Electronic Supplementary Information

Dually cross-linked single network poly(acrylic acid) hydrogels with

superior mechanical properties

Ming Zhong^a, Yi-Tao Liu^a, Xiao-Ying Liu^a, Fu-Kuan Shi^a, Li-Qin Zhang^a, Meifang Zhu^b and Xu-Ming Xie^{a*}

^aKey Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

^bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

*E-mail: <u>xxm-dce@mail.tsinghua.edu.cn</u>

Fig. S1 Influence of (a) Bis, and (b) Fe^{3+} contents on the initial modulus and fracture toughness of the *d*-PAA gels.

Fig. S2 Influence of Fe³⁺ content on the macromolecular weight of the *i*-PAA gels.

First, the *i*-PAA gels (free of Bis) were added to a certain amount of chelating agent solution, ethylene diamine tetraacetic acid (EDTA), and stirred at room temperature till the *i*-PAA gels were dissolved completely. After that the solution was dialyzed for 1 week in order to remove the Fe³⁺ ions and chelating agent. Linear PAA was separated from the solution by neutralization with NaOH and then by precipitation with methanol. The viscosity measurements were performed by a standard Ubbelhode viscometer, in 0.1 mol L⁻¹ NaBr solution, at 25 °C and pH = 7. The viscous average molecular weight (M_n) of PAA from the *i*-PAA gels was measured and calculated, according to the Mark-Houwink-Sakurada equation:

$$[\eta] = kM_n^{\alpha}$$

We used Francois relation¹: $K = 3.12 \times 10^{-5} L g^{-1}$, $\alpha = 0.755$.

$$[\eta] = 3.12 \times 10^{-5} M_n^{0.755} (g \text{ mL}^{-1}).$$

Fig. S3 Influence of water content on the modulus and toughness of the *d*-PAA gels.

Fig. S4 Influence of Bis content on the storage modulus of the *d*-PAA gels

Fig. S5 Typical stress–strain curves of the self-healed *d*-PAA gels ($Fe^{3+} = 0.5 \text{ mol}\%$, Bis = 0.05 wt%, $H_2O = 80 \text{ wt}\%$) with (a) temperature and (b) time as a function.

Fig. S6 Typical stress–strain curves of the self-healed *d*-PAA gels ($Fe^{3+} = 0.5 \text{ mol}\%$, Bis = 0.05 wt%) with different water contents.

Fig. S7 Typical stress–strain curves of the self-healed *d*-PAA gels (Fe³⁺ = 0.5 mol%, Bis = 0.05 wt%, $H_2O = 70$ wt%) with time as a function.

Notes and references

S1. J. Brandrup, E. H. Immergut, E. A. Grulke, *Polymer Handbook*. John Wiley & Sons, Inc.: New York, 1999.