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                                                       Supplementary Information

Scaling Analysis in Electrolyte Diffusiophoresis:

Defining Notations: 1 => solute, 2 => solvent;  => no. of solute moles and  => no. of solvent moles𝑁1 𝑁2

Diffusiophoretic velocity (U): 

𝑈 = (𝜖𝐾𝑇
𝜂𝑍𝑒

𝛽𝜁𝑝)∇𝐶1

𝐶1
=

∇𝐶1

𝐶1

1
𝜖𝐾𝑇
𝜂𝑍𝑒

𝛽𝜁𝑝

= 𝛾 ∇(𝑙𝑜𝑔𝐶1)

Assumptions: 1. Very dilute system in terms of salt (  is negligible), 2. Ideal solution (activity co-eff.,  𝑁1 𝛾1

&  ~ 1.0), 3. Constant temperature and pressure, 4.  is invariant over space (1-dimensional), 5. z-𝛾2 𝑁2

directional or mono directional diffusion of solute.

Chemical potential of solute: 𝜇1 = 𝜇0
1 + 𝑅𝑇log (𝛾1𝐶1)

Applying grad. on both sides of the above equation-

∇𝜇1 = ∇𝜇0
1 + 𝑅𝑇∇(𝑙𝑜𝑔𝛾1 + 𝑙𝑜𝑔𝐶1)

 = 0 ; standard (reference) chemical potential does not vary over space∇𝜇0
1

; ideal solution∇ 𝑙𝑜𝑔𝛾1 = 0

The above equation simplifies to-   ∇𝜇1 =  𝑅𝑇∇ 𝑙𝑜𝑔𝐶1

Now combining the diffusiophoretic velocity equation-
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    (1)
𝑈 =

𝛾
𝑅𝑇

∇𝜇1

Therefore, diffusiophoresis is driven by change in chemical potential with resistance equivalent to 
𝑅𝑇
𝛾

Total Gibbs free energy of the system: 𝐺 = 𝜇1𝑁1 + 𝜇2𝑁2

Applying grad. on both sides of the above equation-

∇𝐺 = 𝜇1∇𝑁1 + 𝑁1∇𝜇1 + 𝜇2∇𝑁2 + 𝑁2∇𝜇2 

;  is space invariant in dilute solution𝜇2∇𝑁2 ≈ 0 𝑁2

; as …where  = 0,  and , 𝑁2∇𝜇2 ≈ 0 ∇𝜇2 ≈ 0 ∇𝜇2 = ∇𝜇0
2 + 𝑅𝑇∇(𝑙𝑜𝑔𝛾2 + 𝑙𝑜𝑔𝐶2) ∇𝜇0

2 ∇ 𝑙𝑜𝑔𝛾2 = 0 ∇𝑙𝑜𝑔𝐶2 ≈ 0

because is almost invariant over space𝐶2

; since for a very dilute system becomes negligible𝑁1∇𝜇1 ≈ 0 𝑁1

Therefore, simplification of the above equation in the limit of “extreme dilution”-

                                                               ∇𝐺 = 𝜇1∇𝑁1


𝜇1 =

∇𝐺
∇𝑁1


∇𝜇1 = ∇(

∇𝐺
∇𝑁1

)



∇𝜇1 = ∇(

∂𝐺
∂𝑧

∂𝑁1

∂𝑧

)


∇𝜇1 = ∇(

∂𝐺
∂𝑁1

)

From Equation (1), substituting , we can write-∇𝜇1

                    =
𝑈 =

𝛾
𝑅𝑇

∇𝜇1
𝛾

𝑅𝑇
∇( ∂𝐺

∂𝑁1
) = 𝛾∇( ∂𝐺

∂(𝑁1𝑅𝑇)) = 𝛾∇( ∂𝐺/𝑉
∂(𝑁1𝑅𝑇/𝑉)) = 𝛾∇(∂𝐺̅

∂𝜋)

Therefore, for a dilute system (with volume V) -



(2)
𝑈 = 𝛾 lim

𝑁1→0
∇(∂𝐺̅

∂𝜋)        

                                            

 is the volume specific Gibbs free energy (J/m3),  is the osmotic pressure imparted by solute (Pa) and  𝐺̅ 𝜋 𝛾

is “diffusiophoretic diffusivity”

Equation (2) can be approximated as follows for a dilute system-

                            (3)
𝑈 ≈ 𝛾

(∆𝐺̅
∆𝜋)
𝐿

L is characteristic length scale of the system. For reverse osmosis membrane systems processing 10 mM 
NaCl feed with system volume 1 L- 

= 0.01𝑁1

 = 55.56𝑁2

Mole fractions, x1 = 0.00018 and x2=0.00082

) RT (x1 log (x1) + x2 log (x2))∆𝐺𝑚𝑖𝑥 = (𝑁1 + 𝑁2

 

∆ ̅𝐺𝑚𝑖𝑥

∆𝜋
=

= (𝑁1 + 𝑁2)𝑅𝑇 (𝑥1 𝑙𝑜𝑔 (𝑥1) +  𝑥2 𝑙𝑜𝑔 (𝑥2))/𝑉

𝑁1𝑅𝑇/𝑉
≈‒ 10

For U ~ O(10-6) m/s and  m2/s, L ~ 1 mm which is reasonable as of the order of concentration 𝛾 ~ 𝑂(10 ‒ 10)
boundary layer.

Diffusiophoretic transport can be significant across or along a surface, particularly if the surface is 
porous or semipermeable and obstructs free diffusion. In such a system, analogous to diffusion co-efficient, 

we can define a “diffusiophoretic co-efficient” as  for dilute solutions ( ), 
𝜎𝑝 = lim

𝑁𝑠𝑜𝑙𝑢𝑡𝑒→0

∇(∂𝐺̅/∂𝜋) 𝑁𝑠𝑜𝑙𝑢𝑡𝑒→0

where  signifies the osmotic pressure exerted by solutes. This terminology resembles Kedem-Katchalsky 𝜋

reflection co-efficient   which quantifies the intrinsic semipermeability of membranes1. 
𝜎𝑚 = (∂𝑃/∂𝜋) 𝐽𝑣 =  0

Diffusiophoretic velocity (Udp) at lower solute concentrations, in terms of salt gradients generated 
electrophoresis, can be expressed analogous to Fickian diffusive flux as follows-

                                                               (4)
𝑈𝑑𝑝 = ( ∈ 𝑚𝐾𝑇

𝜂𝑍𝑒
𝛽 𝑝 lim

𝑁𝑠𝑜𝑙𝑢𝑡𝑒→0

∇(∂𝐺̅
∂𝜋)) = 𝛾𝑝



Where,  has similar units and the same order of magnitude values as diffusion coefficient of salts. The 𝛾

above expression elucidates that diffusiophoresis can be exacerbated in cases where spatial variation of 
volumetric Gibbs free energy ( ) is higher, such as in concentration boundary layers and deposited 𝐺̅

particulate layers such as those on salt rejecting membranes, in protein transport through micropores, and 
in deposited gel layers on ultrafiltration membranes.  If applied pressure is just able to resist osmotic 
pressure of solute on membrane, transport across membrane ceases and  which is the case of 𝜎𝑚 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 1

ideal semi-permeable membrane. Similarly, diffusiophoresis ceases only when volumetric Gibbs free 
energy does not change spatially, ratio of local volumetric Gibbs free energy to osmotic pressure changes 
remains constant over space or local osmotic pressure change becomes exceedingly dominant over 
volumetric Gibbs free energy change. In all these cases, .𝜎𝑝 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 0
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