mL), 110 °C, N₂, 14 h.

1.3 Solvent screening

Entry	Solvent	HPLC Yield of 3a (%)
1	DMF	49
2	Dioxane	0
3	Dichloromethane	0
4	Toluene	0
5	tert-Butanol	37
6	Nitrobenzene	Trace
7	Benzonitrile	16
8	Nitromethane	18
9 ^a	Sulfolane	60
10	NMP	55
11	DMSO	35
12	DMA	33
13	DMI	53
14	DMPU	60

^a Product inseparable with the solvent.

Reaction conditions: 1a (0.2 mmmol, 1.0 eqiv.), DABSO (0.3 mmol, 1.5 equiv.), 2a (0.6 mmol, 3.0 equiv.), Cu(MeCN)₄BF₄ (0.02 mmol, 10 mol%), ligand (0.02 mol, 10 mol%), solvent (1 mL), 110 °C, N₂, 14 h.

3. Synthesis of biarylsulfones:

GENERAL PROCEDURE A for the synthesis of biarylsulfones: **Phenyl** *p***-tolyl sulfone 3a**

Phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.) were mixed and dissolved in DMPU (1 mL) under nitrogen. Aryl iodide was added *via* syringe if liquid at room temperature. The reaction mixture was placed in a pre-heated oil bath at 110 °C and stirred for 36 hours prior to cooling to room temperature. Water (10 mL) was then added, and the resultant mixture was extracted with Et₂O (3 × 10 mL). Combined organic phases were washed with brine (3 × 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (25% Et₂O in petroleum ether) to give the title compound as a white solid (34 mg, 73%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 2H, *H*_{Ar}), 7.76 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 7.50 – 7.45 (m, 1H, *H*_{Ar}), 7.45 – 7.39 (m, 2H, *H*_{Ar}), 7.23(d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 2.32 (s, 3H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.2, 142, 138.6, 133.0, 129.9, 129.2, 127.7, 127.5, 21.6. **LRMS** (ESI, m/z) 233.0 ([M+H]⁺, 100%). **HRMS** (ESI) calcd for C₁₃H₁₃O₂S [M+H]⁺ 233.0631, found 233.0634. **M.p.**: 123 – 125 °C (lit. 124 – 125 °C). The data recorded are consistent with the literature.¹

Diphenyl sulfone 3b

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodobenzene (23 μ L, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (37 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 4H, H_{Ar}), 7.52 – 7.48 (m, 2H, H_{Ar}), 7.44 – 7.39 (m, 4H, H_{Ar}); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 133.2, 129.3, 127.7. LRMS (ESI, m/z) 217.1 ([M-H]⁻, 100%); HRMS (ESI) calcd for C₁₂H₁₀O₂SNa [M+Na]⁺ 241.0294, found 241.0294. M.p.: 123 – 124 °C (lit. 122 – 124 °C). The data recorded are consistent with the literature.²

Phenyl o-tolyl sulfone 3c

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.01 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.01 mmol, 10 mol%) and 2-iodotoluene (25 μ L, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (15% Et₂O in petroleum ether) to give the titled product as a white solid (23 mg, 49%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (dd, J = 7.9, 1.4 Hz, 1H, H_{Ar}), 7.82 – 7.76 (m, 2H, H_{Ar}), 7.55 – 7.48 (m, 1H, H_{Ar}), 7.46 – 7.38 (m, 3H, H_{Ar}), 7.37 – 7.30 (m, 1H, H_{Ar}), 7.16 (d, J = 7.5 Hz, 1H, H_{Ar}), 2.37 (s, 3H, CH_3); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.3, 138.8, 138.0, 133.6, 133.0, 132.7, 129.5, 129.0, 127.7, 126.5, 20.2. **LRMS** (ESI, m/z) 233.0 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₃O₂SNa [M+H]⁺ 233.0631, found 233.0633. **M.p.**: 74 – 75 °C (lit. 73 – 75 °C). The data recorded are consistent with the literature.³

3,5-Dimethyl-1-(phenylsulfonyl)benzene 3d

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 1-iodo-3,5-dimethylbenzene (28 μ L, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (36 mg, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.84 (m, 2H, H_{Ar}), 7.50 – 7.46 (m, 3H, H_{Ar}), 7.45 – 7.40 (m, 2H, H_{Ar}), 7.09 (s, 1H, H_{Ar}), 2.28 (s, 6H, CH_3); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.9, 141.2, 139.4, 135.0, 133.0, 129.2, 127.6, 125.2, 21.2. **LRMS** (ESI, m/z) 247.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₅O₂S [M+H]⁺ 247.0787, found 247.0790. **M.p.**: 89 – 90 °C (lit. 88 – 90 °C). The data recorded are consistent with the literature.⁴

4-Methoxyphenyl phenyl sulfone 3e

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodoanisole (47 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (32 mg, 65%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H, H_{Ar}), 7.82 – 7.79 (m, 2H, H_{Ar}), 7.50 – 7.44 (m, 1H, H_{Ar}), 7.44 – 7.38 (m, 2H, H_{Ar}), 6.93 – 6.84 (m, 2H, H_{Ar}), 3.77 (s, 3H, OCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.4, 142.3, 133.1, 132.9, 129.9, 129.2, 127.3, 114.5, 55.7. **LRMS** (ESI, m/z) 247.0 ([M-H]⁻, 100%); **HRMS** (ESI) calcd for C₁₃H₁₂O₃SNa [M+Na]⁺ 271.0399, found 271.0340. **M.p.**: 89 – 90 °C (lit. 89 – 90 °C). The data recorded are consistent with the literature.⁵

3-Methoxyphenyl phenyl sulfone 3f

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 3-iodoanisole (47 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (39 mg, 78%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H, H_{Ar}), 7.52 – 7.45 (m, 1H, H_{Ar}), 7.45 – 7.40 (m, 3H, H_{Ar}), 7.39 – 7.37 (m, 1H, H_{Ar}), 7.35 – 7.29 (m, 1H, H_{Ar}), 7.04 – 6.95 (m, 1H, H_{Ar}), 3.76 (s, 3H, OCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.0, 142.7, 141.5, 133.2, 130.4, 129.3, 127.7, 119.9, 119.6, 112.3, 55.7. **LRMS** (ESI, m/z) 249.0 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₃O₃S [M]⁺ 249.0580, found 249.0582. **M.p.**: 82°C (lit. 82 °C). The data recorded are consistent with the literature.³

4-(Benzenesulfonyl)phenyl methyl sulphide 3g

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodothioanisole (50 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (39 mg, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H, H_{Ar}), 7.78 – 7.69 (m, 2H, H_{Ar}), 7.52 – 7.45 (m, 1H, H_{Ar}), 7.44 – 7.37 (m, 2H, H_{Ar}), 7.24 – 7.17 (m, 2H, H_{Ar}), 2.41 (s, 3H, CH_3); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.7, 141.9, 137.2, 133.1, 129.3, 128.0, 127.5, 125.5, 14.7. **LRMS** (ESI, m/z) 265.0 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₃O₂S₂ [M+H]⁺ 265.0352, found 265.0354. **M.p.**: 110 – 112 °C (lit. 110 – 111°C). The data recorded are consistent with the literature.⁶

4-[4-(Phenylsulfonyl)phenyl]morpholine 3h

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_{4}BF_{4}$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (60% Et₂O in petroleum ether) to give the titled product as a white solid (43 mg, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.80 (m, 2H, H_{Ar}), 7.77 – 7.68 (m, 2H, H_{Ar}), 7.47 – 7.42 (m, 1H, H_{Ar}), 7.42 – 7.35 (m, 2H, H_{Ar}), 6.86 – 6.77 (m, 2H, H_{Ar}), 3.78 – 3.42 (m, 4H, OCH₂), 3.22 – 3.17 (m, 4H, NCH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.1, 142.8, 132.6, 130.0, 129.5, 129.1, 127.2, 113.8, 66.5, 47.4. **LRMS** (ESI, m/z) 304.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₆H₁₈O₃NS [M+H]⁺ 304.1002, found 304.1004. **IR** v_{max} (film): 3062, 2850, 1591, 1507, 1449, 1297 (SO₂), 1245, 1150 (SO₂), 1105, 927, 762, 651 cm⁻¹. **M.p.**: 157 – 160 °C.

4-Aminophenyl phenyl sulfone 3i

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodoaniline (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (70% Et₂O in petroleum ether) to give the titled product as a white solid (30 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.77 (m, 2H, H_{Ar}), 7.67 – 7.58 (m, 2H, H_{Ar}), 7.47 – 7.42 (m, 1H, H_{Ar}), 7.41 – 7.34 (m, 2H, H_{Ar}), 6.63 – 6.52 (m, 2H, H_{Ar}), 4.11 (br s, 2H, NH_2); ¹³**C NMR** (100 MHz, CDCl₃) δ 151.1, 142.9, 132.5, 129.9, 129.4, 129.1, 127.1, 114.2. **LRMS** (ESI, m/z) 256.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₁₁O₂NSNa [M+Na]⁺ 256.0403, found 256.0402. **M.p.**: 168 – 170 °C (lit. 169-172 °C). The data recorded are consistent with the literature.⁷

4-Hydroxyphenyl phenyl sulfone 3j

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodophenol (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the titled product as a white solid (36 mg, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.78 (m, 2H, H_{Ar}), 7.73 (d, J = 8.8 Hz, 2H, H_{Ar}), 7.51 – 7.45 (m, 1H, H_{Ar}), 7.45 – 7.37 (m, 2H, H_{Ar}), 6.85 (d, J = 8.8 Hz, 2H, H_{Ar}), 6.22 (br s, 1H, OH); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.3, 142, 133.1, 132.7, 130.1, 129.3, 127.3, 116.2. **LRMS** (ESI, m/z) 257.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₁₀O₃SNa [M+Na]⁺ 257.0243, found 257.0243. **M.p.**: 136 – 138 °C (lit. 136 – 137 °C). The data recorded are consistent with the literature.⁸

4'-(Phenylsulfonyl)acetophenone 3k

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4'-iodoacetophenone (49 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (33 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 – 7.94 (m, 4H, H_{Ar}), 7.91 – 7.86 (m, 2H, H_{Ar}), 7.56 – 7.50 (m, 1H, H_{Ar}), 7.49 – 7.42 (m, 2H, H_{Ar}), 2.55 (s, 3H, COCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.7, 145.5, 140.8, 140.3, 133.7, 129.5, 129.1, 128.0, 127.9, 26.9. **LRMS** (ESI, m/z) 283.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₂O₃SNa [M+Na]⁺ 283.0399, found 283.0401. **M.p.**: 133 – 135 °C (lit. 133 – 135 °C). The data recorded are consistent with the literature.⁹

4-(Phenylsulfonyl)benzonitrile 31

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_{4}BF_{4}$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodobenzonitrile (46 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (40% Et₂O in petroleum ether) to give the titled product as a white solid (34 mg, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.88 (d, J = 7.1 Hz, 2H, H_{Ar}), 7.73 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.59 – 7.54 (m, 1H, H_{Ar}), 7.48 (t, J = 7.5 Hz, 2H, H_{Ar}); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.9, 140.1, 134.1, 133.1, 129.7, 128.3, 128.0, 117.2, 117.0. **LRMS** (ESI, m/z) 266.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₉O₂NSNa [M+Na]⁺ 266.0246, found 266.0248. **M.p.**: 127 – 129 °C (lit. 125 – 127 °C). The data recorded are consistent with the literature.¹⁰

Methyl 4-(phenylsulfonyl)benzoate 3m

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and methyl 4-iodobenzoate (52 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (37 mg, 67%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.94 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.91 – 7.85 (m, 2H, H_{Ar}), 7.56 – 7.50 (m, 1H, H_{Ar}), 7.49 – 7.42 (m, 2H, H_{Ar}), 3.86 (s, 3H, CO₂CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.5, 145.5, 140.8, 134.3, 133.7, 130.5, 129.5, 127.9, 127.7, 52.7. **LRMS** (ESI, m/z) 299.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₂O₄SNa [M+Na]⁺ 299.0349, found 299.0348. **M.p.**: 145 – 147 °C (lit. 147 °C). The data recorded are consistent with the literature.¹¹

3-(Phenylsulfonyl)benzaldehyde 3n

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 3-iodobenzaldehyde (46 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the titled product as a white solid (22 mg, 46%).

¹**H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H, CHO), 8.40 – 8.32 (m, 1H, H_{Ar}), 8.13 (ddd, J = 7.8, 1.9, 1.2 Hz, 1H, H_{Ar}), 8.01 (d, J = 7.7 Hz, 1H, H_{Ar}), 7.92 – 7.89 (m, 2H, H_{Ar}), 7.64 (t, J = 7.8 Hz, 1H, H_{Ar}), 7.56 – 7.52 (m, 1H, H_{Ar}), 7.50 – 7.45 (m, 2H, H_{Ar}); ¹³**C NMR** (100 MHz, CDCl₃) δ 190.3, 143.2, 140.7, 137.1, 133.7, 133.5, 132.9, 130.3, 129.6, 128.8, 127.9. **LRMS** (ESI, m/z) 247.0 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₁O₃S [M+H]⁺ 247.0423, found 247.0424. **IR** v_{max} (film): 3065, 2849, 1702 (CO), 1595, 1582, 1447, 1323, 1306 (SO₂), 1204, 1151 (SO₂), 1095, 900, 730, 687 cm⁻¹. **M.p.**: 86 – 89 °C.

4-Benzenesulfonyl-benzoic acid amide 3o

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodobenzamide (49 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc degraded to 70% EtOAc in petroleum ether) to give the titled product as a white solid (38 mg, 73%).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.20 (br s, 1H, N*H*), 8.04 (s, 4H, *H*_{Ar}), 8.01 – 7.96 (m, 2H, *H*_{Ar}), 7.74 – 7.68 (m, 1H, *H*_{Ar}), 7.68 – 7.60 (m, 3H, *NH* and *H*_{Ar}); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.1, 143.7, 141.1, 139.4, 134.5, 130.3, 129.2, 128.0, 127.9. **LRMS** (ESI, m/z) 284.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₁O₃NSNa [M+Na]⁺ 284.0352, found 284.0352. **IR** v_{max} (film): 3418 (NH₂), 2922, 1684 (CO), 1467, 1296 (SO₂), 1205, 1162 (SO₂), 1103, 1040, 996, 863, 723, 665 cm⁻¹. **M.p.**: 173 – 175 °C.

3-Nitrodiphenyl sulfone 3p

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 3-iodonitrobenzene (50 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (40% Et₂O in petroleum ether) to give the titled product as a white solid (39 mg, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (app. t, *J* = 2.0 Hz, 1H, *H*_{Ar}), 8.35 (ddd, *J* = 8.0, 2.0, 1.1 Hz, 1H, *H*_{Ar}), 8.21 (ddd, *J* = 8.0, 2.0, 1.1 Hz, 1H, *H*_{Ar}), 7.95 – 7.89 (m, 2H, *H*_{Ar}), 7.67 (app. t, *J* = 8.0 Hz, 1H, *H*_{Ar}), 7.60 – 7.54 (m, 1H, *H*_{Ar}), 7.53 – 7.45 (m, 2H, *H*_{Ar}); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.4, 144.0, 140.1, 134.1, 133.1, 130.8, 129.8, 128.0, 127.7, 123.0. **LRMS** (ESI, m/z) 286.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₉O₄NSNa [M+Na]⁺ 286.0145, found 286.0146. **M.p.**: 78 – 80 °C (lit. 79 – 81 °C). The data recorded are consistent with the literature.¹²

1-(Phenylsulfonyl)-4-(trifluoromethyl)benzene 3q

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodobenzotrifluoride (29 μ L, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (41 mg, 72%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 2H, H_{Ar}), 7.93 – 7.84 (m, 2H, H_{Ar}), 7.70 (d, J = 8.2 Hz, 2H, H_{Ar}), 7.59 – 7.51 (m, 1H, H_{Ar}), 7.46 – 7.42 (m, 2H, H_{Ar}); ¹³**C NMR** (125 MHz, CDCl₃) δ 145.2, 140.6, 134.9 (q, ² $J_{C-F} = 33$ Hz, C_{Ar}), 133.8, 129.6, 128.2, 127.9, 126.5 (q, ³ $J_{C-F} = 4$ Hz, C_{Ar}), 123.1 (q, ¹ $J_{C-F} = 273$ Hz, C_{Ar}); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.2. **LRMS** (ESI, m/z) 287.0 ([M+H]⁺, 100%). **HRMS** (EI) calcd for C₁₃H₁₀F₃O₂S [M]⁺ 287.0348, found 287.0448. **M.p.**: 93 – 95 °C (lit. 91 – 92 °C). The data recorded are consistent with the literature.⁵

3,5-Dichloro-1-(phenylsulfonyl)benzene 3r

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 1-iodo-3,5-dichlorobenzene (55 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (43 mg, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H, H_{Ar}), 7.74 (d, J = 1.9 Hz, 2H, H_{Ar}), 7.60 – 7.54 (m, 1H, H_{Ar}), 7.52 – 7.44 (m, 3H, H_{Ar}); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.6, 140.3, 136.3, 134.0, 133.3, 129.7, 128.0, 126.0. **LRMS** (ESI, m/z) 308.2 ([³⁵M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₈O₂Cl₂SNa [³⁵M+Na]⁺ 308.9514, found 308.9515. **IR** ν_{max} (film): 3071, 1566, 1477, 1449, 1329 (SO₂), 1179, 1163 (SO₂), 1140, 866, 802, 718, 686 cm⁻¹. **M.p.**: 125 – 128 °C.

4-Phenylsulfonylbromobenzene and 4-phenylsulfonyliodobenzene 3s/3s'

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 1-bromo-4-iodobenzene (57 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the titled inseparable products as a white solid (39 mg), in a ratio of 3:1.

4-Phenylsulfonylbromobenzene

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H, H_{Ar}), 7.75 – 7.71 (m, 2H, H_{Ar}), 7.60 – 7.55 (m, 2H, H_{Ar}), 7.54 – 7.49 (m, 1H, H_{Ar}), 7.48 – 7.39 (m, 2H, H_{Ar}); ¹³**C NMR** (125 MHz, CDCl₃) δ 141.2, 140.7, 133.5, 132.6, 129.4, 129.2, 128.5, 127.7. **LRMS** (ESI, m/z) 296.9 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₉O₂⁷⁹BrSNa [⁷⁹M+Na]⁺ 318.9399 and C₁₂H₉O₂⁸¹BrSNa [⁸¹M+Na]⁺ 320.9378, found 318.9400 and 320.9379. The data recorded are consistent with the literature.¹³

4-Phenylsulfonyliodobenzene

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H, H_{Ar}), 7.79 (d, J = 8.5 Hz, 2H, H_{Ar}), 7.60 – 7.55 (m, 2H, H_{Ar}), 7.54 – 7.49 (m, 1H, H_{Ar}), 7.48 – 7.39 (m, 2H, H_{Ar}); ¹³**C NMR** (125 MHz, CDCl₃) δ 141.4, 141.2, 138.6, 133.5, 129.4, 129.0, 127.7, 101.0. **LRMS** (ESI, m/z) 366.9 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₉O₂ISNa [M+Na]⁺ 366.9260, found 366.9261. The data recorded are consistent with the literature.¹⁴

IR v_{max} (film): 3087, 2917, 2849, 1572, 1446, 1387, 1320 (SO₂), 1155 (SO₂), 1104, 1068, 1008, 822, 741, 689, 686 cm⁻¹.

5-(Phenylsulfonyl)indole 3t

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 5-iodoindole (49 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% EtOAc in petroleum ether) to give the titled product as a white solid (40 mg, 79%).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.68 (br s, 1H, N*H*), 8.25 (d, *J* = 1.3 Hz, 1H, *H*_A*r*), 7.93 (dd, *J* = 8.2, 1.3 Hz, 2H, *H*_A*r*), 7.66 – 7.51 (m, 6H, *H*_A*r*), 6.66 (d, *J* = 3.0 Hz, 1H, *H*_A*r*); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 143.2, 138.4, 133.4, 131.6, 130.0, 128.9, 127.7, 127.3, 121.5, 120.1, 112.9, 103.3. **LRMS** (ESI, m/z) 280.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₁O₂NNaS [M+Na]⁺ 280.0403, found 280.0403. **IR** v_{max} (film): 3427 (NH), 2923, 1660, 1431, 1302 (SO2), 1208, 1150 (SO2), 1107, 1042, 996, 767, 731 cm⁻¹. **M.p.**: 133 – 135 °C.

8-Chloro-3-(phenylsulfonyl)quinoline 3u

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 8-chloro-3-iodoquinoline (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (60% Et₂O in petroleum ether) to give the titled product as a white solid (32 mg, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ 9.30 (d, J = 2.3 Hz, 1H, H_{Ar}), 8.78 (d, J = 2.3 Hz, 1H, H_{Ar}), 8.00 – 7.95 (m. 2H, H_{Ar}), 7.92 (dd, J = 7.5, 1.3 Hz, 1H, H_{Ar}), 7.84 (dd, J = 8.3, 1.3 Hz, 1H, H_{Ar}), 7.58 – 7.52 (m, 2H, H_{Ar}), 7.51 – 7.45 (m, 2H, H_{Ar}); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.8, 145.5, 140.6, 137.2, 135.8, 134.1, 134.0, 132.8, 129.7, 128.5, 128.2, 127.9, 127.8. **LRMS** (ESI, m/z) 304.0 ([³⁵M+H]⁺, 100%), 306.0 ([³⁷M+H]⁺, 25%); **HRMS** (ESI) calcd for C₁₅H₁₁O₂NCIS [³⁵M+H]⁺ 304.1094, found 304.1094. **M.p.**: 227 – 229 °C (lit. 226 – 227 °C). The data recorded are consistent with the literature.¹⁵

2-Methoxy-5-(phenylsulfonyl)pyridine 3v

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 5-iodo-2-methoxypyridine (47 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a white solid (19 mg, 39%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (dd, J = 2.5, 0.5 Hz, 1H, H_{Ar}), 7.93 (dd, J = 8.8, 2.5 Hz, 1H, H_{Ar}), 7.88 – 7.84 (m, 2H, H_{Ar}), 7.54 – 7.50 (m, 1H, H_{Ar}), 7.48 – 7.44 (m, 2H, H_{Ar}), 6.73 (dd, J = 8.8, 0.5 Hz, 1H, H_{Ar}), 3.91 (s, 3H, OC H_3); ¹³**C NMR** (125 MHz, CDCl₃) δ 165.7, 147.2, 140.7, 136.6, 132.3, 129.9, 128.4, 126.4, 110.7, 53.3. **LRMS** (ESI, m/z) 250.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₁₂O₃NS [M+H]⁺ 250.0532, found 250.0534. **IR** v_{max} (film): 3062, 2949, 1589, 1483, 1447, 1374, 1323 (SO₂), 1307, 1286, 1160 (SO₂), 1112, 1014, 833, 756, 727, 689 cm⁻¹. **M.p.**: 88 – 91 °C.

1-Methyl-4-(phenylsulfonyl)pyrazole 3w

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodo-1-methyl-1H-pyrrazole (42 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% EtOAc in petroleum ether) to give the titled product as a white solid (33 mg, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 2H, H_{Ar}), 7.77 (s, 1H, H_{Ar}), 7.72 (s, 1H, H_{Ar}), 7.54 – 7.47 (m, 1H, H_{Ar}), 7.46 – 7.41 (m, 2H, H_{Ar}), 3.85 (s, 3H, CH_3); ¹³**C NMR** (100 MHz, CDCl₃) δ 142.8, 139.1, 133.1, 132.2, 129.3, 126.9, 124.5, 39.7. **LRMS** (ESI, m/z) 223.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₀H₁₁O₂N₂S [M+H]⁺ 223.0536, found 223.0538. **M.p.**: 109 – 110 °C (lit. 107 – 108 °C). The data recorded are consistent with the literature.¹⁶

1-Cyclohepten-1-yl-phenylsulfone 3x

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 1-iodocycloheptene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a colourless oil which solidified when left standing (27 mg, 58%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H, H_{Ar}), 7.56 – 7.49 (m, 1H, H_{Ar}), 7.49 – 7.41 (m, 2H, H_{Ar}), 7.24 (t, J = 6.5 Hz, 1H, CH), 2.34 – 2.25 (m, 4H, CH₂), 1.71 – 1.57 (m, 2H, CH₂), 1.52 – 1.42 (m, 2H, CH₂), 1.36 – 1.27 (m, 2H, CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.3, 143.1, 139.6, 133.0, 129.1, 128.0, 31.3, 28.6, 27.6, 26.1, 25.4. **LRMS** (ESI, m/z) 237.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₃H₁₇O₂S [M+H]⁺ 237.0944, found 237.0946. **M.p.**: 33 – 35 °C (lit. 32 – 35 °C). The data recorded are consistent with the literature.¹⁷

1-Cyclohexen-1-yl-phenylsulfone 3y

General procedure A was followed with phenylboronic acid (73 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_{4}BF_{4}$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 1-iodocyclohexene (42 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a colourless oil which solidified when left standing (28 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H, H_{Ar}), 7.56 – 7.51 (m, 1H, H_{Ar}), 7.49 – 7.43 (m, 2H, H_{Ar}), 7.00 (dt, J = 3.9, 2.2 Hz, 1H, CH), 2.25 – 2.15 (m, 2H, SO₂CCH₂), 2.12 – 2.06 (m, 1H, SO₂CCHCH₂), 1.62 – 1.54 (m, 2H, SO₂CCHCH₂), 1.54 – 1.46 (m, 2H, SO₂CCH₂CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 139.8, 139.4, 138.5, 133.1, 129.1, 128.0, 25.5, 22.8, 21.8, 20.8. **LRMS** (ESI, m/z) 223.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₁₅O₂S [M+H]⁺ 223.0787, found 223.0790. **M.p.**: 42 – 44 °C (lit. 43 °C). The data recorded are consistent with the literature.¹⁸

4-(4-Tosylphenyl)morpholine 4a

General procedure A was followed with 4-tolylboronic acid (82 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% EtOAc in petroleum ether) to give the titled product as a white solid (46 mg, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.65 (m, 4H, H_{Ar}), 7.19 (d, J = 8.0 Hz, 2H, H_{Ar}), 6.80 (d, J = 9.1 Hz, 2H, H_{Ar}), 3.78 – 3.72 (m, 4H, OCH₂), 3.22 – 3.14 (m, 4H, NCH₂), 2.31 (s, 3H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.0, 143.4, 139.9, 130.6, 129.8, 129.3, 127.2, 113.9, 66.5, 47.4, 21.5. **LRMS** (ESI, m/z) 318.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₇H₂₀O₃NS [M+H]⁺ 318.1158, found 318.1151. **IR** v_{max} (film): 3062, 2580, 1591, 1507, 1449, 1297 (SO₂), 1245, 1150 (SO₂), 1121, 1105, 927, 821, 651 cm⁻¹. **M.p.**: 150 – 153 °C.

(4-tert-Butylphenyl)-p-tolyl sulfone 4b

General procedure A was followed with 4-*tert*-butylphenylboronic acid (107 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (45 mg, 78%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.73 (m, 4H, H_{Ar}), 7.42 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.22 (d, J = 8.0 Hz, 2H, H_{Ar}), 2.32 (s, 3H, CH₃), 1.23 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9, 143.9, 139.0, 138.9, 129.9, 127.7, 127.4, 126.3, 35.2, 31.1, 21.6. **LRMS** (ESI, m/z) 289.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₇H₂₁O₂S [M+H]⁺ 289.1257, found 289.1258. **M.p.**: 86 – 87 °C (lit. 80 – 81 °C). The data recorded are consistent with the literature.¹⁹

4-[4-(Naphthalen-2-ylsulfonyl)phenyl]morpholine 4c

General procedure A was followed with 2-naphthylboronic acid (103 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (57.8 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% EtOAc in petroleum ether) to give the titled product as a white solid (54 mg, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 – 8.41 (m, 1H, H_{Ar}), 7.89 (dd, J = 7.3, 1.6 Hz, 1H, H_{Ar}), 7.85 – 7.72 (m, 5H, H_{Ar}), 7.57 – 7.48 (m, 2H, H_{Ar}), 6.80 (d, J = 9.1 Hz, 2H, H_{Ar}), 3.78 – 3.71 (m, 4H, OCH₂), 3.21 – 3.14 (m, 4H, NCH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.1, 139.6, 134.8, 132.3, 130.1, 129.6, 129.5, 129.3, 128.8, 128.2, 127.9, 127.5, 122.6, 113.9, 66.5, 47.4. **LRMS** (ESI, m/z) 376.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₂₀H₁₉O₃NaNS [M+Na]⁺ 376.0978, found 376.0974. **IR** ν_{max} (film): 3649, 2980, 2856, 1591, 1505, 1449, 1299 (SO₂), 1245, 1149 (SO₂), 1131, 1095, 927, 819, 763, 649 cm⁻¹. **M.p.**: 196 – 199 °C.

4-Tolyl 4-methoxyphenyl sulfone 4d

General procedure A was followed with 4-methoxyboronic acid (91 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (40 mg, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H, H_{Ar}), 7.76 – 7.70 (m, 2H, H_{Ar}), 7.22 – 7.18 (m, 2H, H_{Ar}), 6.90 – 6.85 (m, 2H, H_{Ar}), 3.76 (s, 3H, OCH₃), 2.32 (s, 3H, CCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.2, 143.7, 139.4, 135.6, 129.8, 129.7, 127.4, 114.4, 55.6, 21.6. **LRMS** (ESI, m/z) 263.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₅O₃S [M+H]⁺ 263.0736, found 263.0738. **M.p.**: 103 – 104 °C (lit. 103 – 104 °C). The data recorded are consistent with the literature.¹⁹

4-Tolyl 4-methylthiophenyl sulfone 4e

General procedure A was followed with 4-methylthiophenylboronic acid (101 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the titled product as a white solid (38 mg, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.69 (m, 4H, H_{Ar}), 7.24 – 7.18 (m, 4H, H_{Ar}), 2.42 (s, 3H, SCH₃), 2.32 (s, 3H, CCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.3, 144.0, 139.0, 137.6, 129.9, 127.8, 127.5, 125.5, 21.6, 14.7. **LRMS** (ESI, m/z) 279.0 ([M+H]⁺, 100%), 301.0 ([M+Na]⁺, 30%); **HRMS** (ESI) calcd for C₁₄H₁₅O₃S₂ [M+H]⁺279.0508, found 279.0510. **IR** ν_{max} (film): 3046, 2922, 1580, 1493, 1397, 1314 (SO₂), 1154 (SO₂), 1112, 1085, 817, 757, 661 cm⁻¹. **M.p.**: 136 – 139 °C.

4-Tosylphenol 4f

General procedure A was followed with 4-hydroxyphenylboronic acid (132 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (40% EtOAc in petroleum ether) to give the titled product as a white solid (38 mg, 78%) with less than 2% of inseparable impurity.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 4H, H_{Ar}), 7.22 – 7.19 (m, 2H, H_{Ar}), 6.83 (d, J = 8.9 Hz, 2H, H_{Ar}), 6.32 (b, 1H, OH), 2.32 (s, 3H, CCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.2, 144.0, 139.0, 133.1, 129.9, 129.9, 127.3, 116.1, 21.6. **LRMS** (ESI, m/z) 249.1 ([M+H]⁺, 100%), 271.0 ([M+Na]⁺, 40%); **HRMS** (ESI) calcd for C₁₃H₁₃O₃S [M+H]⁺ 249.0580, found 249.0583. **M.p.**: 137 – 139 °C (lit. 138 °C). The data recorded are consistent with the literature.⁹

N,*N*-Dimethyl-4-tosylaniline 4g

General procedure A was followed with 4-(dimethylamino)phenylboronic acid (99 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% EtOAc in petroleum ether) to give the titled product as a white solid (36 mg, 66%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 7.67 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 7.17 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 6.57 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 2.94 (s, 6H, N(CH₃)₂), 2.32 (s, 3H, CCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 153.0, 143.0, 140.5, 129.7, 129.3, 127.0, 127.0, 111.1, 40.1, 21.5. **LRMS** (ESI, m/z) 276.1 ([M+H]⁺, 100%), 298.0 ([M+Na]⁺, 30%); **HRMS** (ESI) calcd for C₁₅H₁₈O₂NS [M+H]⁺ 276.1053, found 276.1054. **M.p.**: 212 – 214 °C (lit. 212 – 213 °C). The data recorded are consistent with the literature.²⁰

tert-Butyl (4-tosylphenyl)carbamate 4h

General procedure A was followed with 4-(*N*-Boc-amino)phenylboronic acid (142 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (30% EtOAc in petroleum ether) to give the titled product as a white solid (36 mg, 52%), with less than 2% inseparable impurity.

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.72 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.40 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.20 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 6.60 (br s, 1H, NH), 2.32 (s, 3H, CCH₃), 1.44 (s, 9H, C(CH₃)₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 152.0, 143.9, 142.8, 139.2, 135.4, 129.9, 129.0, 127.5, 118.1, 81.6, 28.2, 21.6. **LRMS** (ESI, m/z) 370.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₈H₂₁O₄NaS [M+Na]⁺ 370.1084, found 370.1083. **IR** v_{max} (film): 3341 (NH), 2926, 1730 (CO), 1592, 1522, 1403, 1368, 1321 (SO₂), 1232, 1147 (SO₂), 1107, 835, 708, 688, 646 cm⁻¹. **M.p.**: 186 – 188 °C.

N-(3-Tosylphenyl)acetamide 4i

General procedure A was followed with 3-acetamidophenylboronic acid (107 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a white solid (29 mg, 50%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 1H, *H*_{Ar}), 7.88 (bs, 2H, *H*_{Ar}, OH), 7.75 (d, *J* = 8.2 Hz, 2H, *H*_{Ar}), 7.55 (d, *J* = 7.8 Hz, 1H, *H*_{Ar}), 7.37 (app. t, *J* = 8.1 Hz, 1H, *H*_{Ar}), 7.23 (d, *J* = 8.2 Hz, 2H, *H*_{Ar}), 2.33 (s, 3H, CH₃), 2.09 (s, 3H, COCH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 144.5, 142.4, 139.1, 138.2, 130.2, 130.0, 127.7, 124.3, 122.7, 118.1, 24.5, 21.6. **LRMS** (ESI, m/z) 312.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₅H₁₅O₃NNaS [M+Na]⁺ 312.0665, found 312.0662. **IR** v_{max} (film): 3317 (NH), 2980, 1673 (CO), 1593, 1540, 1478, 1421, 1373 (SO₂), 1301, 1148 (SO₂), 1099, 814, 794, 703, 685 cm⁻¹. **M.p.**: 137 – 140 °C.

1-(Benzyloxy)-4-tosylbenzene 4j

General procedure A was followed with 4-benzyloxyphenylboronic acid (137 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a white solid (38 mg, 57%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 7.72 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.34 – 7.29 (m, 4H, *H*_{Ar}), 7.29 – 7.24 (m, 1H, *H*_{Ar}), 7.20 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 6.95 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 5.02 (s, 2H, *CH*₂), 2.31 (s, 3H, *CH*₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.4, 143.8, 139.4, 135.8, 133.8, 129.9, 129.7, 128.8, 128.4, 127.5, 127.4, 115.3, 70.4, 21.6. **LRMS** (ESI, m/z) 339.1 ([M+H]⁺, 100%), 361.0 ([M+Na]⁺, 30%); **HRMS** (ESI) calcd for C₂₀H₁₉O₃S [M+H]⁺ 339.1049, found 339.1052. **M.p.**: 165 – 167 °C (lit. 201 °C). The data recorded are consistent with the literature.²¹

1-Methoxy-4[(4-tosylphenoxy)methyl]benzene 4k

General procedure A was followed with 4-(4-methoxybenzloxy)phenylboronic acid (155 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a light yellow solid (46 mg, 63%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 7.72 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 7.24 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.20 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 6.94 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 6.84 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 4.93 (s, 2H, OCH₂), 3.74 (s, 3H, OCH₃), 2.31 (s, 3H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.4, 159.7, 143.8, 139.4, 133.7, 129.8, 129.7, 129.3, 127.8, 127.4, 115.3, 114.2, 70.2, 55.3, 21.6. **LRMS** (ESI) m/z) 391.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₂₁H₂₀O₄NaS [M+Na]⁺391.0986, found 391.0968. **IR** v_{max} (film): 3066, 2999, 1593, 1493, 1318 (SO₂), 1297, 1247, 1178, 1149 (SO₂), 1105, 850, 707, 689, 647 cm⁻¹. **M.p.**: 156 – 159 °C.

1-Chloro-4-[(4-tosylphenoxy)methyl]benzene 4I

General procedure A was followed with 4-(4-chlorobenzloxy)phenylboronic acid (158 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a white solid (42 mg, 56%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.9 Hz, 2H, *H*_{Ar}), 7.72 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.32-7.23 (m, 4H, *H*_{Ar}), 7.21 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 6.93 (d, *J* = 8.9 Hz, 2H, *H*_{Ar}), 4.98 (s, 2H, OC*H*₂), 2.32 (s, 3H, C*H*₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 162.1, 143.8, 139.3, 134.3, 134.3, 134.1, 129.9, 129.8, 129.0, 128.8, 127.4, 115.2, 69.6, 21.6. **LRMS** (ESI, m/z) 395.0 ([³⁵M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₂₀H₁₇O₃ClNaS [³⁵M+Na]⁺ 395.0479, found 395.0480. **IR** v_{max} (film): 3440, 2979, 1593, 1494, 1318 (SO₂), 1299, 1255, 1152 (SO₂), 1106, 1015, 811, 721, 669 cm⁻¹. **M.p.**: 137 – 140 °C.

Trimethyl(4-tosylphenyl)silane 4m

General procedure A was followed with 4-(trimethylsilyl)phenylboronic acid (116 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the titled product as a white solid (44 mg, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 2H, *H*_{Ar}), 7.72 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.52 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.18 (d, *J* = 8.2 Hz, 2H, *H*_{Ar}), 2.28 (s, 3H, CH₃), 0.15 (s, 9H, Si(CH₃)); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.8, 145.5, 143.5, 140.1, 135.5, 131.3, 129.1, 127.7, 23.0, -0.0. **LRMS** (ESI, m/z) 305.1 ([M+H]⁺, 30%); 327.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₆H₂₁O₂SSi [M+H]⁺ 305.106, found 305.1029. **M.p.**: 101 – 102 °C (lit. 99 °C). The data recorded are consistent with the literature.²²

4-{4-[(4-Chlorophenyl)sulfonyl]phenyl}morpholine 4n

General procedure A was followed with 4-chlorophenylboronic acid (94 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% EtOAc in petroleum ether) to give the titled product as a white solid (44 mg, 66%).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.70 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 7.36 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 6.81 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 3.81 – 3.71 (m, 4H, OCH₂), 3.28 – 3.17 (m, 4H, NCH₂); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 141.4, 139.1, 129.5, 129.4, 128.6, 113.8, 66.4, 47.3, one quaternary carbon is not seen on the spectrum. LRMS (ESI, m/z) 360.0 ([M+Na]⁺, 100%); HRMS (ESI) calcd for C₁₆H₁₆O₃NClNaS [M+Na]⁺ 360.0432, found 360.0432. IR v_{max} (film): 3086, 2850, 1589, 1506, 1383, 1306 (SO₂), 1245, 1149 (SO₂), 1103, 1012, 926, 823, 767, 615 cm⁻¹. M.p.: 140 – 143 °C.

4-{4-[(3-Chloro-4-methoxyphenyl)sulfonyl]phenyl}morpholine 4o

General procedure A was followed with 3-chloro-4-methoxyphenylboronic acid (112 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% EtOAc in petroleum ether) to give the titled product as a white solid (50 mg, 68%).

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 2.3 Hz, 1H, H_{Ar}), 7.73 (dd, J = 8.7, 2.3 Hz, 1H, H_{Ar}), 7.70 (d, J = 9.1 Hz, 2H, H_{Ar}), 6.89 (d, J = 8.7 Hz, 1H, H_{Ar}), 6.81 (d, J = 9.1 Hz, 2H, H_{Ar}), 3.86 (s, 3H, OCH₃), 3.80-3.73 (m, 4H, OCH₂), 3.25-3.17 (m, 4H, NCH₂); ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 154.1, 135.4, 130.1, 129.3, 127.5, 123.4, 113.9, 111.7, 66.5, 56.5, 47.4, one quaternary carbon not observed. LRMS (ESI, m/z) 390.1 ([³⁵M+Na]⁺, 100%); HRMS (ESI) calcd for C₁₇H₁₈O₄NClNaS [³⁵M+Na]⁺ 390.0537, found 390.0539. IR v_{max} (film): 3073, 2921, 2850, 1590, 1490, 1300 (SO₂), 1275, 1246, 1150 (SO₂), 1107, 1062, 927, 821, 762, 609 cm⁻¹. M.p.: 157 – 159 °C.

{2-Methoxy-5-[(4-morpholinophenyl)sulfonyl]phenyl}methanol 4p

General procedure A was followed with 3-hydroxymethyl-4-methoxyphenylboronic acid (109 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (58 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% EtOAc in petroleum ether) to give the titled product as a white solid (53 mg, 73%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.6, 2.3 Hz, 1H, *H*_{Ar}), 7.77 (d, *J* = 2.3 Hz, 1H, *H*_{Ar}), 7.71 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 6.85 (d, *J* = 8.6 Hz, 1H, *H*_{Ar}), 6.79 (d, *J* = 9.1 Hz, 2H, *H*_{Ar}), 4.60 (d, *J* = 6.6 Hz, 2H, HOC*H*₂), 3.82 (s, 3H, OC*H*₃), 3.78-3.73 (m, 4H, OC*H*₂), 3.22-3.13 (m, 4H, NC*H*₂), 2.13 (t, *J* = 6.6 Hz, 1H, O*H*); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.4, 153.9, 134.5, 130.9, 130.3, 129.2, 128.7, 127.4, 113.9, 110.2, 66.5, 61.1, 55.8, 47.5. **LRMS** (ESI, m/z) 364.1 ([M+H]⁺, 100%), 386.0 ([M+Na]⁺, 40%); **HRMS** (ESI) calcd for C₁₈H₂₂O₅NS [M+H]⁺ 364.1213, found 364.1214. **IR** v_{max} (film): 3457 (OH), 2922, 2852, 1591, 1491, 1450, 1296 (SO₂), 1246, 1190, 1133 (SO₂), 1096, 1048, 821, 762, 684, 608 cm⁻¹. **M.p.**: 194 – 196 °C.

2-Methoxy-5-tosylbenzaldehyde 4q

General procedure A was followed with 3-formyl-4-methoxyphenylboronic acid (108 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% EtOAc in petroleum ether) to give the titled product as a white solid (31 mg, 54%).

¹**H NMR** (500 MHz, CDCl₃) δ 10.34 (s, 1H, CHO), 8.27 (d, J = 2.5 Hz, 1H, H_{Ar}), 8.06 (dd, J = 8.9, 2.5 Hz, 1H, H_{Ar}), 7.75 (d, J = 8.2 Hz, 2H, H_{Ar}), 7.23 (d, J = 8.2 Hz, 2H, H_{Ar}), 7.02 (d, J = 8.9 Hz, 1H, H_{Ar}), 3.92 (s, 3H, OCH₃), 2.32 (s, 3H, CH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 188.0, 164.5, 144.3, 138.6, 134.7, 134.7, 130.0, 128.8, 127.6, 125.0, 112.4, 56.4, 21.6. **LRMS** (ESI, m/z) 291.0 ([M+H]⁺, 30%), 313.0 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₅H₁₄O₄NaNS [M+Na]⁺ 313.0505, found 313.0507. **IR** v_{max} (film): 2917, 2850, 1684 (CO), 1595, 1485, 1395, 1321 (SO₂), 1278, 1252, 1184, 1153 (SO₂), 1089, 1017, 911, 817, 681 cm⁻¹. **M.p.**: 120 – 123 °C.

4-{4-[(2,3-Dihydrobenzofuran-5-yl)sulfonyl]phenyl}morpholine 4r

General procedure A was followed with 2,3-dihydrobenzofuran-5-boronic acid (98 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-(4-iodophenyl)morpholine (57.8 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (50% EtOAc in petroleum ether) to give the titled product as a white solid (54 mg, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 9.1 Hz, 2H, H_{Ar}), 7.66-7.61 (m, 2H, H_{Ar}), 6.80 (d, J = 9.1 Hz, 2H, H_{Ar}), 6.73 (d, J = 9.0 Hz, 1H, H_{Ar}), 4.56 (t, J = 8.8 Hz, 2H, ArOCH₂CH₂), 3.78-3.71 (m, 4H, CH₂OCH₂), 3.22-3.07 (m, 6H, NCH₂ and ArOCH₂CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.8, 153.9, 134.4, 131.2, 129.1, 128.8, 128.4, 124.5, 113.9, 109.6, 72.3, 66.5, 47.5, 29.1. **LRMS** (ESI, m/z) 368.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₈H₁₉O₄NaNS [M+Na]⁺ 368.0927, found 368.0923. **IR** v_{max} (film): 2927, 2835, 1590, 1482, 1381, 1328, 1296 (SO₂), 1239, 1173, 1135 (SO₂), 1124, 1088, 923, 890, 819, 694, 607 cm⁻¹. **M.p.**: 188 – 191 °C.

6-Tosyl-2,3-dihydrobenzo-1,4-dioxine 4s

General procedure A was followed with 1,4-benzodioxane-6-boronic acid (108 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'- dimethoxy-bipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (40% Et₂O in petroleum ether) to give the titled product as a white solid (36 mg, 62%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H, *H*_{Ar}), 7.40 – 7.32 (m, 2H, *H*_{Ar}), 7.21 (d, *J* = 8.1 Hz, 2H, *H*_{Ar}), 6.85 (d, *J* = 8.3 Hz, 1H, *H*_{Ar}), 4.25 – 4.15 (m, 4H, OCH₂), 2.32 (s, 3H, CH₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.7, 143.8, 143.7, 139.2, 134.4, 129.8, 127.5, 121.3, 118.0, 117.2, 64.5, 64.1, 21.6. **LRMS** (ESI, m/z) 313.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₅H₁₄O₄NaS [M+Na]⁺ 313.0505, found 313.0508. **IR** v_{max} (film): 3065, 2923, 1496, 1286 (SO₂), 1254, 1150 (SO₂), 1095, 1063, 878, 815, 710, 664 cm⁻¹. **M.p.**: 148 – 151 °C.

1-(Cyclohex-1-en-1-ylsulfonyl)-4-methylbenzene 4t

General procedure A was followed with 1-cyclohexen-1-yl-boronic acid (76 mg, 0.6 mmol, 3.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (27 mg, 57%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, J = 7.9 Hz, 2H, H_{Ar}), 7.25 (d, J = 7.9 Hz, 2H, H_{Ar}), 6.96 (tt, J = 3.8, 1.7 Hz, 1H, CH), 2.36 (s, 3H, CH₃), 2.22 – 2.15 (m, 2H, SO₂CCH₂), 2.12 – 2.06 (m, 2H, SO₂CCHCH₂), 1.62 – 1.54 (m, 2H, SO₂CCHCH₂), 1.52 – 1.46 (m, 2H, SO₂CCH₂CH₂); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.0, 140.0, 137.9, 136.5, 129.7, 128.1, 25.5, 22.8, 21.8, 21.6, 20.8. LRMS (ESI, m/z) 237.1 ([M+H]⁺, 100%); HRMS (ESI) calcd for C₁₃H₁₇O₂S [M+H]⁺ 237.0944, found 237.0947. M.p.: 66 – 67 °C (lit. 64 – 65 °C). The data recorded are consistent with the literature.²³

trans-1-Methyl-4-(styrylsulfonyl)benzene 4u

General procedure A was followed with *trans*-2-phenylvinylboronic acid (89 mg, 0.6 mmol, 3.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (72 mg, 0.3 mmol, 1.5 eq.), 4,4'-dimethoxybipyridine (4.3 mg, 0.02 mmol, 10 mol%) and 4-iodotoluene (44 mg, 0.2 mmol, 1.0 eq.). The product was purified *via* flash column chromatography (20% Et₂O in petroleum ether) to give the titled product as a white solid (32 mg, 63%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H, H_{Ar}), 7.59 (d, J = 15.4 Hz, 1H, SO₂CH), 7.44 – 7.39 (m, 2H, H_{Ar}), 7.37 – 7.30 (m, 3H, H_{Ar}), 7.27 (d, J = 9.3 Hz, 2H, H_{Ar}), 6.78 (d, J = 15.4 Hz, 1H, ArCH), 2.37 (s, 3H, CH_3); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 142, 137.7, 132.4, 131.1, 130.0, 129.1, 128.5, 127.7, 127.6, 21.7. **LRMS** (ESI, m/z) 259.0 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₅H₁₅O₂S [M+H]⁺ 259.0787, found 259.0790. **M.p.**: 110 – 111 °C (lit. 110 – 112 °C). The data recorded are consistent with the literature.²⁴

4. Synthesis of tert-butyl 2-(arylsulfonyl)acetate

GENERAL PROCEDURE B for the synthesis of *tert*-butyl 2-(arylsulfonyl)acetate 4-*tert*-Butyl 2-{[4-(*tert*-butyl)phenyl]sulfonyl}acetate 6a

4-*tert*-Butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) were mixed and dissolved in DMPU (1 mL) under nitrogen. The reaction mixture was placed in a pre-heated oil bath at 90 °C and stirred for 12 hours prior to cooling to room temperature. Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) was then added, and *tert*-butylbromoacetate (59 μ L, 0.4 mmol, 2.0 eq.) was immediately injected dropwise. The resultant mixture was stirred at room temperature for 2 hours before being quenched with water (10 mL) and extracted with Et₂O (3 × 10 mL). Combined organic phases were washed with brine (3 × 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (40% Et₂O in petroleum ether) to give the title compound as a white solid (54 mg, 86%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.51 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 3.96 (s, 2H, *CH*₂), 1.28 (s, 18H, 2 × C(*CH*₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 161.4, 158.1, 135.9, 128.4, 126.2, 83.5, 62.2, 35.3, 31.1, 27.8. **LRMS** (ESI, m/z) 335.0 ([M+Na]⁺, 100%). **HRMS** (ESI) calcd for C₁₆H₂₄O₄NaS [M+Na]⁺ 335.1288, found 335.1284. **M.p.**: 82 – 84 °C (lit. 107 – 108 °C). The data recorded are consistent with the literature.²⁵

tert-Butyl 2-(phenylsulfonyl)acetate 6b

General procedure B was followed with phenylboronic acid (24 mg, 0.2 mmol, 1.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et_3N (42 μ L, 0.3 mmol, 1.5 eq.) and *tert*-butylbromoacetate (59 μ L, 0.4 mmol, 2.0 eq. The crude product was purified *via* flash column chromatography (40% Et_2O in petroleum ether) to give the title compound as a colourless oil (41 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.4, 1.3 Hz, 2H, *H*_{Ar}), 7.65-7.58 (m, 1H, *H*_{Ar}), 7.55-7.49 (m, 2H, *H*_{Ar}), 3.97 (s, 2H, *CH*₂), 1.29 (s, 9H, C(*CH*₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 161.3, 138.9, 134.1, 129.2, 128.6, 83.7, 62.1, 27.7. **LRMS** (ESI, m/z) 279.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₂H₁₆O₄NaS [M+Na]⁺ 279.0662, found 279.0662. The data recorded are consistent with the literature.²⁶

tert-Butyl 2-{[4-(benzyloxy)phenyl]sulfonyl}acetate 6c

General procedure B was followed with 4-(benzyloxy)phenylboronic acid (46 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and *tert*-butylbromoacetate (59 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the title compound as a white solid (62 mg, 85%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 7.37-7.25 (m, 5H, *H*_{Ar}), 7.02 (d, *J* = 9.0 Hz, 2H, *H*_{Ar}), 5.07 (s, 2H, OCH₂), 3.93 (s, 2H, SO₂CH₂), 1.30 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.2, 161.6, 135.7, 130.9, 130.7, 128.8, 128.5, 127.5, 115.1, 83.5, 70.4, 62.4, 27.7. **LRMS** (ESI, m/z) 361.1 ([M-H]⁻, 100%); **HRMS** (ESI) calcd for C₁₉H₂₁O₅S [M-H]⁻ 361.1115, found 361.1115. **IR** v_{max} (film): 3658, 2980, 1731 (CO), 1593, 1497, 1393, 1326 (SO₂), 1258, 1144 (SO₂), 1086, 954, 834, 723, 699 cm⁻¹. **M.p.**: 81 – 83 °C.

tert-Butyl 2-[(4-fluorophenyl)sulfonyl]acetate 6d

General procedure B was followed with 4-(fluoro)phenylboronic acid (28 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and *tert*-butylbromoacetate (59 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the title compound as a colourless oil (40 mg, 73%).

¹H NMR (400 MHz, CDCl₃) δ 7.96-7.88 (m, 2H, H_{Ar}), 7.24-7.18 (m, 2H, H_{Ar}), 3.97 (s, 2H, CH_2), 1.32 (s, 9H, $C(CH_3)_3$); ¹³C NMR (100 MHz, CDCl₃) δ 166.1 (d, ¹ J_{C-F} = 257 Hz, C_{Ar}), 161.3, 134.9 (d, ⁴ J_{C-F} = 3.3 Hz, C_{Ar}), 131.6 (d, ³ J_{C-F} = 9.7 Hz, C_{Ar}), 116.5 (d, ² J_{C-F} = 22.8 Hz, C_{Ar}), 83.8, 62.1, 27.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.6. LRMS (ESI, m/z) 297 ([M+H]⁺, 100%). HRMS (ESI) calcd for C₁₂H₁₅O₄NaFS [M+Na]⁺ 297.0567, found 297.0569. The data recorded are consistent with the literature.²⁵

tert-Butyl 2-{[4-(benzyloxy)phenyl]sulfonyl}acetate 6e

General procedure B was followed with 4-acetylphenylboronic acid (33 mg, 0.2 mmol, 1.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et_3N (42 μ L, 0.3 mmol, 1.5 eq.) and *tert*-butylbromoacetate (59 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (40% Et_2O in petroleum ether) to give the title compound as a white solid (35 mg, 59%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 7.99 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 4.00 (s, 2H, *CH*₂), 2.61 (s, 3H, *CH*₃), 1.32 (s, 9H, C(*CH*₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.6, 161.1, 142.6, 141.1, 129.0, 128.9, 84.1, 61.9, 27.7, 27.0. **LRMS** (ESI, m/z) 321.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₁₈O₅NaS [M+H]⁺ 321.0767, found 321.0768. **M.p.**: 83 – 85 °C (lit. 85 °C). The data recorded are consistent with the literature.⁴

5. Synthesis of β -hydroxysulfones

GENERAL PROCEDURE C for the synthesis of *β*-hydroxysulfones 4-{[4-(*tert*-Butyl)phenyl]sulfonyl}tetrahydrofuran-3-ol 6f

4-*tert*-Butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) were mixed and dissolved in DMPU (1 mL) under nitrogen. The reaction mixture was placed in a pre-heated oil bath at 90 °C and stirred for 12 hours prior to cooling to room temperature. Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) was then added, and the mixture was diluted with water (1 mL). 3,4-Epoxytetrahydrofuran (35 mg, 0.4 mmol, 2.0 eq.) was injected in a suspension of water (1 mL). The resultant mixture was stirred at room temperature for 2 hours before being quenched with water (10 mL) and extracted with Et₂O (3 × 10 mL). Combined organic phases were washed with brine (3 × 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the title compound as a white solid (44 mg, 78%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 7.53 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 4.86-4.79 (m, 1H, (OH)C*H*), 4.12-3.98 (m, 2H, CH(SO₂)C*H*₂), 3.96-3.87 (m, 1H, CH(OH)C*H*_aH_b), 3.71-3.60 (m, 2H, CH(OH)C*H*_aH_b and SO₂C*H*), 2.45 (d, *J* = 5.2 Hz, 1H, O*H*), 1.29 (s, 9H, C(C*H*₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.4, 135.1, 128.2, 126.7, 74.8, 72.6, 71.9, 67.2, 35.4, 31.0. **LRMS** (ESI, m/z) 307.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₂₀O₄NaS [M+Na]⁺ 307.0975, found 307.0973. **IR** v_{max} (film): 3425 (OH), 2980, 2971, 1594, 1463, 1398, 1307 (SO₂), 1291, 1150 (SO₂), 1108, 1082, 967, 840, 757, 631 cm⁻¹. **M.p.**: 109 – 112 °C.

2-(Phenylsulfonyl)cyclohexan-1-ol 6g

General procedure C was followed with phenylboronic acid (24 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and cyclohexene oxide (40 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (50% Et₂O in petroleum ether) to give the title compound as a white solid (27 mg, 56%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87-7.82 (m, 2H, H_{Ar}), 7.66-7.59 (m, 1H, H_{Ar}), 7.56-7.49 (m, 2H, H_{Ar}), 4.23 (d, J = 1.1 Hz, 1H, OH), 3.89-3.81 (m, 1H, (OH)CH), 2.92 (ddd, J = 12.4, 9.7, 3.9 Hz, 1H, SO₂CH), 2.11-2.01 (m, 1H, CH(OH)C H_aH_b), 1.87-1.80 (m, 1H, CH(SO₂)C H_aH_b), 1.70-1.59 (m, 2H, C H_2), 1.30-0.96 (m, 4H, CH(OH)C H_aH_b , CH(SO₂)C H_aH_b and C H_2); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 134.2, 129.3, 129.1, 69.0, 68.2, 34.2, 25.7, 24.6, 23.6. LRMS (ESI, m/z) 263.0 ([M+Na]⁺, 100%); HRMS (ESI) calcd for C₁₂H₁₆O₃NaS [M+Na]⁺ 263.0712, found 263.0712. M.p.: 103 – 105 °C (lit. 106 – 107 °C). The data recorded are consistent with the literature.²⁷

Methyl 3-{[4-(tert-butyl)phenyl]sulfonyl}-2-hydroxy-2-methylpropanoate 6h

General procedure C was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and methyl 2-methylglycidate (42 μ L, 0.4 mmol, 2.0 eq. The crude product was purified *via* flash column chromatography (60% Et₂O in petroleum ether) to give the title compound as a white solid (51 mg, 82%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 7.49 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 3.75 (s, 1H, OH), 3.70 (s, 3H, CO₂CH₃), 3.67 (d, *J* = 14.6 Hz, 1H, SO₂CH_aH_b), 3.47 (d, *J* = 14.6 Hz, 1H, SO₂CH_aH_b), 1.39 (s, 3H, CCH₃), 1.27 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.4, 157.8, 137.4, 127.9, 126.2, 72.4, 63.9, 53.4, 35.3, 31.1, 27.2. **LRMS** (ESI, m/z) 337.1 ([M+Na]⁺, 100%). **HRMS** (ESI) calcd for C₁₅H₂₂O₅NaS [M+Na]⁺ 337.1080, found 337.1078. **IR** v_{max} (film): 3497 (OH), 2871, 1743 (CO), 1594, 1494, 1453, 1317 (SO₂), 1291, 1206, 1150 (SO₂), 1108, 1083, 982, 840, 820, 761 cm⁻¹. **M.p.**: 122 – 125 °C.

2-{[4-(tert-Butyl)phenyl]sulfonyl}-1-phenylethan-1-ol 6i

General procedure C was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and styrene oxide (46 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the title compound as a colourless oil which solidified when left standing (39 mg, 61%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 7.52 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 7.30-7.20 (m, 5H, *H*_{Ar}), 5.22 (d, *J* = 10.1 Hz, 1H, OH), 3.69 (d, *J* = 2.0 Hz, 1H, SO₂CH_aH_b), 3.42 (dd, *J* = 14.3, 10.1 Hz, 1H, (OH)CH), 3.27 (dd, *J* = 14.3, 1.8 Hz, 1H, SO₂CH_aH_b), 1.29 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.2, 140.7, 136.1, 128.8, 128.3, 127.9, 126.5, 125.7, 68.4, 64.0, 35.4, 31.1. **LRMS** (ESI, m/z) 341.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₈H₂₂O₃NaS [M+Na]⁺ 341.1182, found 341.1170. **IR** v_{max} (film): 3497 (OH), 3064, 2961, 1595, 1496, 1455, 1399, 1306 (SO₂), 1289, 1200, 1149 (SO₂), 1108, 1086, 841, 781, 700, 649 cm⁻¹. **M.p.**: 56 – 58 °C.

2-{[4-(tert-Butyl)phenyl]sulfonyl}cyclopentan-1-ol 6j

General procedure C was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) and cyclopentene oxide (35 μ L, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (30% Et₂O in petroleum ether) to give the title compound as a colourless oil which solidified when left standing (45 mg, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 7.51 (d, *J* = 8.7 Hz, 2H, *H*_{Ar}), 4.62 (app. qd, *J* = 6.5, 2.8 Hz, 1H, OHCH), 3.29 (td, *J* = 8.7, 6.3 Hz, 1H, SO₂CH), 2.53 (d, *J* = 2.8 Hz, 1H, OH), 2.09-1.98 (m, 1H, CH(OH)CH_aH_b), 1.93-1.84 (m, 2H, SO₂CHCH₂), 1.74-1.58 (m, 3H, CH(OH)CH_aH_b, CH(OH)CH₂CH₂), 1.28 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 135.4, 128.3, 126.4, 73.1, 71.4, 35.3, 34.2, 31.1, 26.1, 21.8. LRMS (ESI, m/z) 305.1 ([M+Na]⁺, 100%); HRMS (ESI) calcd for C₁₅H₂₂O₃NaS [M+Na]⁺305.1182, found 305.1184. IR v_{max} (film): 3486 (OH), 2963, 1594, 1399, 1303 (SO₂), 1288, 1146 (SO₂), 1107, 1084, 985, 840, 755, 631 cm⁻¹. M.p.: 61 – 64 °C.
6. Synthesis of sulfonamides

GENERAL PROCEDURE D for the synthesis of sulfonamides 4-{[4-(*tert*-Butyl)phenyl]sulfonyl}morpholine 6k

4-*tert*-Butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) were mixed and dissolved in DMPU (1 mL) under nitrogen. The reaction mixture was put into a pre-heated oil bath at 90 °C and stirred for 12 hours prior to cooling to room temperature. Et₃N (42 μ L, 0.3 mmol, 1.5 eq.) was added, followed by morpholine (35 μ L, 0.4 mmol, 2.0 eq.). NaOCI (1.20 mL, 2% aqueous solution w/w, 0.4 mmol, 2.0 eq.) was then added dropwise. The resultant mixture was stirred at room temperature for 3 hours before being quenched with water (10 mL) and extracted with Et₂O (3 × 10 mL). Combined organic phases were washed with brine (3 × 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a white solid (46 mg, 82%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 7.48 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 3.73-3.61 (m, 4H, OCH₂), 2.98-2.88 (m, 4H, NCH₂), 1.28 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9, 132.0, 127.8, 126.1, 66.1, 46.0, 35.2, 31.1. **LRMS** (ESI, m/z) 284.1 ([M+H]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₂₂O₃S [M+H]⁺ 284.1315, found 284.1316. **M.p.**: 150 – 152 °C. The data recorded are consistent with the literature.²⁸

4-(tert-Butyl)-N-(pyridin-2-ylmethyl)benzenesulfonamide 6l

General procedure D was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.), 2-picolylamine (41 μ L, 0.4 mmol, 2.0 eq.) and NaOCI (1.2 mL, 2% aqueous solution w/w, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a colourless oil (48 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 4.4 Hz, 1H, H_{Ar}), 7.69 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.50 (dd, J = 7.8, 1.8 Hz, 1H, H_{Ar}), 7.36 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.09 (d, J = 7.8 Hz, 1H, H_{Ar}), 7.08-7.03 (m, 1H, H_{Ar}), 5.94 (t, J = 5.3 Hz, 1H, NH), 4.19 (d, J = 5.6 Hz, 2H, NCH₂), 1.23 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 155.0, 149.0, 136.7, 136.5, 127.0, 126.0, 122.6, 122.0, 47.6, 35.1, 31.1. LRMS (ESI, m/z) 305.1 ([M+H]⁺, 100%); HRMS (ESI) calcd for C₁₆H₂₁O₂N₂S [M+H]⁺ 305.1318, found 305.1316. The data recorded are consistent with the literature.²⁹

4-(tert-Butyl)-N-(2,2-dimethoxyethyl)benzenesulfonamide 6m

General procedure D was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.), 2,2-dimethoxyethylamine (43 μ L, 0.4 mmol, 2.0 eq.) and NaOCI (1.2 mL, 2% aqueous solution w/w, 0.4 mmol, 2.0 eq. The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a colourless oil which solidified when left standing (47 mg, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.5 Hz, 2H, *H*_{Ar}), 7.45 (d, *J* = 8.5 Hz, 2H, *H*_{Ar}), 4.56 (t, *J* = 6.2 Hz, 1H, NH), 4.27 (t, *J* = 5.6 Hz, 1H, NCH₂CH), 3.26 (s, 6H, OCH₃), 2.98 (t, *J* = 6.0 Hz, 2H, NCH₂), 1.27 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.6, 136.6, 126.9, 126.2, 102.7, 54.8, 44.6, 35.2, 31.1. **LRMS** (ESI, m/z) 324 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₄H₂₃O₄NNaS [M+Na]⁺ 324.1240, found 324.1239. **IR** v_{max} (film): 3278 (NH), 2963, 1596, 1463, 1330 (SO₂), 1197, 1164 (SO₂), 1134, 1112, 1087, 977, 885, 838, 753, 628 cm⁻¹. **M.p.**: 45 – 49 °C.

1-{[4-(tert-Butyl)phenyl]sulfonyl}piperidine 6n

General procedure D was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.), piperidine (39 μ L, 0.4 mmol, 2.0 eq.) and NaOCI (1.2 mL, 2% aqueous solution w/w, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a white solid (43 mg, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 8.7 Hz, 2H, H_{Ar}), 7.45 (d, J = 8.7 Hz, 2H, H_{Ar}), 2.95-2.88 (m, 4H, NCH₂), 1.58 (app. p, J = 5.9 Hz, 4H, NCH₂CH₂), 1.39-1.32 (m, 2H, NCH₂CH₂CH₂), 1.28 (s, 9H, C(CH₃)₃); ¹³**C NMR** (100 MHz, CDCl₃) δ 156.2, 133.3, 127.6, 125.9, 46.9, 35.1, 31.1, 25.2, 23.5. **LRMS** (ESI, m/z) 304.1 ([M+Na]⁺, 100%); **HRMS** (ESI) calcd for C₁₅H₂₃O₂NNaS [M+Na]⁺ 304.1346, found 304.1341. **M.p.**: 127 – 130 °C (lit. 114 – 115 °C). The data recorded are consistent with the literature.³⁰

4-(tert-Butyl)-N-(2-phenoxyethyl)benzenesulfonamide 60

General procedure D was followed with 4-*tert*-butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.), Et₃N (42 μ L, 0.3 mmol, 1.5 eq.), 2-phenoxyethylamine (52 μ L, 0.4 mmol, 2.0 eq.) and NaOCI (1.2 mL, 2% aqueous solution w/w, 0.4 mmol, 2.0 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a colourless oil which solidified when left standing (53 mg, 80%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.42 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 7.24-7.13 (m, 2H, *H*_{Ar}), 6.91-6.85 (m, 1H, *H*_{Ar}), 6.74-6.68 (m, 2H, *H*_{Ar}), 4.94 (t, *J* = 6.2 Hz, 1H, NH), 3.92-3.83 (m, 2H, OCH₂), 3.35-3.25 (m, 2H, NCH₂), 1.26 (s, 9H, C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 156.6, 136.9, 129.6, 126.9, 126.2, 121.4, 114.4, 66.2, 42.6, 35.2, 31.1. LRMS (ESI, m/z) 356.1 ([M+Na]⁺, 100%); HRMS (ESI) calcd for C₁₈H₂₃O₃NNaS [M+Na]⁺ 356.1291, found 356.1290. IR v_{max} (film): 3283 (NH), 2962, 1598, 1496, 1398, 1325 (SO₂), 1244, 1161 (SO₂), 1112, 1087, 961, 835, 691, 628 cm⁻¹. M.p.: 38 – 41 °C.

7. Synthesis of sulfonyl fluorides

GENERAL PROCEDURE E for the synthesis of sulfonyl fluorides 4-(*tert*-Butyl)benzenesulfonyl fluoride 6p

4-*tert*-Butylphenylboronic acid (36 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) were mixed and dissolved in DMPU (1 mL) under nitrogen. The reaction mixture was put into a pre-heated oil bath at 90 °C and stirred for 12 hours prior to cooling to 0 °C. NFSI (95 mg, 0.3 mmol, 1.5 eq.) was pre-dissolved in DMPU (0.2 mL) and added dropwise. The resultant mixture was warmed to room temperature and stirred for 3 hours before being quenched with water (10 mL) and extracted with Et₂O (3 × 10 mL). Combined organic phases were washed with brine (3 × 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a white solid (27 mg, 62%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H, *H*_{Ar}), 7.56 (d, *J* = 8.4 Hz, 2H, *H*_{Ar}), 1.30 (s, 9H, C(CH₃)₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 160.0, 130.0 (d, ²*J*_{C-F} = 24.2 Hz, *C*_{Ar}), 128.4, 126.7, 35.6, 31.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 66.2. **HRMS** (CI) calcd for C₁₀H₁₇FNO₂S [M+NH₄]⁺ 234.0964, found 234.0960. **M.p.**: 53 – 55 °C. The data recorded are consistent with the literature.³¹

4-Methoxybenzenesulfonyl fluoride 6q

General procedure E was followed with 4-methoxyphenylboronic acid (30 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) and NFSI (95 mg, 0.3 mmol, 1.5 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as colourless oil (29 mg, 76%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.9 Hz, 2H, *H*_{Ar}), 7.00 (d, *J* = 8.9 Hz, 2H, *H*_{Ar}), 3.85 (s, 3H, OCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 165.2, 130.9, 124.2 (d, ²*J*_{C-F} = 24.7 Hz, *C*_{Ar}), 114.9, 55.9; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 67.3. The data recorded are consistent with the literature.³¹

4-Methylthiobenzenesulfonyl fluoride 6r

General procedure E was followed with 4-(methylthio)phenylboronic acid (34 mg, 0.2 mmol, 1.0 eq.), Cu(MeCN)₄BF₄ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) and NFSI (95 mg, 0.3 mmol, 1.5 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a colourless oil (31 mg, 75%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 7.31 (d, *J* = 8.6 Hz, 2H, *H*_{Ar}), 2.49 (s, 3H, SCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 150.3, 128.6, 128.1 (d, ²*J*_{C-F} = 24.8 Hz, *C*_{Ar}), 125.4, 14.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 66.8. **HRMS** (CI) calcd for C₇H₁₁FNO₂S₂ [M+NH₄]⁺224215, found 224212. **IR** v_{max} (film): 1576, 1448, 1395 (SO₂), 1210, 1193, 1108 (SO₂), 1081, 818, 769, 738, 626 cm⁻¹.

Naphthalene-2-sulfonyl fluoride 6s

General procedure E was followed with 2-naphthylboronic acid (34 mg, 0.2 mmol, 1.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) and NFSI (95 mg, 0.3 mmol, 1.5 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a white solid (22 mg, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 – 8.54 (m, 1H, H_{Ar}), 8.03-7.95 (m, 2H, H_{Ar}), 7.93 – 7.85 (m, 2H, H_{Ar}), 7.71 – 7.60 (m, 2H, H_{Ar}); ¹³**C NMR** (125 MHz, CDCl₃) δ 136.0, 131.8, 131.0, 130.4, 130.1, 129.8 (d, ²*J*_{C-F} = 24.9 Hz, *C*_{Ar}), 129.6, 128.3, 128.2, 122.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 66.3. **IR** ν_{max} (film): 2981, 2889, 1589, 1401 (SO₂), 1217, 1151 (SO₂), 1079, 954, 861, 756, 667 cm⁻¹. **M.p.**: 85 – 87 °C (lit. 85 – 87 °C). The data recorded are consistent with the literature.³¹

4-Hydroxybenzenesulfonyl fluoride 6t

General procedure E was followed with 4-hydroxyphenylboronic acid (28 mg, 0.2 mmol, 1.0 eq.), $Cu(MeCN)_4BF_4$ (6.4 mg, 0.02 mmol, 10 mol%), DABSO (24 mg, 0.1 mmol, 0.5 eq.) and NFSI (95 mg, 0.3 mmol, 1.5 eq.). The crude product was purified *via* flash column chromatography (10% EtOAc in petroleum ether) to give the title compound as a white solid (18 mg, 52%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 6.95 (d, *J* = 8.8 Hz, 2H, *H*_{Ar}), 6.02 (b, 1H, OH); ¹³**C NMR** (125 MHz, CDCl₃) δ 161.8, 131.2, 124.4 (d, ²*J*_{C-F} = 25.0 Hz, *C*_{Ar}), 116.4; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 67.1. **LRMS** (ESI, m/z) 175.0 ([M-H]⁻, 100%); **HRMS** (ESI) calcd for C₆H₄O₃FS [M-H]⁻ 174.9871, found 174.9869. **M.p.**: 74 – 75 °C (lit. 74 – 76 °C). The data recorded are consistent with the literature.³²

8. References:

- 1. E. J. Emmett, B. R. Hayter and M. C. Willis, *Angew. Chem. Int. Ed.*, 2013, **52**, 12679-12683.
- 2. N. Fukuda and T. Ikemoto, J. Org. Chem., 2010, 75, 4629-4631.
- 3. N. Margraf and G. Manolikakes, J. Org. Chem., 2015, 80, 2582-2600.
- 4. E. J. Emmett, B. R. Hayter and M. C. Willis, *Angew. Chem. Int. Ed.*, 2014, **53**, 10204-10208.
- 5. N. Umierski and G. Manolikakes, *Org. Lett.*, 2013, **15**, 188-191.
- T. Kawai, Y. Kodera, N. Furukawa, S. Oae, M. Ishida, T. Takeda and S. Wakabayashi, *Phosphorus Sulfur*, 1987, 34, 139-148.
- I. K. Khanna, R. M. Weier, Y. Yu, P. W. Collins, J. M. Miyashiro, C. M. Koboldt, A. W. Veenhuizen,
 J. L. Currie, K. Seibert and P. C. Isakson, J. Med. Chem., 1997, 40, 1619-1633.
- 8. W. Zhu and D. W. Ma, J. Org. Chem., 2005, **70**, 2696-2700.
- 9. B. T. V. Srinivas, V. S. Rawat, K. Konda and B. Sreedhar, Adv. Synth. Catal., 2014, 356, 805-817.
- 10. Q. Wu, Y. Luo, A. Lei and J. You, J. Am. Chem. Soc., 2016, **138**, 2885-2888.
- 11. H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, *Chem. Eur. J.*, 2011, **17**, 5652-5660.
- 12. C. Shen, J. Xu, W. Yu and P. Zhang, *Green Chem.*, 2014, **16**, 3007-3012.
- 13. Y. Fu, W. Zhu, X. Zhao, H. Huegel, Z. Wu, Y. Su, Z. Du, D. Huang and Y. Hu, *Org. Biomol. Chem.*, 2014, **12**, 4295-4299.
- 14. J. Marquie, A. Laporterie, J. Dubac, N. Roques and J. R. Desmurs, *J. Org. Chem.*, 2001, **66**, 421-425.
- 15. J. Colomb, G. Becker, S. Fieux, L. Zimmer and T. Billard, J. Med. Chem., 2014, 57, 3884-3890.
- 16. M. G. Hoffmann, *Tetrahedron*, 1995, **51**, 9511-9518.
- 17. P. B. Hopkins and P. L. Fuchs, J. Org. Chem., 1978, 43, 1208-1217.
- 18. R. R. Wolff, V. Basava, R. M. Giuliano, W. J. Boyko and J. H. Schauble, *Can. J. Chem.*, 2006, **84**, 667-675.
- 19. X. Yang, L. Shi and H. Fu, *Synlett*, 2014, **25**, 847-852.
- 20. S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi and R. Bernini, *J. Org. Chem.*, 2004, **69**, 5608-5614.
- 21. B. P. Bandgar, S. V. Bettigeri and J. Phopase, Org. Lett., 2004, 6, 2105-2108.
- 22. Bhattach.Sn, C. Eaborn and D. R. M. Walton, J Chem. Soc. C, 1969, 1367-&.
- 23. P. Katrun, S. Chiampanichayakul, K. Korworapan, M. Pohmakotr, V. Reutrakul, T. Jaipetch and C. Kuhakarn, *Eur. J. Org. Chem.*, 2010, 5633-5641.
- 24. X. W. Li, Y. L. Xu, W. Q. Wu, C. Jiang, C. R. Qi and H. F. Jiang, *Chem. Eur. J.*, 2014, **20**, 7911-7915.
- 25. A. S. Deeming, C. J. Russell and M. C. Willis, Angew. Chem. Int. Ed., 2016, 55, 747-750.
- 26. B. N. Rocke, K. B. Bahnck, M. Herr, S. Lavergne, V. Mascitti, C. Perreault, J. Polivkova and A. Shavnya, *Org. Lett.*, 2014, **16**, 154-157.
- S. N. Murthy, B. Madhav, V. P. Reddy, K. R. Rao and Y. V. D. Nageswar, *Tetrahedron Lett.*, 2009, 50, 5009-5011.
- 28. K. Yang, M. L. Ke, Y. G. Lin and Q. L. Song, *Green Chem.*, 2015, **17**, 1395-1399.
- 29. S. Dayan, A. Cetin, N. B. Arslan, N. K. Ozpozan, N. Ozdemir and O. Dayan, *Polyhedron*, 2015, **85**, 748-753.
- 30. W. X. Zhang and M. M. Luo, *Chem. Commun.*, 2016, **52**, 2980-2983.
- 31. L. Tang, Y. Yang, L. X. Wen, X. K. Yang and Z. Y. Wang, *Green Chem.*, 2016, **18**, 1224-1228.

32. T. Okazaki, K. K. Laali, S. D. Bunge and S. K. Adas, *Eur. J. Org. Chem.*, 2014, **2014**, 1630-1644.

¹H NMR, ¹³C NMR and 19F NMR spectra

¹³C NMR spectrum of **phenyl** *p*-tolyl sulfone 3a

¹³C NMR spectrum of **diphenyl sulfone 3b**

¹H NMR spectrum of **3,5-dimethyl-1-(phenylsulfonyl)benzene 3d**

¹³C NMR spectrum of **3,5-dimethyl-1-(phenylsulfonyl)benzene 3d**

¹H NMR spectrum of **4-methoxyphenyl phenyl sulfone 3e**

¹³C NMR spectrum of **4-methoxyphenyl phenyl sulfone 3e**

¹H NMR spectrum of **3-methoxyphenyl phenyl sulfone 3f**

¹H NMR spectrum of 4-(benzenesulfonyl)phenyl methyl sulphide 3g

¹³C NMR spectrum of 4-(benzenesulfonyl)phenyl methyl sulphide 3g

¹H NMR spectrum of 4-[4-(phenylsulfonyl)phenyl]morpholine 3h

¹³C NMR spectrum of **4-[4-(phenylsulfonyl)phenyl]morpholine 3h**

¹H NMR spectrum of **4-hydroxyphenyl p-tolyl sulfone 3j**

¹³C NMR spectrum of **4'-(phenylsulfonyl)acetophenone 3k**

¹³C NMR spectrum of **4-(phenylsulfonyl)benzonitrile 3I**

¹³C NMR spectrum of methyl 4-(phenylsulfonyl)benzoate 3m

¹H NMR spectrum of **3-(phenylsulfonyl)benzaldehyde 3n**

¹³C NMR spectrum of **3-(phenylsulfonyl)benzaldehyde 3n**

¹H NMR spectrum of **4-benzenesulfonyl-benzoic acid amide 3o**

¹³C NMR spectrum of **4-benzenesulfonyl-benzoic acid amide 3o**

¹³C NMR spectrum of **3-nitrodiphenyl sulfone 3p**

¹H NMR spectrum of 1-(phenylsulfonyl)-4-(trifluoromethyl)benzene 3q

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of 1-(phenylsulfonyl)-4-(trifluoromethyl)benzene 3q

¹H NMR spectrum of **3,5-dichloro-1-(phenylsulfonyl)benzene 3r**

¹H NMR and ¹³C NMR spectrum of **3,5-dichloro-1-(phenylsulfonyl)benzene 3r**

¹H NMR spectrum of 4-phenylsulfonylbromobenzene and 4-phenylsulfonyliodobenzene 3s/3s'

¹³C NMR spectrum of **4-phenylsulfonylbromobenzene and 4-phenylsulfonyliodobenzene 3s/3s'**

¹³C NMR spectrum of **8-chloro-3-(phenylsulfonyl)quinoline 3u**

¹H NMR spectrum of **2-methoxy-5-(phenylsulfonyl)pyridine 3v**

¹³C NMR spectrum of 2-methoxy-5-(phenylsulfonyl)pyridine 3v

¹H NMR spectrum of **1-methyl-4-(phenylsulfonyl)pyrazole 3w**

¹H NMR spectrum of **1-cyclohepten-1-yl-phenylsulfon 3x**

¹³C NMR spectrum of 1-cyclohepten-1-yl-phenylsulfon 3x

¹H NMR and ¹³C NMR spectra of **1-cyclohexen-1-yl-phenylsulfon 3y**

¹H NMR spectrum of **4-(4-tosylphenyl)morpholine 4a**

¹³C NMR spectrum of (4-t-butylphenyl)-p-tolyl sulfone 4b

¹H NMR spectrum of 4-(4-(naphthalen-2-ylsulfonyl)phenyl)morpholine 4c

¹³C NMR spectrum of 4-(4-(naphthalen-2-ylsulfonyl)phenyl)morpholine 4c

¹H NMR spectrum of 4-tolyl 4-methoxyphenyl sulfone 4d

¹³C NMR spectrum of 4-tolyl 4-methoxyphenyl sulfone 4d

¹H NMR spectrum of **4-tolyl 4-methylthiophenyl sulfone 4e**

¹³C NMR spectrum of **4-tosylphenol 4f**

¹H NMR spectrum of *tert-butyl* (4-tosylphenyl)carbamate 4h

¹H NMR spectrum of **N-(3-Tosylphenyl)acetamide 4i**

¹H NMR spectrum of **1-(benzyloxy)-4-tosylbenzene 4j**

¹³C NMR spectrum of **1-(benzyloxy)-4-tosylbenzene 4j**

¹H NMR spectrum of **1-methoxy-4-((4-tosylphenoxy)methyl)benzene 4k**

¹³C NMR spectrum of 1-methoxy-4-((4-tosylphenoxy)methyl)benzene 4k

¹H NMR spectrum of 1-chloro-4-((4-tosylphenoxy)methyl)benzene 4I

¹³C NMR spectrum of **1-chloro-4-((4-tosylphenoxy)methyl)benzene 4l**

¹H NMR spectrum of 4-{4-[(4-chlorophenyl)sulfonyl]phenyl}morpholine 4n

¹³C NMR spectrum of 4-{4-[(4-chlorophenyl)sulfonyl]phenyl}morpholine 4n

¹H NMR spectrum of 4-(4-((3-chloro-4-methoxyphenyl)sulfonyl)phenyl)morpholine 4o

¹³C NMR spectra of 4-(4-((3-chloro-4-methoxyphenyl)sulfonyl)phenyl)morpholine 4o

¹H NMR and ¹³C NMR spectra of **{2-Methoxy-5-[(4-morpholinophenyl)sulfonyl]phenyl}methanol 4p**

¹H NMR and ¹³C NMR spectra of **{2-Methoxy-5-[(4-morpholinophenyl)sulfonyl]phenyl}methanol 4p**

¹H NMR spectrum of **2-methoxy-5-tosylbenzaldehyde 4q**

¹H NMR spectrum of 4-{4-[(2,3-Dihydrobenzofuran-5-yl)sulfonyl]phenyl}morpholine 4r

¹H NMR and ¹³C NMR spectra of **4-{4-[(2,3-Dihydrobenzofuran-5-yl)sulfonyl]phenyl}morpholine 4r**

¹H NMR spectrum of 6-tosyl-2,3-dihydrobenzo-1,4-dioxine 4s

¹H NMR and ¹³C NMR spectra of 1-(cyclohex-1-en-1-ylsulfonyl)-4-methylbenzene 4t

¹H NMR and ¹³C NMR spectra of 1-(cyclohex-1-en-1-ylsulfonyl)-4-methylbenzene 4t

¹H NMR spectrum of *tans*-1-methyl-4-(styrylsulfonyl)benzene 4u

¹³C NMR spectrum of *tans*-1-methyl-4-(styrylsulfonyl)benzene 4u

¹H NMR spectrum of 4-tert-butyl 2-{[4-(tert-butyl)phenyl]sulfonyl}acetate 6a

¹³C NMR spectrum of 4-tert-butyl 2-{[4-(tert-butyl)phenyl]sulfonyl}acetate 6a

¹³C NMR spectrum of *tert*-butyl 2-(phenylsulfonyl)acetate 6b

¹H NMR spectrum of *tert*-butyl 2-((4-(benzyloxy)phenyl)sulfonyl)acetate 6c

¹³C NMR spectrum of *tert*-butyl 2-((4-(benzyloxy)phenyl)sulfonyl)acetate 6c

¹H NMR spectrum of *tert*-butyl 2-((4-fluorophenyl)sulfonyl)acetate 6d

¹H NMR spectrum of *tert*-butyl 2-((4-(benzyloxy)phenyl)sulfonyl)acetate 6e

¹H NMR and ¹³C NMR spectra of *tert*-butyl 2-((4-(benzyloxy)phenyl)sulfonyl)acetate 6e

¹H NMR and ¹³C NMR spectra of **4-(4-(***tert***-butyl)phenyl)sulfonyl)tetrahydrofuran-3-ol 6f**

¹H NMR and ¹³C NMR spectra of 4-(4-(tert-butyl)phenyl)sulfonyl)tetrahydrofuran-3-ol 6f

¹H NMR spectrum of **2-(phenylsulfonyl)cyclohexan-1-ol 6g**

¹H NMR and ¹³C NMR spectra of **2-(phenylsulfonyl)cyclohexan-1-ol 6g**

¹H NMR spectrum of 2-methyl 3-((4-(tert-butyl)phenyl)sulfonyl)-2-hydroxy-2-methylpropanoate 6h

¹³C NMR spectrum of **2-methyl 3-((4-(***tert***-butyl)phenyl)sulfonyl)-2-hydroxy-2-methylpropanoate 6h**

¹H NMR spectrum of 2-((4-(tert-butyl)phenyl)sulfonyl)-1-phenylethan-1-ol 6i

¹H NMR spectrum of 2-((4-(tert-butyl)phenyl)sulfonyl)cyclopentan-1-ol 6j

¹³C NMR spectrum of 2-((4-(tert-butyl)phenyl)sulfonyl)cyclopentan-1-ol 6j

¹H NMR spectrum of 4-{[4-(*tert*-butyl)phenyl]sulfonyl}morpholine 6k

¹³C NMR spectrum of 4-{[4-(tert-butyl)phenyl]sulfonyl}morpholine 6k

¹H NMR spectrum of 4-(tert-butyl)-N-(pyridin-2-ylmethyl)benzenesulfonamide 6I

¹³C NMR spectrum of 4-(tert-butyl)-N-(pyridin-2-ylmethyl)benzenesulfonamide 6I

¹H NMR spectrum of 4-(tert-butyl)-N-(2,2-dimethoxyethyl)benzenesulfonamide 6m

¹³C NMR spectrum of **4-(***tert***-butyl)-N-(2,2-dimethoxyethyl)benzenesulfonamide 6m**

¹H NMR spectrum of **1-((4-(***tert***-butyl)phenyl)sulfonyl)piperidine 6n**

¹H NMR spectrum of 4-(tert-butyl)-N-(2-phenoxyethyl)benzenesulfonamide 60

¹³C NMR spectrum of 4-(tert-butyl)-N-(2-phenoxyethyl)benzenesulfonamide 60

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of **4-(***tert***-butyl)benzenesulfonyl fluoride 6p**

¹H NMR spectrum of **4-methoxybenzenesulfonyl fluoride 6q**

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of **4-methoxybenzenesulfonyl fluoride 6q**

¹H NMR spectrum of **4-methylthiobenzenesulfonyl fluoride 6r**

¹³C NMR spectrum of **4-methylthiobenzenesulfonyl fluoride 6r**

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of **4-methylthiobenzenesulfonyl fluoride 6r**

¹H NMR spectrum of naphthalene-2-sulfonyl fluoride 6s

¹³C NMR spectrum of naphthalene-2-sulfonyl fluoride 6s

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

¹⁹F NMR spectrum of **naphthalene-2-sulfonyl fluoride 6s**

¹H NMR and ¹³C NMR spectra of **4-hydroxybenzenesulfonyl fluoride 6t**

