Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Formation, location and beneficial role of Pbl₂ in lead halide perovskite solar cells

Tian Du^{1,2}, Claire H. Burges¹, Jinhyun Kim², Jiaqi Zhang¹, James R. Durrant² and Martyn A. McLachlan^{2*}

¹.Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2BP

²Department of Chemistry and Centre for Plastic Electronics, Imperial College London, SW7 2AZ *martyn.mclachlan@imperial.ac.uk

Electronic Suuplementary Information

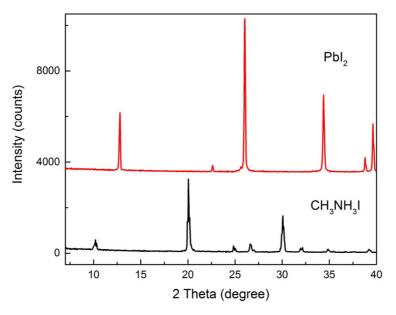


Figure S1 Powder X-ray diffraction patterns of Pbl₂ and CH₃NH₃I.

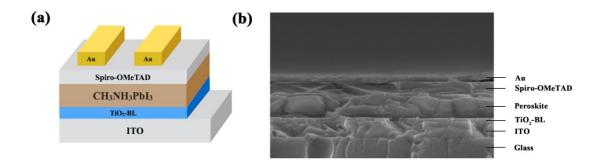


Figure S2 (a) Schematic showing device architecture and (b) the typical cross-sectional SEM image.

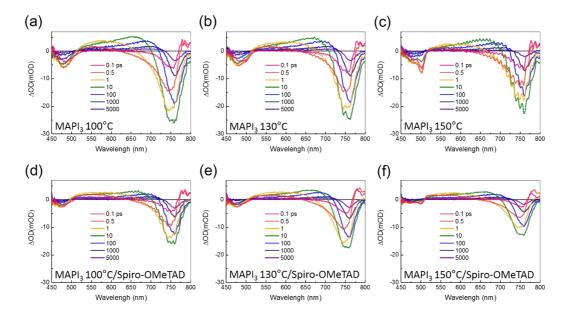


Figure S3 Transient absorption spectrum with excitation at 380nm (flux $64 \Box j/cm2$) of MAPI films on glass with (a-c) and without Spiro-OMeTAD quencher (d-e) after being annealed at the indicated temperatures.

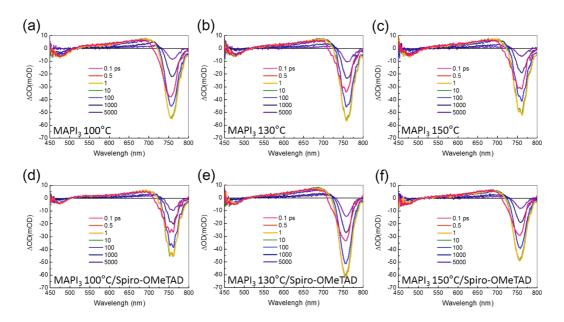


Figure S4 Transient absorption spectrum with excitation at 715 nm (flux $64 \Box J/cm2$) of MAPI films on glass with (a-c) and without Spiro-OMeTAD quencher (d-e) after being annealed at different temperature.

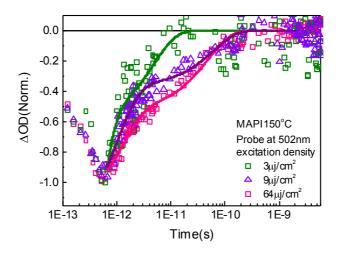


Figure S5 Transient absorption dynamics of 150 °C annealed MAPI films probed at 502 nm, with different excitation density. The symbols are the decays of transient absorption signal, and the solid lines represent double exponential fitting the decays.

hkl	Material	2 $\theta_{(degrees)}$	d _{measured}	d _{calculated}
001	Pbl ₂	12.65	0.6997	0.6979
110	MAPI	14.09	0.6285	0.6258
112	MAPI	20.01	0.4437	0.4450
211	MAPI	23.09	0.3852	0.3778
202	MAPI	24.48	0.3636	0.3627
101	Pbl ₂	25.39	0.3508	0.3815
220	MAPI	28.43	0.3139	0.3129
310	MAPI	31.84	0.2810	0.2800
003	Pbl ₂	39.53	0.2280	0.2326

Table S1 d-spacings of the lattice planes for MAPI and PbI_2 measured from XRD patterns and calculated from ¹

Supporting references

1 N. Onoda-Yamamuro, O. Yamamuro, T. Matsuo and H. Suga, *J. Phys. Chem. Solids*, 1992, **53**, 277–281.