Supporting information

Analysis of the ALD processing over methylammonium lead iodide perovskite films

Perovskite layers were fabricated in a N₂ filled glove box (H₂O and O₂ < 0.1 ppm) by spin coating a precursor solution composed by 0.8 mM of lead acetate trihydrate (99.999% from Sigma Aldrich), 0.2 mM of lead chloride (99.99% form Alfa Aesar) and 3 mM methylammonium iodide (from Dyesol) in 1 ml of N,N-dimethylformamide (anhydrous, from Sigma Aldrich).¹ The solution was spin coated on the substrate at 3000 RPM for 60 seconds and the films were annealed on an hotplate at 130°C for 10 minutes to form the perovskite structure.

<u>Fabrication of ALD layers:</u> ALD processes were carried out on two remote plasma ALD reactors: Oxford Instruments $FlexAL^{TM}$ and $OpAl^{TM}$ for Al2O3, TiO_2 , MoO_3 and ZnO processes while a home-built remote plasma reactor (Aldi-1) was used for NiO process. Their specifications are described elsewhere.^{2–4} All the data about the ALD processes are reported in Table S2 for each metal oxide. The metal precursors $Al(CH_3)_3$, $Ti(OCH(CH_3)_2)_4$, $Zn(C_2H_5)_2$ and $Ni(C_5H_4CH_3)_2$ were purchased by Sigma Aldrich, while $(NtBu)_2(NMe_2)_2Mo$ by Strem Chemicals.

	Al ₂ O ₃	Al ₂ O ₃	ZnO	TiO ₂	MoO ₃	NiO
Reactor	FlexAL TM	OpAL TM	OpAL TM	FlexAL TM	OpAL TM	Aldi-I
Precursor	Al(CH ₃) ₃	Al(CH ₃) ₃	$Zn(C_2H_5)_2$	Ti(OCH(CH ₃) ₂) ₄	Mo(N ^t Bu) ₂ (NMe ₂) ₂	Ni(C ₅ H ₄ CH ₃) ₂
$T_{substrate}$ (°C)	30-80	80-120	100-120	50-80	50-80	50
$T_{precursor}$ (°C)	25	25	25	45	50	55
Precursor dose(s)	0.04	0.04	0.05	4	4	3
Precursor purge (s)	3	5	5	5	4	5
H_2O dose(s)		0.1	0.1			
O2 plasma exposure(s)	3			12	4	3
Plasma power (W)	100			100	100	100
Oxidant purge (s)	3	5	6	3	4	5
Ar bubbling flow(sscm)				50	45	50

Table S2: The ALD process conditions for the metal oxides reported in this work.

<u>XPS characterization</u>: the chemical compositions of the perovskite layers and the ALD films deposited on top of them were analysed by X-ray photoelectron spectroscopy (XPS Thermo Scientific K-Alpha KA1066, monochromatic Al Ka (hv = 1486.6 eV), X-ray spot: 400 mm). In order to obtain information from the interface perovskite/ALD metal oxide, the nominal thickness of the ALD overlayer was maintained at 6 nm, lower than the escape depth of the electrons (almost 10 nm).

<u>XRD characterization</u>: The crystallinity of the pristine sample, thermally stressed, after coreactant exposure, and after ALD metal oxide processes, were studied by X-ray diffraction (XRD; PanAlytical X'pert PRO MRD). The areas of the peaks relative to the perovskite structure at 14.1° and to the PbI₂ at 12.6° were obtained fitting the data with a gaussian function. In the manuscript, the areas are displayed normalized to the one of the pristine sample.

- W. Qiu, T. Merckx, M. Jaysankar, C. Masse de la Huerta, L. Rakocevic, W. Zhang, U.
 W. Paetzold, R. Gehlhaar, L. Froyen, J. Poortmans, D. Cheyns, H. J. Snaith and P.
 Heremans, *Energy Environ. Sci.*, 2016, 9, 484–489.
- 2 Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. A. Verheijen, F. Roozeboom and W. M. M. Kessels, *J. Appl. Phys.*, 2013, **114**, 24308.
- S. B. S. Heil, J. L. van Hemmen, M. C. M. van de Sanden and W. M. M. Kessels, J.
 Appl. Phys., 2008, **103**, 103302.
- E. Langereis, H. C. M. Knoops, A. J. M. Mackus, F. Roozeboom, M. C. M. van de Sanden and W. M. M. Kessels, *J. Appl. Phys.*, 2007, **102**, 83517.