Supporting Information

Enhanced Photoelectrochemical Water Splitting using Oxidized Mass-Selected Ti Nanoclusters on Metal Oxide Photoelectrodes

Andrew McInnes,^{†,‡} Simon R. Plant,[‡] Isabel Mecking Ornelas,[‡] Richard E. Palmer,[‡] and K. G. Upul Wijayantha, ^{,†}

⁺ Energy Research Laboratory, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK;

 * Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK

Corresponding Author: Prof Upul Wijayantha; (u.wijayantha@lboro.ac.uk)

Figure S1: Mass spectrum after a short period of sputtering, with the clear absence of the target oxidation peak for TiO_2 (at 80 amu), confirming this is removed with time.

Figure S2: STEM image of Ti_{2000} clusters after image processing via thresholding, allowing more accurate determination of the edge of the clusters.

Figure S3: STEM image of Ti_{8000} clusters after image processing via thresholding, allowing more accurate determination of the edge of the clusters.

Figure S4: XPS survey spectrum showing all detected peaks (Black) and the background (red)

Figure S5: Chopped J-V curve showing $BiVO_4$ with (Black) and without (Red) $Ti_{923\pm25}$ clusters. An enhancement of 16% at 1.23V vs RHE can be seen.

Figure S6: J-V curve showing BiVO₄ with (Black) and without (Red) $Ti_{8000\pm216}$ clusters. The dark current is shown in blue. An enhancement of 38% at 1.23V vs RHE is seen.

Figure S7: Multiple LSV showing the relative stability of BiVO₄ photoelectrodes under blue light illumination. After an initial drop from the first scan, the subsequent scans appear to overlap and no further degradation was seen.

Figure S8: Multiple LSV showing the relative stability of BiVO₄ photoelectrodes under white light illumination. After a significant initial drop, the photocurrent curves are seen to continually degrade with increasing number of scans.

Figure S9: J-V curve of bare FTO with (Red) and without (Black) $Ti_{2000\pm54}$ clusters. It can be seen that there is no photoactivity from the clusters and only noise is detected.