SUPPORTING INFORMATION

A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes

Zhengxing Cui[†], Mi Zhou[‡], Paula J. Greensmith[†], Wenkai Wang[†], Judith A. Hoyland^{‡, ±},

Ian A. Kinloch[†], Tony Freemont^{\ddagger , \pm} and Brian R. Saunders^{*,†}

[†]School of Materials, The University of Manchester, MSS Tower, Manchester, M13 9PL, United Kingdom.

[‡]Centre for Tissue Injury and Repair, Institute for Inflammation and Repair, Faculty of Medical and Human

Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom

[±] NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK

Table of contents		
I.	Figures	2
II.	Table	6
III.	Derivation of fractional coverage equation	7

Fig. S1. Potentiometric titration data for MG1 (a) and MG2 (b).

Fig. S2. Raman spectra for as-made and dispersed CNTs. (a) as-supplied CNT and (b) CNTs dispersed using MG1.

Fig. S3. Colloidal instability of mixed MG1/CNT dispersions at pH 5.0. After mixing, the MG and CNTs formed a macroscopic aggregate.

Fig. S4. SEM images showing the morphology of DX MG2/CNT_{1.0} gel composite. Individual MG2 particles can be seen from both images and are highlighted with arrows for (b).

Fig. S5. TGA data for DX MG1/CNT_{0.5}. The data were obtained by heating in a N_2 atmosphere at a rate of 10 °C/ min.

Fig. S6. Dynamic rheology data for various hydrogel composites. Black and red symbols apply to DX MG1/CNT and SX MG1/CNT, respectively. Frequency-sweep data are shown in the left hand column. The closed and open symbols are G' and tan δ , respectively. Strain-sweep data are shown in the right hand column. The closed and open symbols are G' and G'', respectively. The concentrations of CNT used to prepare the composite gels were 0 ((a) and (b)), 0.25 ((c) and (d)), 0.50 ((e) and (f)), 0.75 ((g) and (h)) and 1.0% ((i) and (j)).

Fig. S7. **Comparison of rheology data for DX MG1/CNT**_{1.0} **prepared at 37** °C and 50 °C. (a) Frequency-sweep data. (b) Stain-sweep data. For both figures G' and G'' values are shown as closed and open symbols, respectively. The legends show the temperatures used (° C).

II. Table

Table 51 characterisation data for the incrogets										
Abbreviation	Mol.%	Mol.%	$d_{n(SEM)}^{b}/$	$d_{h(4)}^{c}$	$d_{h(10)}^{c}/$	$Q_{MG(10)}{}^{\mathrm{d}}$	pK_a^{e}			
	MAA ^a	GMA ^a	nm	nm	nm					
MG1	38.2	8.0	74 (12)	77	278	47	6.3			
MG2	27.4	8.3	111 (17)	121	402	37	4.9			

Table S1 characterisation data for the microgels

^aCalculated from potentiometric titration data. ^b Number-average diameters determined from SEM. The number in brackets is the coefficient of variation. ^c The hydrodynamic diameters (d_h) at pH 4.0 and 10.0. ^d Swelling ratio calculated at pH 10.0 using $Q_{MG} = (d_{h(10)}/d_{h(4)})^3$. ^e The apparent p K_a values were determined from potentiometric titration data.

III. Derivation of equation for maximum average fractional coverage of MGs by CNTs

A simple derivation is given for an equation for the maximum average fractional coverage of MG particles by CNTs, i.e., $\theta_{MG(max)}$. The collapsed and swollen diameters for the MG particles are $D_{MG(coll)}$ and D_{MG} , respectively. The MG particles are present in the gel composite with a total dry volume fraction of $\phi_{MG(T)}$. The volume swelling ratio for the MG particles is $Q_{MG} (= (D_{MG}/D_{MG(coll)})^3)$. The average length and diameter of the CNTs are L_{CNT} and D_{CNT} , respectively, and the CNTs are present in the composite with a volume fraction of $\phi_{CNT(T)}$. Because of their very high aspect ratios CNT end effects are ignored in the following. The steps for deriving an expression for $\theta_{MG(max)}$ are to obtain expressions for the total surface areas of the MG particles $(A_{MG(T)})$ and the CNTs $(A_{CNT(T)})$ and then to use those expression to obtain the final equation for $\theta_{MG(max)}$.

An expression for $A_{MG(T)}$ can be obtained using the product of the number of MG particles present in the gel (N_{MG}) and the surface area for each MG particle (A_{MG}). An expression for N_{MG} can be found from the ratio of total dry volume of MG particles to the volume of an individual MG particle in the collapsed state.

$$N_{MG} = \frac{6\phi_{MG(T)}V_T}{\pi D_{MG(coll)}^3}$$
(S1)

For equation S1, V_T is the total volume of the composite gel. The following expression for $A_{MG(T)}$ can be found using equation S1, $A_{MG} (= \pi D_{MG}^2)$ and the equation for Q_{MG} (above).

$$A_{MG(T)} = \frac{6\phi_{MG(T)} V_T Q_{MG}^{2/3}}{D_{MG(coll)}}$$
(S2)

An equivalent approach was used for the CNTs to that described above which gave the following.

$$A_{CNT(T)} = \frac{4\phi_{CNT(T)}V_T}{D_{CNT}}$$
(S3)

From the ratio of equations S2 and S3 we obtain the final equation:

$$\theta_{MG(max)} = \frac{2\phi_{CNT(T)}D_{MG(coll)}}{3\phi_{MG(T)}D_{CNT}Q_{MG}^{2/3}}$$
(S4)