Two-dimensional magnetic colloids under shear Supplementary Information

Tomaž Mohorič, ${ }^{1,2}$ Jure Dobnikar, ${ }^{1}$ and Jürgen Horbach ${ }^{3}$
${ }^{1}$ International Research Centre for Soft Matter, Beijing University of Chemical Technology, Beijing 100029, P.R. China
${ }^{2}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
${ }^{3}$ Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

I. BONDING PATTERNS IN DEFORMED GEL

Bonding patterns in a gel (at the opening angle $\theta=48^{\circ}$) are more quantitatively characterized on Figure S1. We define two colloids as bonded if their interparticle distance is less than 1.2σ.

First, on Figure S1A we present bonding probability distribution P_{n}, i.e. probability that a colloid forms exactly n bonds, for the unsheared system $(\dot{\gamma}=0)$. As could be deduced from the snapshots (see Figure 3 in the main text), most of the particles form 2 or 3 bonds and there is also non-negligible fraction of non-bonded particles.

Figure S 1 B shows changes in the bonding distribution, ΔP_{n}, at different strains for the lowest (black dashes) and the highest (red crosses) shear rate. Left part of the figure presents ΔP_{n} for the system's bulk $(y \approx 0)$ and right part for the boundaries $(y \approx \pm L / 2)$. For the highest $\dot{\gamma}$ there are hardly any changes in bulk P_{n}. On the other hand at the boundaries, there are significant changes in P_{n} already at $\gamma=0.1$, where the fraction of single-bonded particles ($n=1$, free ends of chains) increases on the account of three-bonded "bridges" $(n=3)$. Initially, after the shear is applied, these "bridges" are the weak-points, where the bond breakage mainly occurs. In later stages, non-bonded particles $(n=0)$ incorporate into the network, as suggested by the drop in P_{0} and increase in P_{2}. For the lowest shear rate ΔP_{n} for the bulk and boundary look very similar. A fraction of non-bonded particles ($n=0$) incorporates into the network, which results in an increase of three- $(n=3)$ and four-bonded $(n=4)$ particles. At $\gamma=10$ almost all non-bonded particles are incorporated into the network. However, in the bulk this results in almost equal increase of P_{2}, P_{3} and P_{4}, while at the boundaries only P_{2} increases.

To determine average bond orientation we calculated bonding anisotropy, defined as $\varepsilon_{\text {bond }}=\left\langle u_{\mathrm{y}}^{2}\right\rangle /\left\langle u_{\mathrm{x}}^{2}\right\rangle$. Here u_{x} and u_{y} are x and y-component of the unit vector connecting centers of two bonded particles. Note that for a uniformly distributed bond orientation bonding anisotropy is 1 . $\varepsilon_{\text {bond }}$ as a function of coordinate y at different strains for the lowest (black circles) and the highest (red squares) shear rate is presented on Figure S1C. At $\gamma=0.1$ (top row) bonding anisotropy equals 1 independently of the shear rate. At $\gamma=1$, when stress reaches the maximum for $\dot{\gamma}=10^{-5}$, bonding anisotropy is about 0.8 and uniformly distributed. This clearly shows the tendency of the network to align its bonds with direction of the applied shear. With a further increase in strain, deviation from an isotropic
bond orientation becomes even more pronounced. On the other hand, for the highest $\dot{\gamma}$ only bonds at the boundaries $(y \approx \pm L / 2)$, where shear is applied, tend to align with the shearing field.

FIG. S1. A) Bonding distribution, P_{n}, for the unsheared network $(\dot{\gamma}=0)$ for the case of the opening angle $\theta=48^{\circ}$. B) Changes in bonding distribution, ΔP_{n}, at strain $\gamma=0.1$ (top row), 1 (middle row), and 10 (bottom row) for the lowest (black) and the highest (red) shear rate $\dot{\gamma}$. The left half presents ΔP_{n} in the center of simulation box ($y \approx 0$), while the right half shows the same but for the borders $(y \approx \pm L / 2)$. C) Bonding anisotropy $\varepsilon_{\text {bond }}$ as a function of y at strain $\gamma=0.1$ (top row), 1 (middle row), and 10 (bottom row) for the lowest (black circles) and the highest (red squares) shear rate $\dot{\gamma}$.

II. GEL RELAXATION AFTER SWITCHING OFF THE SHEAR

To further investigate the stability of deformed gel structures $\left(\dot{\gamma}=10^{-5}\right)$, we switched off the shear at various points in stress-strain curves and monitored the subsequent relaxation
of stress. Figure S2 (left) shows the stress-time relation after switching off the shear at strain values $\gamma=0.1$ (black), 1 (blue), 10 (green) and 30 (red). In all the cases the stress decreases somewhat towards $\sigma_{\mathrm{xy}}=0$. Surprisingly, even for the relaxation from $\gamma=0.1$, where shear-induced structural changes are relatively small, σ_{xy} remains almost unchanged. Accordingly, only minor structural changes are observed. This suggests that the gel structure at every point in the stress-strain curve is effectively trapped in a deep local energy minimum. By increasing the reduced temperature T^{*} by a factor of 10 (which would correspond to decreasing the external field in experiment from $B_{0} \approx 10 \mathrm{mT}$ to $B_{0} \approx 3 \mathrm{mT}$) we effectively decreased the energetic barriers. Stress-time relations at these conditions are plotted on Figure S 2 (right). Stress relaxation towards its equilibrium value $\left(\sigma_{\mathrm{xy}}=0\right)$ is much more complete at elevated temperature. Hence, the ability of the system to store a given stress decreases with temperature.

FIG. S2. Stress-time relation after switching off the shear at different strains γ (colors) and at temperatures $T^{*}=8.7 \cdot 10^{-5}(\mathrm{left})$ and $T^{*}=8.7 \cdot 10^{-4}$ (right).

III. MOVIES OF FULL TRAJECTORIES

We have prepared movies of trajectories and corresponding stress-strain curves in the form of .gif files for the lowest and the highest shear rate $\dot{\gamma}$ at each opening angle θ. The name of the file is composed from values of the opening angle and the shear rate.

Particles in the simulated cell are depicted with dark-gray color, while periodic images in y-direction are shown in light-gray. For the opening angle $\theta=0^{\circ}$ also 5 and 7 -fold disclinations are shown with blue and red.

List of files:

- theta_0_shear_0.00001.gif
- theta_0_shear_0.0004.gif
- theta_48_shear_0.00001.gif
- theta_48_shear_0.0004.gif
- theta_50_shear_0.00001.gif
- theta_50_shear_0.0004.gif

