Supplement to: Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes

Chang-Young Park, Deborah K. Fygenson, and Omar A. Saleh

March 12, 2016

S1 DNA sequences

NTs are assembled from six oligos, with lengths and sequences given in Table S1. These six oligos are based on those used by Bertrand *et al.* [1], which in turn was based on sequences developed by Rothemund *et al.* [2]. Note that the naming scheme in Bertrand differs from that used in Rothemund; we refer here to the names used in Bertrand. We use oligos SE1 through SE5 exactly as in Bertrand. The sixth oligo is a truncation of the oligo termed SE6-2 in Bertrand, retaining bases five through thirty. The six oligos assemble into a tile. Tiles assemble into rod-like nanotubes at a density of 7 tiles every 14.5 nm. Given that each tile contains 174 nucleotides, with one charged phosphate per nucleotide, we arrive at a linear charge density of 84/nm, as utilized in the text.

S2 Calculating the effective charge of rods

Our model relies on the calculation of an effective line charge density, ν_{eff} , of the DNA NTs. This permits estimate of rod-rod and rod-plane electrostatic interactions using the formulas of Debye-Huckel solution electrostatics. The method is based on the work of Neukirch and Marko [3] and Stigter [4]. In particular, ν_{eff} is found from Neukirch and Marko's Eq. 1:

$$\nu_{eff} = \frac{\nu \lambda_D}{\gamma r K_1(r/\lambda_D)} \tag{S1}$$

where ν is the actual (bare) line charge density of the rod, λ_D is the solution Debye length, r is the rod radius, K_1 is the 1st modified Bessel function of the second kind, and γ is a numerical correction factor that varies with rod and solution parameters.

The value of γ is found from the numerical results of Stigter [4]. Stigter presents a table (his Table III) of values of γ calculated for a variety of values of the parameters x_0 and y_0 , where $x_0 = r/\lambda_D$, $y_0 = e\psi_0/k_BT$, ψ_0 is the potential at the surface of the cylinder, e is the electronic charge, and k_BT is the thermal energy. This table is reproduced here as Table S2.

Knowledge of biomolecular structure and solution conditions gives r, ν , and λ_D , but these do not determine the value of y_0 . To find γ , it is necessary to use a second correction parameter, β . β is a numerically-calculated parameter that interrelates x_0 and y_0 through the following equation (Stigter's Eq. 16):

$$\beta y_0 = \frac{2l_B \nu}{x_0} \frac{K_0(x_0)}{K_1(x_0)}.$$
(S2)

Stigter presents a table of values of β for a range of values of x_0 and y_0 (his Table II). However, Eq. S2 shows that the product βy_0 (and not β alone) can be directly calculated from the input parameters (r, ν, λ_D) . Thus, a more practically useful table is that of βy_0 as a function of x_0 and y_0 ; this is presented here as Table S3.

The procedure for finding the effective charge of the rod, given r, ν and λ_D , is then as follows:

- 1. Calculate $x_0 = r/\lambda_D$
- 2. Use Eq. S2 to calculate βy_0
- 3. Using x_0 and βy_0 , interpolate in Table S3 to find y_0
- 4. Using x_0 and y_0 , interpolate in Table S2 to find γ
- 5. Using γ , calculate ν_{eff} using Eq. S1

Here, we carry out interpolation using the Mathematica Interpolation function. For step 3, Table S3 is used to construct a first order interpolation function for y_0 over the space $(\log x_0, \beta y_0)$. For step 4, Table S2 is used to construct a second order interpolation function for γ over the space $(\log x_0, y_0)$.

References

- O. J. N. Bertrand, D. K. Fygenson and O. A. Saleh, Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 173427.
- [2] P. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson and E. Winfree, Journal of the American Chemical Society, 2004, 126, 1634452.
- [3] S. Neukirch and J. F. Marko, *Physical Review Letters*, 2011, 106, 138104.
- [4] D. Stigter, Journal of Colloid and Interface Science, 1975, 53, 296306.

Table S1: Sequences of oligos used to assemble the NTs

oligo name	length	sequ	ence												
SE1	37	CTC	AGT	GGA	CAG	CCG	TTC	TGG	AGC	GTT	GGA	CGA	AAC	Т	
SE2	26	GTC	TGG	TAG	AGC	ACC	ACT	GAG	AGG	TA					
SE3	42	CCA	GAA	CGG	CTG	TGG	CTA	AAC	AGT	AAC	CGA	AGC	ACC	AAC	GCT
SE4	26	CAG	ACA	GTT	TCG	TGG	TCA	TCG	TAC	СТ					
SE5	17	CGA	TGA	CCT	GCT	TCG	GT								
$SE6-2_{5-30}$	26	ATG	CAC	TAC	TGT	TTA	GCC	TGC	TCT	AC					

Table S2: Values of γ calculated by Stigter [4] for values of x_0 ranging from 1/128 to ∞ , and values of y_0 ranging from 1 to 8

		y_0								
		1	2	3	4	5	6	7	8	
	1/128	1.00274	1.01105	1.02516	1.04543	1.07241	1.1068	1.14944	1.20122	
x_0	1/64	1.00341	1.01374	1.03133	1.05671	1.09063	1.13401	1.18785	1.25298	
	1/32	1.0043	1.01735	1.03962	1.07185	1.11501	1.1702	1.23834	1.31989	
	1/16	1.00549	1.02218	1.0507	1.09198	1.14718	1.21729	1.30282	1.40337	
	1/8	1.00706	1.02852	1.06515	1.118	1.18812	1.27601	1.38127	1.50238	
	1/4	1.00904	1.03649	1.08311	1.14982	1.23711	1.34455	1.47052	1.61241	
	1/2	1.01137	1.04576	1.1037	1.18554	1.2908	1.41779	1.56374	1.72526	
	1	1.01383	1.05543	1.1248	1.22136	1.34338	1.488	1.65154	1.83017	
	2	1.01609	1.06244	1.14367	1.25274	1.38858	1.54738	1.72492	1.91709	
	4	1.01789	1.07112	1.15824	1.27661	1.42249	1.59145	1.77894	1.98073	
	8	1.01912	1.07581	1.16805	1.29251	1.44488	1.62036	1.81421	2.02215	
	16	1.01986	1.07865	1.17396	1.30203	1.45822	1.63751	1.83508	2.04664	
	∞	1.02075	1.08198	1.18083	1.31304	1.47356	1.65719	1.85898	2.07463	

Table S3: Values of βy_0 , based on Table II of Stigter [4], for values of x_0 ranging from 1/128 to ∞ , and values of y_0 ranging from 1 to 8

		y_0								
		1	2	3	4	5	6	7	8	
	1/128	1.0014	2.0115	3.04062	4.10276	5.21925	6.4251	7.7805	9.392	
x_0	1/64	1.00212	2.01752	3.06246	4.16044	5.34895	6.69228	8.3034	10.3824	
	1/32	1.00331	2.02756	3.09939	4.25904	5.57365	7.16034	9.22516	12.1271	
	1/16	1.00529	2.04428	3.16119	4.42528	5.9543	7.95366	10.779	15.0347	
	1/8	1.00845	2.071	3.2601	4.69116	6.5605	9.20478	13.194	19.4772	
	1/4	1.01309	2.11022	3.40467	5.07656	7.42785	10.9653	16.5303	25.5072	
	1/2	1.01908	2.16056	3.58848	5.55968	8.49595	13.0925	20.4908	32.5621	
	1	1.0256	2.21492	3.78417	6.06528	9.59315	15.2399	24.4319	39.5088	
	2	1.03147	2.2633	3.95592	6.5016	10.5249	17.0387	27.6994	45.2245	
	4	1.03586	2.29924	4.08186	6.81716	11.1906	18.3117	29.9953	49.2213	
	8	1.0387	2.32226	4.16178	7.0156	11.6057	19.1005	31.4117	51.6791	
	16	1.04034	2.33558	4.20768	7.12884	11.8415	19.5468	32.2109	53.0662	
	Infinity	1.04219	2.3504	4.25856	7.25372	12.1004	20.0357	33.0852	54.5798	