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1. Condition of inextensibility

The condition of inextensibility1-3 implies the contraction caused by wrinkles depends on the 
compressive strain εc, written as
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In our model, εc is the compressive strain caused by the interaction between two contrasted materials. 
To estimate the compressive strain simply, the periodic cell is assumed to be stretched with a strain ε. 
The elements with low elastic modulus (E1) and high elastic modulus (E2) will therefore deform with 

tensile strains  and  ( ) in stage 1 (Fig. 3), respectively. In stage 2, 2
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according to continuity and symmetry of deformation, the interaction between two vertical elements 

will cause the elements with low elastic modulus to be compressed with a strain  in the 1
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length direction. But this compressive strain also causes a tensile strain 1
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 in the width 

direction, where k is a constant. Oppositely, elements with high elastic modulus will be tensioned 

with a strain  in the length direction and undergo a compressive strain  in the 1
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width direction. As a result, in stage 3, the mismatched strains of the two elements in the width 
direction causes a compressive stress in the elements with low elastic modulus. The corresponding 

compressive strain caused by the compressive stress is . Considering the influence  
 2
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of the ratio of length to width of the element, Le/We, the condition of inextensibility can be expressed 
as 
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2. Numerical results for the wrinkling of the whole structured films

The wrinkling of the whole structured films under stretching is modeled by using the commercial 
FEM software ABAQUS (SIMULIA, Providence, RI, USA). The ratio of elastic moduli of the two 
materials (Er) is designed from 1.25 to 2.50 with a fixed length of element (Le) of 20.0 mm and Le 
changes from 12.5 mm to 30.0 mm with a fixed Er of 1.50. The shell element S4R and the linear 
elastic constitutive model are adopted. The size of each element is approximately 0.625 × 0.250 mm 
(length × width) in all regions. Geometric imperfections consisting of the superposition of several 
buckling modes with a maximum value of 0.01t are imposed at the nodes of the original planar mesh. 
We measure wavelengths of wrinkles for various structured films with increasing strain up to 20%. 
As shown in Fig. S1, the dimensionless wavelength λ0=λ(1-ν2)1/4Er

1/4Le
-1/2t-1/2 is linear with ε-1/4 with 

a prefactor of 2.75, which indicates that our theoretical scaling law with the prefactor 2.82 can be 
used to describe the wavelength of wrinkles.

Fig. S1 Plot of the dimensionless wavelength λ0=λ(1-ν2)1/4Er
1/4Le

-1/2t-1/2 against ε-1/4 for various 
geometries and material properties. The data are calculated by FEM based on the whole structured 
films and the applied tensile strain is up to 20% (full line: scaling law λ0=2.75ε-1/4). We = 10.0 mm 

and t = 0.025 mm.

3. Numerical results for the wrinkling of a periodic cell

In order to simplify the numerical calculation, we also use a periodic cell to calculate the 
wrinkling of the structured film under stretching. The periodic boundary condition is applied to all of 
the boundaries of the cell. The mid-perpendicular lines of the elements with high elastic modulus are 
constrained by using zero out-of-plane displacement. We measure the wavelengths of the wrinkles in 
the periodic cell, as shown in Fig. S2a, and find that the value λ0=λ(1-ν2)1/4Er

1/4Le
-1/2t-1/2 remains 
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linear with ε-1/4 for various geometries and material properties, as shown in Fig. S2b, but the 
prefactor is 2.63, which is smaller than the 2.75 obtained by the FEM based on the whole structured 
film. The wrinkling satisfies our scaling law well, although the FEM calculation based on the 
periodic cell results in a smaller wrinkle wavelength. The reason is that the constraint of out-of-plane 
displacement on the mid-perpendicular line of the elements with high elastic modulus enhances the 
stretching energy of R2.

Fig. S2 Plots of (a) wavelength λ against ε and (b) dimensionless wavelength λ0=λ(1-ν2)1/4(Er)1/4Le
-

1/2t-1/2 against ε-1/4 for various geometries and material properties. The data are calculated by FEM 
based on a periodic cell and the applied tensile strain is up to 30% (full line: scaling law λ0=2.63ε-1/4). 

W0 = 10.0 mm and t0 = 0.025 mm.

4. Scaling law for the amplitude of wrinkles and numerical results

The scaling law for the wavelength of the wrinkles is given as
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Substituting this expression of λ into eqn (S2), the amplitude of wrinkles is expressed as
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From the scaling law, the amplitude of wrinkles on the structured film also depends on the 
dimensions of the elements, stretching strain and material properties. This scaling law is effective 

when Er≤5, because a larger Er than 5 will make the wrinkles deform seriously and deviate the sine-

shape morphology. The amplitude is increased with the increasing Er, Le and ε. We also use a 
periodic cell to calculate the wrinkling and measure the amplitude of the wrinkles. The value 
A0=A(1-ν2)1/4Er

-1/4 (Er-1)-1/2(Er+1)Le
-1We

1/2t-1/2 is linear with ε1/4 for various geometries and material 
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properties with a prefactor 2.04, as shown in Fig. S3. However, the accuracy of the scaling law for 
the amplitude is much less than that for the wavelength and needs to be studied further.

Fig. S3 Plot of the dimensionless amplitude A0=A(1-ν2)1/4Er
-1/4 (Er-1)-1/2(Er+1)Le

-1We
1/2t-1/2 against ε1/4 

for various geometries and material properties. The data are calculated by FEM based on a periodic 
cell and the applied tensile strain is up to 20% (full line: scaling law A0=2.04ε1/4). We = 10.0 mm and 

t = 0.025 mm.
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