Supporting Information

Supramolecular architectures featuring antenna effect in solid state DSSC, an artificial leaf case study

Georgios Charalambidis,^a Kostas Karikis,^a Evangelos Georgilis,^b Bilel Louahem M'Sabah,^c Yann Pellegrin,^d Aurélien Planchat,^d Bruno Lucas,^c Anna Mitraki,^{*b} Johann Bouclé,^{*c} Fabrice Odobel,^{*d} Athanassios G. Coutsolelos^{*a}

^aUniversity of Crete, Department of Chemistry, Bioinorganic Chemistry Laboratory, Heraklion, Crete, Greece.

^bUniversity of Crete, Department of Materials Science and Technology and Institute of Electronic Structure and Laser (I.E.S.L.) Foundation for Research and Technology - Hellas (FO.R.T.H.), Heraklion, Crete, Greece.

^cUniversité de Limoges, CNRS, XLIM, UMR 7252, 123 Avenue Albert Thomas, F-87000 Limoges, France. ^dUniversité LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, 2 rue de la Houssinière, 44322, Nantes cedex 3, France.

Figure S1. Normalized absorption spectrum (black line) of **FF-H₂P-COOH** and emission spectrum (red line) of **FF-ZnP** (λ_{exc} = 550 nm) in DCM.

Figure S2. Cyclic (CV) and square wave (SQ) voltammograms of FF-ZnP (Left) and FF-H₂P-COOH (Right).

Figure S3. Cyclic (CV) and square wave (SQ) voltammograms of FF-ZnP-COOH.

Figure S4. ¹H NMR spectrum of compound FF-ZnP in CDCl₃.

Figure S5. ¹³C NMR spectrum of compound FF-ZnP in CDCl₃.

Figure S6. Aromatic region of the ¹³C NMR spectrum for compound FF-ZnP in CDCl₃.

Figure S7. ¹H NMR spectrum of compound 5 in CDCl₃.

Figure S9. Aromatic region of the ¹³C NMR spectrum for compound 5 in CDCl₃.

Figure S10. ¹H NMR spectrum of compound FF-H₂P-COOH in CDCl₃.

Figure S11. ¹³C NMR spectrum of compound FF-H₂P-COOH in CDCl₃.

Figure S12. Aromatic region of the ¹³C NMR spectrum for compound FF-H₂P-COOH in CDCl₃.

Figure S11. ¹H NMR spectrum of compound 7 in CDCl₃.

Figure S12. ¹³C NMR spectrum of compound 7 in CDCl₃.

Figure S13. Aromatic region of the ¹³C NMR spectrum for compound 7 in CDCl₃.

Figure S14. Normalised IPCE spectra of solar cells based on FF-H₂P-COOH (black curve) and FF-H₂P-COOH+FF-ZnP (red curve).