Supplement to:

Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes

Chang-Young Park, Deborah K. Fygenson, and Omar A. Saleh

March 12, 2016

S1 DNA sequences

NTs are assembled from six oligos, with lengths and sequences given in Table S1. These six oligos are based on those used by Bertrand et al. [1], which in turn was based on sequences developed by Rothemund et al. [2]. Note that the naming scheme in Bertrand differs from that used in Rothemund; we refer here to the names used in Bertrand. We use oligos SE1 through SE5 exactly as in Bertrand. The sixth oligo is a truncation of the oligo termed SE6-2 in Bertrand, retaining bases five through thirty. The six oligos assemble into a tile. Tiles assemble into rod-like nanotubes at a density of 7 tiles every 14.5 nm . Given that each tile contains 174 nucleotides, with one charged phosphate per nucleotide, we arrive at a linear charge density of $84 / \mathrm{nm}$, as utilized in the text.

S2 Calculating the effective charge of rods

Our model relies on the calculation of an effective line charge density, $\nu_{e f f}$, of the DNA NTs. This permits estimate of rod-rod and rod-plane electrostatic interactions using the formulas of Debye-Huckel solution electrostatics. The method is based on the work of Neukirch and Marko [3] and Stigter [4]. In particular, $\nu_{e f f}$ is found from Neukirch and Marko's Eq. 1:

$$
\begin{equation*}
\nu_{e f f}=\frac{\nu \lambda_{D}}{\gamma r K_{1}\left(r / \lambda_{D}\right)} \tag{S1}
\end{equation*}
$$

where ν is the actual (bare) line charge density of the rod, λ_{D} is the solution Debye length, r is the rod radius, K_{1} is the 1st modified Bessel function of the second kind, and γ is a numerical correction factor that varies with rod and solution parameters.

The value of γ is found from the numerical results of Stigter [4]. Stigter presents a table (his Table III) of values of γ calculated for a variety of values of the parameters x_{0} and y_{0}, where $x_{0}=r / \lambda_{D}, y_{0}=e \psi_{0} / k_{B} T$, ψ_{0} is the potential at the surface of the cylinder, e is the electronic charge, and $k_{B} T$ is the thermal energy. This table is reproduced here as Table S2.

Knowledge of biomolecular structure and solution conditions gives r, ν, and λ_{D}, but these do not determine the value of y_{0}. To find γ, it is necessary to use a second correction parameter, β. β is a numericallycalculated parameter that interrelates x_{0} and y_{0} through the following equation (Stigter's Eq. 16):

$$
\begin{equation*}
\beta y_{0}=\frac{2 l_{B} \nu}{x_{0}} \frac{K_{0}\left(x_{0}\right)}{K_{1}\left(x_{0}\right)} . \tag{S2}
\end{equation*}
$$

Stigter presents a table of values of β for a range of values of x_{0} and y_{0} (his Table II). However, Eq. S2 shows that the product βy_{0} (and not β alone) can be directly calculated from the input parameters (r, ν, λ_{D}). Thus, a more practically useful table is that of βy_{0} as a function of x_{0} and y_{0}; this is presented here as Table S3.

The procedure for finding the effective charge of the rod, given r, ν and λ_{D}, is then as follows:

1. Calculate $x_{0}=r / \lambda_{D}$
2. Use Eq. S2 to calculate βy_{0}
3. Using x_{0} and βy_{0}, interpolate in Table S 3 to find y_{0}
4. Using x_{0} and y_{0}, interpolate in Table S 2 to find γ
5. Using γ, calculate $\nu_{e f f}$ using Eq. S1

Here, we carry out interpolation using the Mathematica Interpolation function. For step 3, Table S3 is used to construct a first order interpolation function for y_{0} over the space $\left(\log x_{0}, \beta y_{0}\right)$. For step 4 , Table S 2 is used to construct a second order interpolation function for γ over the space $\left(\log x_{0}, y_{0}\right)$.

References

[1] O. J. N. Bertrand, D. K. Fygenson and O. A. Saleh, Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 173427.
[2] P. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson and E. Winfree, Journal of the American Chemical Society, 2004, 126, 1634452.
[3] S. Neukirch and J. F. Marko, Physical Review Letters, 2011, 106, 138104.
[4] D. Stigter, Journal of Colloid and Interface Science, 1975, 53, 296306.

Table S1: Sequences of oligos used to assemble the NTs

| oligo name | length | sequence | | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SE1 | 37 | CTC AGT GGA CAG CCG TTC TGG AGC GTT GGA CGA AAC T | | |
| SE2 | 26 | GTC TGG TAG AGC ACC ACT GAG AGG TA | | |
| SE3 | 42 | CCA GAA CGG CTG TGG CTA AAC AGT AAC CGA AGC ACC AAC GCT | | |
| SE4 | 26 | CAG ACA GTT TCG TGG TCA TCG TAC CT | | |
| SE5 | 17 | CGA TGA CCT GCT TCG GT | | |
| SE6-2 $\mathbf{2}_{5-30}$ | 26 | ATG CAC TAC TGT TTA GCC TGC TCT AC | | |

Table S2: Values of γ calculated by Stigter [4] for values of x_{0} ranging from $1 / 128$ to ∞, and values of y_{0} ranging from 1 to 8

		y_{0}																			
		1							2							3	4	5	6	7	8
$1 / 128$	1.00274	1.01105	1.02516	1.04543	1.07241	1.1068	1.14944	1.20122													
$1 / 64$	1.00341	1.01374	1.03133	1.05671	1.09063	1.13401	1.18785	1.25298													
$1 / 32$	1.0043	1.01735	1.03962	1.07185	1.11501	1.1702	1.23834	1.31989													
$1 / 16$	1.00549	1.02218	1.0507	1.09198	1.14718	1.21729	1.30282	1.40337													
$1 / 8$	1.00706	1.02852	1.06515	1.118	1.18812	1.27601	1.38127	1.50238													
$1 / 4$	1.00904	1.03649	1.08311	1.14982	1.23711	1.34455	1.47052	1.61241													
x_{0}	$1 / 2$	1.01137	1.04576	1.1037	1.18554	1.2908	1.41779	1.56374	1.72526												
1	1.01383	1.05543	1.1248	1.22136	1.34338	1.488	1.65154	1.83017													
2	1.01609	1.06244	1.14367	1.25274	1.38858	1.54738	1.72492	1.91709													
4	1.01789	1.07112	1.15824	1.27661	1.42249	1.59145	1.77894	1.98073													
8	1.01912	1.07581	1.16805	1.29251	1.44488	1.62036	1.81421	2.02215													
16	1.01986	1.07865	1.17396	1.30203	1.45822	1.63751	1.83508	2.04664													
∞	1.02075	1.08198	1.18083	1.31304	1.47356	1.65719	1.85898	2.07463													

Table S3: Values of βy_{0}, based on Table II of Stigter [4], for values of x_{0} ranging from $1 / 128$ to ∞, and values of y_{0} ranging from 1 to 8

		y_{0}							
		1	2	3	4	5	6	7	8
	1/128	1.0014	2.0115	3.04062	4.10276	5.21925	6.4251	7.7805	9.392
	1/64	1.00212	2.01752	3.06246	4.16044	5.34895	6.69228	8.3034	10.3824
	1/32	1.00331	2.02756	3.09939	4.25904	5.57365	7.16034	9.22516	12.1271
	1/16	1.00529	2.04428	3.16119	4.42528	5.9543	7.95366	10.779	15.0347
	1/8	1.00845	2.071	3.2601	4.69116	6.5605	9.20478	13.194	19.4772
	1/4	1.01309	2.11022	3.40467	5.07656	7.42785	10.9653	16.5303	25.5072
x_{0}	$1 / 2$	1.01908	2.16056	3.58848	5.55968	8.49595	13.0925	20.4908	32.5621
	1	1.0256	2.21492	3.78417	6.06528	9.59315	15.2399	24.4319	39.5088
	2	1.03147	2.2633	3.95592	6.5016	10.5249	17.0387	27.6994	45.2245
	4	1.03586	2.29924	4.08186	6.81716	11.1906	18.3117	29.9953	49.2213
	8	1.0387	2.32226	4.16178	7.0156	11.6057	19.1005	31.4117	51.6791
	16	1.04034	2.33558	4.20768	7.12884	11.8415	19.5468	32.2109	53.0662
	Infinity	1.04219	2.3504	4.25856	7.25372	12.1004	20.0357	33.0852	54.5798

