Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Supporting information

Improving the hydrogen evolution activity of Co_xP nanoparticles by hydrogenation

Lihong Tian,^{a,b} James Murowchick,^c Xiaobo Chen^{a,*}

¹ Department of Chemistry, University of Missouri – Kansas City, Kansas City, Missouri, 64110, USA. E-mail: chenxiaobo@umkc.edu

 ² Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
^c Department of Geosciences, University of Missouri – Kansas City, Kansas City,

Missouri, 64110, USA

Experimental details, Figure S1-S6 and Table S1

Experimental section

Catalyst preparation

In a typical process, 1.19 g of Co (OH)₂ and 1.33 g of NaH₂PO₂·H₂O was grinded in a agate mortar, then the obtained mixture was calcinated in argon atmosphere at 250–400 °C for 3h. The collected product was dispersed ultrasonically into a 2.0 M HCl solution and kept on stirring for 12 h. A black powder was obtained after washed by deionized water for several times and dried in an oven at 100 °C overnight. Hydrogenation was performed on all as-prepared samples at 350 °C for 6h under pure hydrogen environments.

Characterizations

The crystal structure of products was characterized by a Rigaku Miniflex X-ray Diffractometer (XRD) with a CuK α (λ = 0.15418 nm) radiation source. The morphologies and structure of the samples were observed by transmission electron microscopy (TEM, FEI Tecnai F20 STEM) with the electron accelerating voltage of 200 kV. A small amount of powder sample dispersed in ethanol was dropped onto a thin holey carbon film, and dried overnight before TEM measurement. XPS data were collected using a Kratos Axis 165 X-ray photoelectron spectrometer with an Al/Mg dual-anode X-ray source, using a photon beam of 1486.6 eV.

All electrochemical measurements were carried out in a three-electrode system at room temperature. A Pt wire, an Ag/AgCl electrode, and 0.5 M H₂SO₄ were used as the counter electrode, reference electrode, and electrolyte, respectively. The working electrode was prepared by coating a mixture slurry of catalyst powder, carbon black and polyvinylenedifluoride (weight ratio = 8:1:1) in 0.05 mL N-methyl-2-pyrrolidone solution on a titanium foil. The mass loading is about 0.7 mg cm⁻² (catalyst loading \approx 0.56 mg cm⁻²). Linear sweep voltammetry (LSV) at a scan rate of 5 mV s⁻¹ and electrochemical impedance spectroscopy (EIS) analysis using a 10 mV amplitude AC signal over a frequency range from 100 kHz to 10 mHz were performed on a electrochemical workstation. The commercial Pt/C was used as the state-of-the-art HER catalyst for comparison. All polarization curves were iR-corrected for an ohmic drop obtained from Nyquist plot. Reversible hydrogen electrode (RHE) calibration was carried out using Ag/AgCl as the reference electrode. The calibration was performed in the high purity hydrogen saturated 0.5 M H₂SO₄ electrolyte with a Pt wire as the working electrode. The long-term stability test was measured at a constant voltage over the duration of 6000 s.

Fig. S1. TEM images of the pristine Co_xP nanoparticles.

Fig. S2. TEM images of the pristine Co_xP nanoparticles.

Fig. S3. TEM images of the hydrogenated Co_xP nanoparticles.

Fig. S4. TEM images of the hydrogenated Co_xP nanoparticles.

Fig. S5. HRTEM images of the hydrogenated Co_xP nanoparticles.

Fig. S6. HRTEM images of the hydrogenated Co_xP nanoparticles.

Fig. S7. Comparison of the polarization curves of the pristine and hydrogenated Co_xP (H-Co_xP) nanoparticles using a graphite electrode as the counter electrode.

Catalyst	Electrolyte	η ₁₀ (mV)	Ref
H-Co _x P	0.5 M H ₂ SO ₄	110	This work
Porous Co ₂ P/CoP	0.5 M H ₂ SO ₄	150	14a
Co ₂ P	0.5 M H ₂ SO ₄	134	13
CoP/carbon cloth	0.5 M H ₂ SO4	67	14e
CoP/carbon	0.5 M H ₂ SO ₄	122	14c
Porous FeP	0.5 M H ₂ SO ₄	240	16
MoP	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	140	17
W ₂ P	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	161	18
Cu ₃ P	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	143	26
N.P-doped graphene	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	420	27
MoS_2	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	215	28
MoS _x	$1.0 \text{ M H}_2\text{SO}_4$	215	29
MoS _x -graphene	0.5 M H ₂ SO ₄	180	30
WS ₂	0.5 M H ₂ SO ₄	220	31
WSe ₂	0.5 M H ₂ SO ₄	230	32
CoSe ₂	0.5 M H ₂ SO ₄	193	33
MoS _{2(1-x)} Se _{2x}	0.5 M H ₂ SO ₄	161	34
$WS_{2(1-x)}Se_{2x}$	0.5 M H ₂ SO ₄	260	35

Table S1. Comparison of the various HER catalysts at a current density of 10 mA cm^{-2} in 0.5 M H₂SO₄.