Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Solar Demonstrator Device for Brine Splitting

Figure S1: Schematic of the demonstrator device for the photocleavage of brine. Platinum mesh was used as the cathode while the anode was compromised a thin film of the best performing ClOC sample (50 at% Ru) on FTO glass. Cl₂ production was measured using a KI trap and H₂ production was measured using gas chromatography and changes in current. The device was powered using an amorphous Si solar cell.

A full schematic of the solar demonstrator device is shown in Figure S1. The demonstrator device was powered using amorphous silicon solar cells (Sanyo AM-5302, Maplin, London, UK). The solar cell consisted of an array of 6 cells, which produce a short-circuit current of 105 mA and open-circuit voltage of 2.5 V under AM 1.5 solar irradiance (100 mW.cm⁻²). A simple desk lamp (Bobby Desk Lamp, Habitat, London, UK), equipped with a 40 W halogen bulb, was used to irradiate the solar cell, resulting in an operating current and voltage of 4.8 mA and 1.89 V, respectively. Experiments were conducted in a gas-tight, two compartment glass cell, separated with a salt ion exchange membrane. The anode consisted of a thin film of the spin coated sample R50T50 on NSG TEK-15 FTO glass. The cathode consisted of a platinum mesh. The electrolyte was 0.5 M H₂SO₄(aq) + 2.0 M NaCl(aq) (pH ~ 0.56). Suba-sealsTM were used to create a gas-tight atmosphere within the cell. Wires were placed through the centre of each

Suba-seal[®] with a crocodile clip attached to each electrode. The area of each electrode submerged in the electrolyte was adjusted to ~ 1 cm². Currents and voltages were measured using digital multimeters (MY64, Mastech Instruments, California, USA). A gas chromatograph (Varian CP-3800) was first calibrated using a range of dilutions, from 0 to 5 %, of 5 % H₂: 95 % N₂ gas. The amount of hydrogen produced at the platinum cathode of the demonstrator device was measured using gas chromatography by injecting 250 μ L gaseous aliquots of headspace, at select times, through a column packed with molecular sieves (80-100 Mesh). The amount of chlorine gas produced at the RuO₂:TiO₂ anode of the demonstrator device was measured using a KI trap. UV-visible absorption spectra of the KI trap solution was measured at the end of each experiment to determine the chlorine yield.

Measured Gas Evolution

Figure S2: Chlorine (blue) and oxygen (red) gas evolution measured at applied potentials of 1.36, 1.44, 1.65 and 1.89 V, respectively. CHFS-made ruthenium-titanium oxides (solid) and DSA-type (hash) materials deposited on FTO glass were tested independently. Chlorine gas was measured using a KI trap to produce triiodide (I_3^-) that can be measured using UV-visible spectroscopy, oxygen production is assumed to form the remainder of the gas evolved. The device was powered using a potentiostat.

DSA-Type Anode Preparation

To produce DSA-type films, a suitable precursor solution was produced, this consisted of; 2.86 g ruthenium chloride hydrate, RuCl₃·0.5H₂O, 4.5 mL tetrabutyl titanate, Ti[(OCH₂)₃CH₃]₄, 0.6 mL hydrochloric acid and 9.3 mL butyl alcohol, CH₃(CH₂)₃OH. The solution was stirred and brush coated on to fluorine doped tin oxide (FTO) glass. Thermal conversion of was carried out by drying the solution at 100 °C (ramp rate 5 °C.min⁻¹) and held for 15 min followed by further heat treatment at 450 °C (ramp rate 10 °C.min⁻¹) and held for 30 min, before being removed from the furnace and left to cool. The process was repeated 5 times to obtain a suitable catalyst loading on the FTO substrate.