Reversible Polypeptide Hydrogels from Asymmetric Telechelics with Temperature-

dependent and Ni²⁺-dependent Connectors.

Thao T. H. Pham, Jasper van der Gucht, J. Mieke Kleijn, Martien A. Cohen Stuart Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands

Correspondent email: Martien.CohenStuart@wur.nl

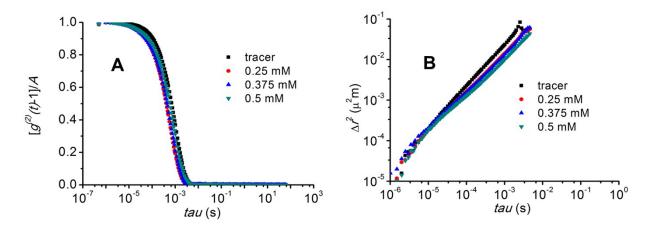


Figure SI1. DLS-based microrheology of protein TR₄H and Ni²⁺ complex at 50 °C at a mole ratio f (Ni/TR₄H)=0.5, at varied TR₄H concentrations in buffer MES 10 mM pH 6.5. (A) Normalized intensity correlation functions measured at a scattering angle of 173° for probes (tracer) with radius of 200 nm in the Ni/TR₄H solution after heated to 50 °C for 10 minutes. (B) Mean-square displacement of 200 nm probes deducted from A.

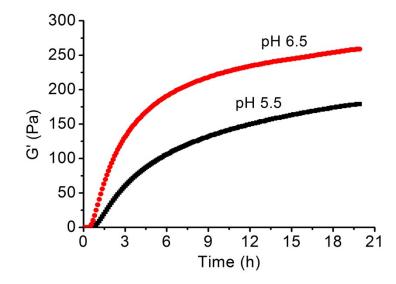


Figure SI2. Rheology of Ni/TR₄H hydrogels at 10 °C at mole ratio f (Ni/TR₄H)=0.5 for at TR₄H concentration of 1.25 mM (50 gL) in different pH (MES buffer 10 mM). Storage modulus as a function of gel age at different pH.

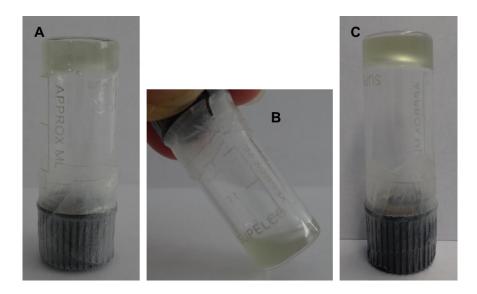


Figure SI3. Visual experiments on temperature responsive properties of Ni/TR₄H hydrogel (with TR₄H concentration of 1.5 mM) in MES 10 mM pH 6.5 at mole ratio f=0.5. (A) Ni/TR₄H hydrogel formed at 5 °C for 20 h. (B) Melted Ni/TR₄H hydrogel after heated at 50 °C for 10 minutes. (C) Reformation of Ni/TR₄H hydrogel at 5 °C.