Supporting Information

Synthesis of nano-sized hybrid C₃N₄/TiO₂ sample for enhanced and steady solar energy absorption and utilization

Junqing Yan^{a,*}, Ping Li^a, Hui Bian^a, Huan Wu^a and Shengzhong (Frank) Liu^{a,c}*

^a Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China E-mail: junqingyan@snnu.edu.cn, liusz@snnu.edu.cn

^b School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China

^c State key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China

Figure S1. The electrodynamic calculation of the 10 nm TiO_2 based on Rayleigh

scattering law.

Figure S2. TEM images of CN-TiO₂-9, CN-TiO₂-12 and

 $CN-TiO_2-15$ samples under study.

Figure S3. The element mapping of the CN-TiO₂ samples, (a) CN-TiO₂-9; (b)

CN-TiO₂-12; (c) CN-TiO₂-15.

Figure S4. XPS spectra of CN-TiO₂ heterojunction samples, (a) Ti 2p, (b) survey

spectrum.

Figure S5. Photocatalytic hydrogen evolution under the 150 W xenon lamp of the $CN-TiO_2$ samples, reference TiO_2/C_3N_4 heterojunction and 10 nm anatase TiO_2 .

Photocatalyst	Reactant solution	Reactant Light solution source		AQY (%)	Reference
g-C ₃ N ₄ nanosheets	3 wt% of Pt co-catalyst; Aqueous TEOA solution (10%), 0.20 mol K ₂ HPO4	300 W Xe lamp (λ>400 nm)	947	26.1% (420 nm)	Angew.Chem. 2015, 127,13765
PTI-C ₃ N ₄	3 wt% of Pt co-catalyst; Aqueous TEOA solution (10%)	300 W Xe lamp(λ>420 nm)	204	15% (400 nm) 7% (420 nm)	Angew. Chem. Int. Ed. 2014, 53, 11001
(ATCN)-C ₃ N ₄	3 wt% of Pt co-catalyst; Aqueous TEOA solution (10%)	300 W Xe lamp (λ>420 nm)	ca. 750	8.8% (420 nm)	Energy Environ. Sci. 2014, 7, 1902
g-C ₃ N ₄ (urea and thiourea)	1 wt% of Pt co-catalyst; Aqueous methanol solution (20%), pH = 13.3 (KOH)	300 W Xe lamp (λ>400 nm)	66.9	6.67% (400 nm)	Chem. Commun. 2014, 50, 15521
tri-s-triazine-based g-C ₃ N ₄	3 wt % Pt 100 mL containing 10 mL of the 10 vol % TEOA with the addition of phosphates	300 W Xe lamp	770	50.7% at 405 nm	ACS Catal. 2016, 6, 3921
g-C ₃ N ₄	200 mL 10 vol% TEOA	150W Xe lamp	1400	-	This work
herterojunction	aqueous solution	405 LED	52	6.9%	

Table S1 Comparison of H_2 generation based on g-C₃N₄ photocatalyst

צ	(1.0 wt.%)	0.1g	aqueous solution	405 LED	520	I IIIS WOFK
	Pt	0.1	200 mL 10 vol% TEOA	lamp	14000	Thisl-
8	Pt (1.0 wt.%)	0.1 g	200 mI	150W Xe		2010, 191, 130
			aqueous	lamp	1340	Environmental,
			10 vol% TEOA	150W Xe	1540	B:
			100 mL			Applied Catalysis
7	Pt (3.0 wt.%)	15 mg	TEOA aqueous solution	lamp	3127	State Chemistry, 2014, 220, 54
			10 ml	300 W V2		Journal of Solid
			$CH_3OH=3:1,$	-		2014, 39, 6354
6	-	0.1 g	solution (H_2O :	lamp	559.7	Hydrogen Energy,
			methanol	500 W Xe		Journal of
5	Pt	20 mg	120 mL		8931	International
			in volume)			
			CH ₃ OH= 4:1,			Nano Research 2015, 8, 1199
			solution (H ₂ O:	lamp		
			methanol	300 W Xe		
4	Pt (1.0 wt.%)	0.1 g	50 mL	(, 10000
			(0.025 M)	$(\lambda > 420 \text{ nm})$	00	44, 13030
			acid solution	Jamp	~80	Transactions 2015
			100 ml oxalic	300 W Xe		Dalton
		D	aqueous	(λ>400 nm)	27.10	5,101214
3	-	0.1 g	10 vol% TEOA	lamp	39.18	Advance.2015.
	Pt (0.5wt.%)	0.3 g	100 mL	300 W Xe		RSC
				solution)		
2			in volume)	aqueous		
			CH ₃ OH= 7:1,	A NaNO ₂		2011, 509, L26
			solution (H ₂ O:	(blocked by	74.7	and Compounds.
			methanol	mercurv lamn		Journal of Allovs
			400mL	high-pressure		
			solution	450W		
	` '		vol%) aqueous	(λ>400 nm)		
1 (1	(1.0 at%)	5 mg	(TEOA, 15	lamp	52	Nanoscale, 2016, 8, 11034
	Pt		triethanolamine	300 W Xe	32	
			10 mL			
Lintry		catalysts	solution	0	$h^{-1}g^{-1}$)	
Entry	Co-catalyst	Total mass of	Reactant	Light source	Activity	Reference
		T-4-1			A	

Table S2 Comparison of H_2 generation based on TiO_2/C_3N_4 heterojunction photocatalyst

Figure S6. Photocatalytic hydrogen evolution of the CN-TiO₂ samples under the monochromatic light of 365 and 405 nm.

Figure S7. (a) UV–vis diffuse reflection spectra of g-C₃N₄ and TiO₂; (b) Mott– Schottky plots, the measurements were carried out in 0.5M Na₂SO₄ solution in the dark with the fixed frequency of 1 kHz; (c) The schematic illustration of the band structure.

Figure S8. Hydrogen evolution rate under the special LED lamp with different relative light intensity of the reference anatase TiO_2 (365 nm irradiation) and

 TiO_2/C_3N_4 heterojunction (405 nm irradiation).

Figure S9. Nanosecond-level time-resolved fluorescence spectra of CN-TiO₂-9, TiO_2/C_3N_4 and TiO_2 samples. The spectra were monitored at 440 nm under 325 nm

excitation at room temperature ...