Electronic supplementary information

HIGHLY EMISSIVE 'FROZEN-IN' CONJUGATED POLYMER NANOFIBERS

Young-Jae Jin,^a Wang-Eun Lee,^b Chang-Lyoul Lee*c and Giseop Kwak*a

^a School of Applied Chemical Engineering, Major in Polymer Science and Engineering, Kyungpook National University 1370 Sankyuk-dong, Buk-ku, Daegu 702–701, Korea

^b Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600, Korea

^c Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju, Korea **Figure S1.** SEM images of the PDPA-d nanofibers obtained from the frozen solutions of PDPA-d in benzene with different concentrations.

Figure S2. FL-emission spectra of the PDPA-d nanofibers before and after a) mechanical pressing, b) exposure to liquid hexane, and c) thermal annealing.

	FL-emission properties					
(M)	$\lambda_{ ext{FLmax}}$	$\Phi_{\rm FL}{}^{\rm a)}$	TCSPC ^{b)}			
	(nm)	12	τ_1 (ns), f_1	τ_2 (ns), f_2	χ^2	$ au_{\mathrm{avr}} (\mathrm{ns})$
1.0×10 ⁻⁴	512	0.34	1.46, 0.32	0.40, 0.68	1.42	0.74
1.0×10 ⁻³	526	0.28	1.37, 0.31	0.37, 0.69	1.42	0.68
1.0×10^{-2}	534	0.18	1.01, 0.18	0.25, 0.82	1.39	0.39

Table S1 FL-emission properties of the PDPA-d nanofibers obtained from the frozensolutions of PDPA-d in benzene with different concentrations

^{a)} Determined as the absolute FL quantum yield with an integrating sphere and a quantumefficiency calculation program at an excitation wavelength of 420 nm. ^{b)}Monitored at 525 nm, where τ_1 and τ_2 are the FL lifetimes, f_1 and f_2 are the fractional intensities, and χ^2 is the reduced chi-squared; $\tau_{avr} = \tau_1 f_1 + \tau_2 f_2$.