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I. EXPLAINING TRANSLATION-ROTATION
COUPLING FOR ASYMMETRIC PARTICLES

A particle suspended in a fluid like water undergoes both
translational and rotational Brownian motion due to ran-
dom collision with solvent particles surrounding it which
have been detected using video camera [1] and other tech-
niques [2]. However, an important aspect of Brownian
dynamics that remained almost unattended is the cou-
pling between the translational and rotational Brown-
ian motion inside an optical trap except occasionally [3].
When we are dealing with a complex shaped particle like
deformed RBC the coupling term should be prominent as
opposed to a sphere or ellipsoid. Any complex body with
a propeller like shape will have a coupling term, which
causes a complex Brownian motion. A typical example
has been shown in Fig. 1.

FIG. 1. The shape of a random particle can be described a
simple model as shown in the figure. There are two parts
of the particle which can be assumed to be symmetric about
the centre of the incident beam. Both of the sections scat-
ter trapping light at different angles and thereby get different
amounts of recoil in the horizontal plane. It is this asymme-
try that causes both the extra force in translational and the
extra torque in rotational dynamics of the particle, thereby
correlating motion in these degrees of freedom.

If there is an asymmetry in the two sections of the
body, it can be assumed to have an equivalent shape as
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in the Fig. 1. The net torque and the force acting on
the object (assuming the mid point of the object to be
origin) are then given by the following equations.

P1 cos(α1)− P2 cos(α2) = F1 (1)

(P1 cos(α1) + P2 cos(α2)) a = τ1, 00 (2)

Where the length of the RBC is approximately 2a. The
P1 and P2 indicate the fraction of light from the inci-
dent light beam which are incident on both the parts of
the particle as indicated in the Fig. 1. If the particle is
symmetrically located about the trapping beam, the P1

and P2 are equal, when. As soon as the mid point of the
particle is displaced from the center of the beam, it shall
experience different P1 and P2. This will then cause a
torque that tries to cause further translational displace-
ment to the particle. Thus the translational motion gets
coupled to the rotational motion through the asymmetry
of the particle.

II. AUTOCORRELATION OF x AND θ

FIG. 2. The red curve indicates the normalised translational
and blue curve the normalised rotational autocorrelation func-
tions (NACF). These functions are almost identical but their
amplitude is about 0.01.

In our case, the Brownian motion - both rotational and
translational - can be described by the Langevin equation
[4], where we add two coupling terms to cross-couple the
rotation and the translation equations. Therefore, the
final equation becomes:

γ1
dx(t)

dt
+ κxx(t) + γ2ω1θ(t) = (2kBTγ1)1/2ζx(t) (3)

γ2
dθ(t)

dt
+ κθθ(t)− γ1ω2x(t) = (2kBTγ2)1/2ζθ(t) (4)

where κx denotes the force constant of the optical trap for
translational motion, while κθ is that for rotational mo-
tion that is polarization-dependent (i.e. it tries to orient
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TABLE I. Table showing the comparison of D from fit and from theory for Normal (NRBC), moderately deformed (MoRBC),
and maximally deformed (MaRBC) RBC.

NCCF NDCCF

RBC type
D from fit Calculated D D from fit Calculated D

(rad) (rad) (rad) (rad)

NRBC -0.05(02) -0.48(13) -0.08(2) -0.40(06)
MoRBC -0.30(08) -0.48(13) -0.25(06) -0.46(04)
MaRBC 0.9(1) 0.56(12) 0.75(08) 0.56(06)

an object with optics axis along the polarization of the in-
put laser beam for both birefringence-driven rotation and
that due to asymmetric scattering). (2kBTγ1)1/2ζx(t)
and (2kBTγ2)1/2ζθ(t) are two independent Gaussian ran-
dom noise (kB being the Boltzmann constant), which
represent the Brownian forces at absolute temperature T
for both x and θ coordinate systems. In the above equa-
tions γ2ω1θ(t), and γ1ω2x(t) denote the coupling between
x and θ. We solve for x and θ by taking the derivative
of eq. 3 and plugging into eq. 4 to get a second order
differential equation. We approximate the solution to

x = x0e
iP t (5)

θ = θ0e
iQt (6)

and then solve for P and Q.
We then proceed to compute the autocorrelations for

translational and rotational motion in the method out-
lined in Ref. [5], so that

< x(t)x(t+ δt) > =
αkBT

κx
e−(κx/γ1+κθ/γ2)/2|δt| cos(Cδt),

< θ(t)θ(t+ δt) > =
αkBT

κ<theta
e−(κx/γ1+κθ/γ2)/2|δt| cos(Cδt),

(7)

where, A is the amplitude whose functional form we
are not able to determine presently, but which we find
from experiments to be extremely sensitive as a mea-
sure of asymmetry, changing by a large amount for dif-
ferent types of RBCs. B = (κx/γ1 + κθ/γ2)/2, and

C =
√
ω1ω2 − (κx/γ1 − κθ/γ2)2/4 is a coupling factor.

The correlation functions have been normalised as fol-
lows.

NACF (x) =
< x(t) x(t+ δt) >

< x2(t) >
,

NACF (θ) =
< θ(t) θ(t+ δt) >

< θ2(t) >
. (8)

III. DETERMINATION OF ω1ω2

We have

C =
√
ω1ω2 − (κx/γ1 − κθ/γ2)2 (9)

Now, we assume that (κx/γ1) >> (κθ/γ2), so that

ω1ω2 = B2 + C2 (10)

IV. CONSISTENCY CHECK OF D

The cross-correlation function (CCF) between the
translational and rotational Brownian motions [6] is given
by:

< x(t)θ(t+ δt) > =
AkBT√
κxκθ

e−(κx/γ1+κθ/γ2)/2|δt|

cos(Cδt+D),

< x(t)θ(t+ δt) > =
AkBT√
κxκθ

e−B |δt| cos(Cδt+D).(11)

Here, tan(D) = B/C. We also have the differential cross-
correlation, DCCF , the difference of two CCF s [7], as

< x(t)θ(t+ δt)− θ(t+ δt))x(t) >=

αkBT√
κxκθ

e−B |δt| (cos(Cδt+D)− cos(Cδt−D))(12)

Now, the value of D acts as a consistency check for the
values of B and C, since tan(D) = B/C, and the fit val-
ues of D can thus be compared independently to that
obtained from this relation. Table I shows that we ob-
tain matches for all three types of RBCs considering the
overlaps of error bars at the 3σ level† for both the CCF
and DCCF .

V. EXPERIMENTAL SETUP AND SAMPLE
PREPARATION

The experimental setup is described in detail in
Ref. [8]. The trapping laser is a linearly polarized 1064
nm diode laser with maximum power 500 mW, coupled
into the back port of an inverted microscope using cou-
pling optics. The scattering from trapped objects is mea-
sured through the side port using a quadrant photodiode
(QPD) that has been extracted from a commercial CD
player head (chip Sony KSS-213C) [8]. Imaging is also
done through this side port using a video camera. The
sample chamber is constructed using a standard micro-
scope glass slide and a glass coverslip which are stuck
together using a double sided tape. About 50µl of the
aqueous solution sample is loaded in the chamber. For
isolating individual RBCs, we collected about 50 µl blood
sample from a healthy donor and diluted it in 1 ml of
saline (0.9 percent w/v NaCl in H2O) water to prepare
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the stock solution. 10 µl of anti-coagulating agent Hep-
arin was added into this stock solution to prevent clump-
ing of RBC. The solution was further diluted by mix-
ing 200 µl of the stock solution into 1 ml of 2 percent
w/v saline solution. The degree of salinity was varied to
control the shape of the RBC. The sample was kept at
4 degC so that RBC did not disintegrate within a day.
Data for translational and rotational Brownian motion
are acquired at a sampling frequency of 40KHz taken for
5 seconds using NI PCIe-6361 data card.

VI. MEASUREMENT OF POWER SPECTRAL
DENISTY

The measurements of Brownian motion are performed
with a quadrant photodiode, and we use the technique
we recently developed to detect rotational and transla-
tional motion simultaneously by measuring the sum and
difference of the signals from the diagonal quadrants of
the QPD [9]. The rotational and translational data are
acquired at a sampling frequency of 40KHz taken for 5
seconds. Typical time series for translational and ro-
tational Brownian motion for normal RBC are given in
Fig. 1(d) of the main paper. The histograms of the time
series data fit well to Gaussian distributions - a sample
of which is shown in Figs. 1(e) in the main paper. Corre-
sponding power spectral densities (PSD) for both trans-
lational and rotational motion are obtained by averaging
over 25 individual spectra, as we show in Fig. 3(a). We
also check that our signal PSD for RBCs is substantially
higher than that of the noise floor of the setup†, as is
clear in Fig. 3(b). As is clear from the comparison of the
two figures, the S/N of both the rotational and transla-
tional PSD are between 102−104 times higher than that
of the noise floor PSD.

(a) (b)

FIG. 3. (a) PSD for translational and rotational Brownian
motion. (b)PSD of noise floor of our setup. It is clear that
the S/N of both the rotational and translational PSD are
between 102 − 104 times higher.

VII. DISCUSSION ON RBC MEMBRANE
FLUCTUATIONS

The red blood cell membrane is a lipid bilayer under
tension. This membrane can exhibit excitations due to
the thermal effects.while membrane fluctuations in RBCs
have led to interesting and intriguing research presently,
our technique of studying the cross-correlation between
rotational and translational Brownian motion is not re-
ally sensitive to those. To explain why, let us take a closer
look at our rotational detection system. We take the light
scattered in all four quadrants of a QPD and then take
the difference in diagonal quadrants. Thus, any possible
motional modes which may be radially symmetric would
get cancelled out in this way. Now, the theory of thermal
membrane fluctuations are well established. Let us take
examples of Refs. [10–12]. It is clear that the fluctuation
modes considered are well fitted to a function〈

|u(q)|2
〉

=
kBT

σ2 + κq4
(13)

where, σ is the surface tension, κ is the membrane bend-
ing modulus, and q = n/R, n being an integer and R the
radius of the spherical object. The backscatter pattern
for all of these modes are going to be radially symmet-
ric and hence would lead to zero signal when used with
the diagonal difference technique. The non-radial modes
are only much higher order modes and their contribu-
tion to the power spectrum would be much smaller than
the modes mentioned in Eq. 13. Further, if the RBC be-
comes ellipsoidal, it will line up with the sides being along
opposite halves of the QPD. The technique of detection
of rotational motion will still cancel out such breathing
modes.

The fact that we have an offset in the cross correla-
tion function while the autocorrelation functions have no
offset in time tells us that the diagonal difference tech-
nique is indeed picking up some non-zero signal which is
correlated to the translational motion. The translational
modes are essentially due to Brownian motion as the size
of the RBC is comparable to the laser focal spot. Besides,
membrane fluctuations are typically detected by focusing
a laser beam at the sides of RBCs [11, 12], while in our
case we typically focus the beam near the RBC center.
Hence, the probability of detecting translational Brow-
nian motion is overwhelmingly stronger. Finally, in our
technique, only the rotational Brownian motion could be
correlated to the translational Brownian motion and not
the membrane fluctuations.
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