Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2017

Investigation of the reaction mechanism of lithium sulfur battery in different electrolyte system by in situ Raman spectroscopy and in situ X-ray diffraction

W. Zhu, A. Paolella, C. Kim, D. Liu, Z. Feng, C. Gagnon, J. Trottier, A. Vijh, A.Guerfi, A. Mauger, C. M. Julien, M. Armand and K. Zaghib

Supplementary Material

Figure S1 XRD spectrum of beryllium disk used in the in situ XRD cell.

Figure S2 *XRD diffraction pattern of* α *-sulfur powder and the lattice parameters obtained from Rietveld refinement.*

Figure S3 *Raman spectrum of the sulfur powder and the band assignments.*

Figure S4 Raman spectrum collected from 0.5mol L^{-1} LiTFSI in PY₁₃-FSI.

Figure S5 *Raman spectrum of Whatman filter showing a band at 466 cm^{-1.}*

Figure S6 *Optical microscope image showing the lithium anode and the area examined with Raman spectroscopy.*

Figure S7 *Variation of intensity ratios of different sulfur related species as a function of time and electric potential of cells with two types of electrolytes.*

Figure S8 (a) Capacity vs. cycle number ; electrolyte: (1) 1 mol L⁻¹ LiTFSI in DOL-DME; charged at C/5, discharged at C/2; (2) 0.5 mol L⁻¹ LiFSI in PY₁₃-FSI, C/10.

(b) Potential vs. Capacity; electrolyte: (1) LiTFSI in DOL-DME, , charged at C/5, discharged at C/2; (2) 1 mol L⁻¹ LiFSI in PY₁₃-FSI and 1 mol L⁻¹, C/10.