Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI^{\dagger})

CeO₂@C derived from benzene carboxylate bridged metal organic frameworks: Ligand induced morphology evolution and influence on the electrochemical properties as lithium-ion battery anode

Sandipan Maiti,^a Tanumoy Dhawa,^a Awadesh Kumar Mallik,^b and Sourindra Mahanty^{a,*}

^aFuel Cell & Battery Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 India
^bBioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 India

Scheme-S1. A pictorial representation for stepwise synthesis of CeO₂@C.

Fig. S1. FTIR spectra of (a) 1,4-H₂BDC & Ce-1,4 BDC MOF, (b) 1,2,4-H₃BTC & Ce-1,2,4 BTC MOF, (c) 1,3,5-H₃BTC & Ce-1,3,5 BTC MOF and (d) 1,2,4,5-H₄BTEC & Ce-1,2,4,5 BTEC MOF

Sample ID	Lattice	FWHM	Crystallite	Lattice	
	Constant (Å)	(Degree)	Size (nm)	Strain	
CeO ₂ @C-14	5.4117(5)	1.38	6.2	0.024	
CeO ₂ @C -124	5.4101(1)	2.04	4.2	0.035	
CeO ₂ @C -135	5.4121(4)	1.59	5.4	0.027	
CeO ₂ @C -1245	5.4274(3)	2.61	3.3	0.045	

Table-S1. XRD analysis data for MOF derived CeO2@C

Fig. S2. Thermogravimetric analyses of CeO₂@C-14, CeO₂@C-124, CeO₂@C-135 and CeO₂@C-1245

A variable amount of carbon content has been observed. The carbon content was found to be very low (only 7.9 wt%). in CeO₂@C-135 compared to other samples (20.9-28.3 wt%). This is due to occurrence of an auto-combustion process after annealing in inert atmosphere. As soon as the inert calcined Ce-1,3,5-BTC MOF is removed from the chamber and bring to the ambient atmosphere, an auto-combustion process set-in. This process is more vigorous in case of Ce-1,3,5-BTC MOF and very mild in case of Ce-1,4-BDC MOF. On the other hand, for Ce-1,2,4-BTC MOF and Ce-1,2,4,5-BTEC MOF it is not discernible. This leads to a contrast of carbon content in different samples apart from varying carbon content in different organic linkers. The origin of this phenomenon is still unknown and not clear to us. A probable explanation can be given on basis of reduction of CeO₂: During the inert calcination process, the in situ synthesized carbons (derived from organic linkers) act as reducing agent.

The onset of auto-combustion process depends on the amount of unstable reduced cerium oxide present in the sample.

Fig. S3. Raman shift of CeO_2 of the synthesized samples (a) $CeO_2@C - 14$, (b) $CeO_2@C - 124$, (c) $CeO_2@C - 135$ and (d) $CeO_2@C - 1245$

Fig. S4. Raman shift of carbon matrix generated from inert calcination of organic linkers of the synthesized samples (a) CeO₂@C -14, (b) CeO₂@C -124, (c) CeO₂@C -135 and (d) CeO₂@C -1245

Table-S2.	Raman	spectroscopy	data
-----------	-------	--------------	------

Sample ID	$I_D\!/I_G$	La	υ (I _D)	$\Delta \upsilon \left(I_D \right)$	υ(I _G)	$\Delta \upsilon (I_G)$	υ (I _{Ce})	$\Delta \upsilon (I_{Ce})$
		(nm)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
CeO ₂ @C-14	5.8	25.52	1359	09	1581	01	457	03
CeO ₂ @C-124	3.7	16.28	1360	10	1590	10	459	01
CeO ₂ @C-135	1.65	7.26	1357	07	1585	05	458	02
CeO ₂ @C-1245	1.95	8.58	1352	02	1589	09	457	03

 I_D/I_G = Relative concentration of disorder and graphitic carbon; La = lateral dimension; υ = Raman Shift value; $\Delta \upsilon = up/downshifting$ in Raman shift value.

Fig. S5. Molecular structures of 1,4-benzenedicarboxylic acid (1,4-H₂BDC), 1,2,4benzenetricarboxylic acid (1,2,4-H₃BTC), 1,3,5-benzenetricarboxylic acid (1,3,5-H₃BTC), 1,2,4,5-benzenedicarboxylic acid (1,2,4,5-H₄BTEC)

Fig. S6. Possible metal-ligand co-ordinations in the Ce-MOFs synthesized here.

Fig. S7. FESEM micrographs showing assembly of (a) Ce-1,2,4-BTC spheres (b) Assembly of Ce-1,3,5-BTC macro bars (circled) and (c) Ce-1,2,4,5-BTEC macro plates (circled)

Fig. S8. N₂ adsorption-desorption isotherms and corresponding pore size distributions (insets) of CeO₂@C-14 (a), CeO₂@C-124 (b), CeO₂@C-135 (c) and CeO₂@C-1245 (d).

Fig. S9. Electrochemical properties of Super P carbon: (a) initial discharge-charge cycle and
(b) cycling performance at two current densities of 0.05 and 0.5 mA cm⁻²

In order to investigate the contribution of Super P, if any, we have conducted electrochemical tests using Super P carbon as a negative electrode material in a weight ratio of 90:10 (Super P Carbon : PVDF). The initial discharge-charge cycle and cyclic performance at two different current densities are shown in Fig.S9. During the cycling performance, at a low current density of 0.05 mA cm⁻², the specific charge capacity has been found to be 135 mAh g⁻¹ after 20 cycles. When the current density is increased to a relatively higher value of 0.5 mA cm⁻², the specific capacity drops to 49 mAh g⁻¹. As the CeO₂@C electrodes contains only 20% of Super P Carbon, the overall contribution to its capacity (674 mAh g⁻¹ at 0.05 mA cm⁻² and 453 mAh g⁻¹ at 0.5 mA cm⁻²) is only 4.0% at 0.05 mA cm⁻² and 2.1% at 0.5 mA cm⁻².

Fig. S10. Equivalent circuit models (a) as assembled state (b) after formation and 100th discharge-charge cycle.

Material	Voltage	Current	Current Density	Specific	Cycling	Ref.
	(V vs.	Density	(mA g ⁻¹ / C rate)	Capacity	performance	
	Li/Li ⁺)	$(mA cm^{-2})$		$(mAh g^{-1})$		
CeO ₂ Sphere	0.1-2.5	0.5 mA cm^{-2}	-	430	40 cycles	[1]
CeO ₂ Sphere	0.1-3.0	-	0.1 C	530	50 cycles	[2]
CeO ₂ -graphene	0.001-3.0	-	50 mA g ⁻¹	605	100 cycles	[3]
CeO ₂ @C	0.0-3.0	-	0.2 C	355	50 cycles	[4]
Brick like CeO ₂	0.1-2.5	-	200 mA g ⁻¹	460	100 cycles	[5]
Plate like CeO ₂	0.1-2.5	-	200 mA g ⁻¹	290	100 cycles	[5]
Rhombus CeO ₂	0.1-2.5	0.2 mA cm^{-2}	-	374	50 cycles	[6]

Table-S3. Reported LIB results on CeO₂

Core-shell sphere CeO ₂	0.1-2.5	0.2 mA cm^{-2}	-	547	300 cycles	[7]
Graphene/CMK-3 /CeO ₂	0.01-3.0	-	0.1 A g ⁻¹	550	100 cycles	[8]
Prism-like CeO ₂	0.01-1.5	0.2 mA cm^{-2}	-	319.5	100 cycles	[9]
microrods						
Micro/nano dumbbell-	0.1-2.5	0.2 mA cm^{-2}	-	590	100 cycles	[10]
shaped CeO ₂						
Core-shell CeO2	0.01-1.5	0.2 mA cm^{-2}	-	327	100 cycles	[11]
micro/nanospheres						
MOF-derived spherical		0.05 mA cm^{-2}	-	674		
CeO ₂ @C-14	0.01-3.0	0.1 mA cm^{-2}		590	100 cycles	[This
		0.5 mA cm^{-2}		453		work]

References

- [1] F. Zhou, X. Ni, Y. Zhang and H. Zheng, J. Colloid Interface Sci., 2007, 307, 135-138.
- [2] F. Zhou, X. Zhao, H. Xu, and C. Yuan, J. Phys. Chem. C, 2007, 111, 1651-1657.
- [3] G. Wang, J. Bai, Y. Wang, Z. Rena and J. Baic, Scripta Mater., 2011, 65, 339-342.

[4] X. Wu, H. Niu, S. Fu, J. Song, C. Mao, S. Zhang, D. Zhang and C. Chen, *J. Mater. Chem. A*, 2014, **2**, 6790-6795.

- [5] H. Pang and C. Chen, RSC Adv., 2014, 4, 14872-14878.
- [6] H. Liu and Q. Le, J. Alloys Compd., 2016, 669, 1-7.
- [7] H. Liu and H. Liu, *Mater. Lett.*, 2016, **168**, 80-82.
- [8] R. Guo, W. Yue, Y. Ren and W. Zhou, Mater. Res. Bull., 2016, 73, 102-110.
- [9] C. Cheng, F. Chen, H. Yi and G. Lai, J. Alloys Compd., 2017, 694, 276-281.
- [10] H. Liu, H. Liu, J. Alloys Compd., 2016, 681, 342-349.
- [11] H. Liu, H. Liu, X. Han, J. Solid State Electrochem., DOI 10.1007/s10008-016-3320-6