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A Method and explicit results

A.1 General Method

We define the stress-strain relationship for a linear isotropic medium by σij =
E

(1+ν)

(
ν

(1−2ν)εkkδij + εij

)
and εij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
where σij and εij are the

stress and strain tensor respectively, and xi, xj ∈ (x, y, z) are the principal
axes in Cartesian space, while E,ν are the Young’s modulus and Poisson ratio
respectively. Using these definitions in Eq. 1 yields Eq. 2 that appears in the
text. This can further be written in matrix form as:

M~u = −~f , Mij = αkkδij + βij(1− δij) (A.1)

HereM is a 3X3 response matrix with α(β) the diagonal(off-diagonal) elements
which are determined by the expressions for the viscous forces fv listed in Ta-
ble 1.

The force exerted by the cell (or probe) is modeled by two equal and opposite
contractile forces. separated by a distance z0 along the z-axis. Thus fx = fy = 0
and the contraction along the z-axis is given by:

fz = −F (δ(z − z0)− δ(z + z0))G(t) (A.2)

where G(t) = Θ(t) is the Heaviside theta function (step function) for the static
contraction, and G(t) = 1/2(1 + cos(ω0t))Θ(t) for the dynamically oscillating
force. To further simplify the calculations we use the dipole approximation
limit in which the distance between the probe and cell (or the two cells) is much
greater than the cell size (r � z0).

We define the Fourier transform f(~q) of any function in real space f(~r) as

f(~q) =
1√
2π

∫ ∞
−∞

f(~r)ei~q·~rd~r (A.3)

and the inverse Fourier transform as

f(~r) =
1√
2π

∫ ∞
−∞

f(~q)e−i~q·~rd~q (A.4)

where ~q is defined in spherical coordinates with boundaries 0 < q < ∞ , 0 <
θ < π , 0 < φ < 2π. The temporal Fourier transform is defined as:

f(~ω) =
1√
2π

∫ ∞
−∞

f(t)eitωdt (A.5)

The q-space expression for the temporal Fourier transform of the displacement
thus becomes:

ux(q, ω) = 2Fz0(1+ν)
E(1−ν)

q3 sin θ cos2 θ cosφG(ω)

(q2− 2iγ(1+ν)ω
E )(q2− iγ(1+ν)(1−2ν)ω

E(1−ν) )

uy(q, ω) = 2Fz0(1+ν)
E(1−ν)

q3 sin θ cos2 θ sinφG(ω)

(q2− 2iγ(1+ν)ω
E )(q2− iγ(1+ν)(1−2ν)ω

E(1−ν) )

uz(q, ω) = − 2Fz0(1+ν)
E(1−ν)

q cos θ(q2(sin2 θ+
(1−2ν)
2(1−ν) )−

iγω(1+ν)(1−2ν)
E )G(ω)

(q2− 2iγ(1+ν)ω
E )(q2− iγ(1+ν)(1−2ν)ω

E(1−ν) )

(A.6)

2



with G(ω) the Fourier transform of the expression for a static, or dynamic dipole
as described above. We then use the definition of the inverse transform to ob-
tain the real space displacement ui(~r). To obtain the strain εij , we differentiate
the expression for ui in q-space, which correspond to multiplication by a factor
of −iqi, and apply the inverse transform.

A.2 Static dipole solution

For simplicity, we examine the propagation of the elastic signal along the three
principal directions. Note that due to rotational symmetry of the geometry, the
x and y components of the displacement field ui are identical. The same goes
for the respective components of the strain field εij where i or j are either x or y.

The displacement field (along the x, and z axes) induced by a static force
dipole of magnitude P = Fz0 that begins to contracts at time t = 0 (and
remains contracted for t > 0) is given by:

ux(r, 0, 0, t) = Fz0(1+ν)
8πE(1−ν)r2

[
1 + 1

(χ2
s−χ2

c)

{
3√
π

(
χce
−χ2

c − χse−χ
2
s

)
+
(
χ2
c − 3

2

)
erf(χc)−

(
χ2
s − 3

2

)
erf(χs)

}]
uz(0, 0, r, t) = −Fz0(1+ν)

4πEr2

[
1 + 1

χ2
s

{
3√
π

(
χce
−χ2

c −
(
χs + 2

3χ
3
s

)
e−χ

2
s

)
+
(
χ2
c − 3

2

)
erf(χc) + 3

2erf(χs)
}]

(A.7)

We defined two new dimensionless variables, χc =
√

γ(1+ν)(1−2ν)r2

4E(1−ν)t and χs =√
γ(1+ν)r2

2Et (where for ux, r = x and for uz, r = z), corresponding to the two

modes of signal propagation in our system (compressional mode and shear mode
respectively). The elastic signal propagates into the medium from the dipole
in a diffusion-like manner. At time t = 0 the deformation begins to propagate
into the matrix from the dipole until,at long times (χi � 1), the deformation
relaxes to its equilibrium value, noted by ueqi (x, y, z):

ueqx (r, 0, 0) = Fz0(1+ν)
8πE(1−ν)r2

ueqz (0, 0, r) = −Fz0(1+ν)
2πEr2

(A.8)

Additionally, one can calculate the equilibrium strain in the medium along
the axes εeqij (x, y, z) by taking the spatial derivative of the displacement:

εeqxx(r, 0, 0) = − Fz0(1+ν)
4πE(1−ν)r3

εeqzz(r, 0, 0) = Fz0(1+ν)(4ν−1)
4πE(1−ν)r3

εeqzz(0, 0, r) = Fz0(1+ν)
πEr3

(A.9)

3



Note that the steady-state displacement has a power law decay proportional
to r−2 (r−3 for the strain).

The characteristic time scale for relaxation depends on the distance between
the point of interest in the medium and the dipole as well as the viscosity of
the medium through which the strain and stress propagate. In the limit of an
incompressible matrix (ν → 1/2) the compressional mode propagates infinitely
fast. In this case, the system is dominated by the shear mode. Thus, we focus
on the shear mode denoted by the dimensionless variable χs. The friction co-
efficient γ can be estimated using the properties of the matrix from γ = η/d2

where η is the kinematic viscosity of water and d is the characteristic pore size
within the polymeric network of the gel [1]. For cells in hydrogel matrices, we
estimate d ≈ 15 nm [2] which yields γ ≈ 3.5 ∗ 1012 Pa·s/m2 . By taking the
gel to be nearly incompressible (ν = 0.49) and with a stiffness E = 10 kPa
(comparable to biological tissue), we calculate the time required for the elastic
signal to travel a distance of r = 100 µ m of the order of 1 second.

A.3 Oscillating dipole solution

We list here the full expressions of the displacement and strain fields presented in
the text. The steady state displacement ussi (x, y, z, t), and strain εssij (x, y, z, t),
due to a dynamically oscillating force dipole, can be written as a sum of a static
part denoted by the superscript “eq” (defined by Eq. A.8,A.9), and an additional
dynamical part written in capital letters:

ussi (x, y, z, t) = 1
2 [ueqi (x, y, z) + Ui(x, y, z, t)]

εssij (x, y, z, t) = 1
2 [εeqij (x, y, z) + Eij(x, y, z, t)]

(A.10)

The explicit result for the displacement along each axis is given by:

ussx (r, 0, 0, t) =
Fz0(1 + ν)

16πE(1− ν)r2

[
1 +

1

ρ2
s − ρ2

c

[
e−ρc

(
(3ρc + 2ρ2

c) cos Ωc) + (3 + 3ρc) sin (Ωc)
)

−e−ρs
(
(3ρs + 2ρ2

s) cos (Ωs) + (3 + 3ρs) sin (Ωs)
)] ]

ussz (0, 0, r, t) = −Fz0(1 + ν)

4πEr2

[
1 +

1

ρ2
s

[
e−ρc

(
(3ρc + 3ρ2

c + ρ3
c) cos (Ωc) + (3 + 3ρc − ρ3

c) sin (Ωc)
)

−e−ρs
(
(3ρs + 2ρ2

s) cos (Ωs) + (3 + 3ρs) sin (Ωs)
)] ]

(A.11)
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and the steady state strain along the axes is:

εsszz(0, 0, r, t) = Fz0(1+ν)
2πEr3

[
1 + 1

ρ2s

(
e−ρc

(
(6ρc + 6ρ2

c + 2ρ3
c) cos (Ωc) + (6 + 6ρc + 2ρ3

c − ρ4
c) sin (Ωc)

)
−e−ρs

(
(6ρs + 5ρ2

s + ρ3
s) cos (Ωs) + (6 + 6ρs − ρ3

s) sin (Ωs)

))]
εsszz(r, 0, 0, t) = Fz0(1+ν)(4ν−1)

8πE(1−ν)r3

[
1 + 1

ρ2s−3ρ2c

(
e−ρc

(
(9ρc + 8ρ2

c + 2ρ3
c) cos (Ωc) + (9 + 9ρc − ρ3

c) sin (Ωc)
)

−e−ρs
(
(9ρs + 6ρ2

s) cos (Ωs) + (9 + 9ρs − 3ρ3
s) sin (Ωs)

) )]
εssxx(0, 0, r, t) = εssxx(r, 0, 0, t) = − Fz0(1+ν)

4πE(1−ν)r3

[
1 + 1

ρ2s−ρ2c

(
e−ρc

((
6ρc + 5ρ2

c + ρ3
c

)
cos (Ωc)

+
(
6 + 6ρc − ρ3

c

)
sin (Ωc)

)
− e−ρs(

(
6ρs + 5ρ2

s + ρ3
s

)
cos (Ωs) +

(
6 + 6ρs − ρ3

s

)
sin (Ωs)

)]
(A.12)

Here we define the dimensionless parameters ρc = κcr, ρs = κsr (based on
the notations in the text), and Ωi = ω0t− ρi

Note that the time dependent terms in both the displacement and strain de-
cay exponentially in space as exp[−κir], and that this exponential decay is not
the same as the diffusive response of the transient term as discussed above for
the static case. To better understand that, we calculate the root mean square of
the dynamical part of the displacement Udyi (x, y, z, t) (and strain Eij(x, y, z, t)),
using Eq. 6 averaged over a time of one cycle, T = 2π/ω0:

RMS(r, κc, κs) =
√
< U2

i > =

(
ω0

2π

∫ 2π
ω0

0

U2
i dt

)1/2

(A.13)

with a similar formula used for the strain. In Fig. A.1 we plot, as an ex-
ample, the RMS of the displacement and strain as a function of the distance
between the probe and cell r, for both incompressible (ν = 0.5) and completely
compressible (ν = 0) media, using the parameters E = 104 Pa, γ = 3.5 · 1012
Pa·s/m2 and ω0 = 2π rad/s. Note that in all cases, the dynamical contribution
decays as a power law up to r ≈ 100µm, but than begins to decay exponentially
(much faster in space). This is a demonstration of the role of the dynamical
length scale 1/κc discussed in the text.
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Figure A.1: RMS of the dynamical contribution of the displacement (A,B) and
strain (C,D), normalized by Fz0/γω0, as a function of distance r away from
the dipole The results of Eq. A.13 (and the similar equation for the strain) are
plotted on a log-log scale, and the chosen parameters are E = 104 Pa, γ = 1012

Pa·s/m2 and ω0 = 2π/T where T = 1 sec. The full–orange line corresponds to
a Poisson ratio ν = 0.5, and the dashed–blue line corresponds to a Poisson ratio
ν = 0.
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B Matrix deformation as a function of phase of
two, non-interacting, beating force dipoles.

Since the medium is linearly elastic, all deformations induced by external forces
(dipoles) are additive. This is evident by examining the case of two, non-
interacting nearby dipoles as in Fig. B.1, both aligned along the z-axis, and
a distance x0 apart along the x-axis (one located at x = −x0/2 and the other
at x = x0/2).

Note that for this new geometry, the x and y axes are no longer equivalent
by symmetry. In this case dipoles beat at the same frequency, and can have
a phase difference ψ that is constant and which, in general, might be different
from zero since their beating is not necessarily activated at the same time. This
is applicable to two sarcomeric units beating in close proximity or, on a larger
scale, two nearby cardiomyocytes.

Figure B.1: A pair of force dipoles that are oriented along the z-axis and sepa-
rated by a distance x0 along the x-axis.

We calculate the time dependent displacement of the medium under steady-
state conditions (using superposition, as appropriate to a linear elastic medium).
One can show that in this case, the oscillatory, steady-state displacement in the
matrix uos,2i due to the superposition of the two dipoles perpendicular to the
line joining the two dipoles (i.e., along the z and y axes) is:

uos,2y (0, r, 0, t) = 2uosy cos
ψ

2

uos,2z (0, 0, r, t) = 2uosz cos
ψ

2

(B.1)

If both dipoles beat in-phase (ψ = 0) the displacement of the medium between
the cells is effectively doubled while if the two beat in anti-phase (ψ = π) they
cancel each other’s effect and the displacement of the medium is zero. This
simple result is an outcome of the dipole approximation (z0 � r). In the
immediate vicinity of both cells there can be additional effects due to the finite
spacing between the two force centers that comprise the dipole; in the dipole
approximation this distance is taken to be much smaller than the distance at
which the strain or stress are considered.
For the deformations of the medium along x-axis, we take the limit of x0 << r
and expand the superimposed solution for two dipoles separated by a distance
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x0 along the x direction to find:

uos,2x (r, 0, 0, t) = 2

(
uosx cos

ψ

2
+
x0

r
Uos(ρc, ρs) sin

ψ

2

)
(B.2)

Where Uos is a time independent function of ρc, ρs, similar to uosx , which
tend to 0 for ρi →∞ and to a decay that scales as r−2 for ρi → 0. This implies
that both in-phase and out-of-phase terms decay in the same manner for regions
in the medium that are far from both dipoles, but at small distances, the finite
separation between cells allows the possibility of an out-of-phase component.
It can thus be seen that between the two dipoles (and as long as κcx0 < 1),
an out-of-phase term is present due to the finite velocity of signal propagation
in the dissipative medium. By taking the limit of close proximity (x0 → 0), a
quadrupole is essentially created and the out-of-phase term vanishes.
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C Derivation of the elastic free energy

In this appendix, we show how the elastic deformation energy of the matrix that
reflects the interaction due to the work performed by one contractile cell against
the displacement of the matrix induced by the nearby cell or probe, can be writ-
ten in the form of Eq. 4, as the product of the force dipole of one cell with the
strain induced by the other cell. This energy gives rise to a stress (given by the
derivative of the energy with respect to the strain [3]) whose divergence in space
(as a function of the distance between the two cells) results in a force that acts on
the adhesions of the cell (see Eq. 5). We note that the total elastic deformation
energy of the matrix also includes terms (usually called “self energies”) in which
the forces of a given cell interact with the displacements caused by the same
cell. But these are not relevant to the forces exerted by one cell upon the other
and we thus focus only on the “interaction” terms and not on the “self energies”.

We begin with the Green’s function for a point force located at ~r′ in an
infinite elastic medium, which is a function of the distance from said point
|~r − ~r′|, and is given by [3]:

Gij(~r − ~r′) =
(1 + ν)

2πE

[
δij

|~r − ~r′|
− 1

4(1− ν)

∂(|~r − ~r′|)
∂xi∂xj

]
(C.1)

where xi, xj are any of the principal directions in Cartesian space (x, y, z), ν
is the Poisson ratio and E the Young’s modulus. The deformation induced by a
point-force Fi located at ~r′ is given by uj(~r) = FiGij(~r − ~r′). The deformation
energy, H, that arises from the work done by a local force located at ~r (say, one
end of the cell) interacting with the displacement of the medium generated by

a second point force at ~r′ (say, a probe or one end of another cell) is a scalar
quantity, and is thus given by:

H = Fjuj(~r) = FjFi Gij(~r − ~r′) (C.2)

where we use the summation convention over repeated indices. Note that
since this is a scalar product, the components of the force vector in each di-
rection are coupled only to the components of the displacement along the same
direction. For example, a point force located at ~r = 0 that acts in the z-direction
(Fx = Fy = 0, Fz 6= 0) is coupled only to the local deformation at ~r = 0 induced

by the second point force located at ~r′, along the same direction (i.e, uz(0) ).
Thus, we can always choose the coordinate system so that one force points along
any of the major axes, and interacts with the displacement induced by another
force (pointing in a general direction) along that same axis, without loss of gen-
erality.

We now examine the special case of a cell comprising two equal and opposite
forces separated by a vector distance ~a, with the center between the two forces
located at point ~r′. This description is appropriate in the case of needle-like
cells as discussed in the main text. The displacement induced by such a cell at
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any point ~r is written as:

udj (~r) = Fi G
d
ij(~r − ~r′,~a) = Fi

[
Gij(~r − (~r′ − ~a/2))−Gij(~r − (~r′ + ~a/2))

]
(C.3)

For ~r − ~r′ � ~a, we expand the Green’s function in powers of the inter force
distance a:

Gdij(~r − ~r′,~a) ≈ ak
dGdij
dak

∣∣∣∣∣
~a=0

= ak
dGij
dr′k

(~r − ~r′) (C.4)

where the displacement field arising from this approximation can be written
in terms of the force dipole moment pij = Fiaj and the derivative of the Green’s

function Gij,k′(~r − ~r′) =
dGij
dr′k

(~r − ~r′) :

udi (~r) = pjkGij,k′(~r − ~r′) (C.5)

We now examine the interaction energy of such a “dipole” as a representation
of a cell located at ~r′, with another needle-like cell with the center located at ~r,
comprising two equal and opposite point forces separated by a vector distance
~a. The interaction energy in this case can be written as:

H = Fiu
d
i (~r) = Fi pjk

[
Gij,k′((~r + ~a/2)− ~r′)−Gij,k′((~r − ~a/2)− ~r′)

]
(C.6)

Again, by taking the same limit as above (small ~a), the sum of the two forces
at both ends of the cell cancels, and one must expand the Green’s function Gij,k′

to get:

H = Fi al pjk
dGij,k′

drl
(~r − ~r′) = pil pjkGij,k′l(~r − ~r′) (C.7)

We therefore see that for the case of two needle-like cells of length |~a|, sep-

arated by a distance ~r − ~r′ � ~a, the only contribution to the elastic energy is
from the second derivative of the Green’s function. If we now define the local
strain at ~r, induced by a cell located at ~r′ as εik(~r) = pjkGij,k′l(~r − ~r′) we can
write the total interaction energy of the two cells (using symmetry) as:

H = 2pij εij(~r) (C.8)

This is equivalent to the interaction energy of Eq. 4 in the main text. This
derivation demonstrates that in the dipole approximation, the only contribution
to the elastic energy of the medium comes from the local strain (and not the

local displacement) induced at point ~r by a cell located at ~r′.
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D Near-field solution (where dipole approxima-
tion fails)

The dipole approximation is generally valid for distances r � z0, and is thus a
far-field description. The spatial dependence of the near-field displacement or
strain may be relevant experimentally, since the probe that paces the cell may
not be much further from the cell than the typical cell size, z0. We therefore
derive the displacement field for two point forces, in the case of both static and
oscillating forces, and compare the results to the dipole approximation. Here we
must make a more refined assumption for the spatial position along each axis,
since the displacement field behaves quite differently along the z-axis and the
x,y-axes.

We first consider the static case. For uz, the displacement field has two
distinct regimes, inside (−z0/2 < z < z0/2) and outside (z < −z0/2, z > z0/2)
of the dipole. Since we are more interested in interactions between isolated cells,
we concentrate on the latter regime. In the outer regime, the displacement field
along the z-axis (aligned with the dipole) is:

ussx (r, 0, 0) = F (1+ν)z0r
4πE(1−ν)(r2−(z0/2)2)3/2)

r > 0

ussz (0, 0, r) = − Fπz0(1+ν)
2πE(r2−(z0/2)2 r > z0/2

(D.1)

Note that by taking the limit of z0 → 0 and F → ∞ (so that their product
– which is the force dipole moment – remains constant) we recover the static
solution of Eq. A.8. To evaluate at what distance both solutions coincide we
examine the ratio Ri of the dipole solution (Eq. A.8) and the monopoles solution
(Eq. D.1)

Rx = r2−(z0/2)2

r2 = (1− 1
4

(
z0
r

)2
)3/2

Rz = r2−(z0/2)2

r2 = 1− 1
4

(
z0
r

)2
The dipole approximation is thus suitable for z0 � r. Along the x-axis, the
dipole approximation is valid within 10% error (Rx = 0.9) at a distance of
roughly the cell size away from the poles (r ≈ 2z0), while for the z-axis, the
dipole approximation is valid within 10% for a distance of roughly half a cell
size (r ≈ 1.5z0).
For the case of an oscillating force, we again focus on the region outside of the
dipole (by assuming z > z0/2), and solve, as an example, for the oscillatory
displacement field on the z-axis:

uosz (0, 0, r, t) =
Fz0

2πω0γ

∑
n=1,2

[
e−ρc,n

ζ3
n

(ρc,n cos (ω0t− ρc,n) + (1 + ρc,n) sin (ω0t− ρc,n))

−e
−ρs,n

ν3
n

(
(ρs,n − ρ2

s,n) cos (ω0t− ρs,n) + (1 + ρs,n) sin (ω0t− ρs,n)
)]

(D.2)

where we defined for convenience ζ1 = (r−z0/2), ζ2 = (r+z0/2) and ρc,n = κcζn
and ρs,n = κsζn with κc,κs as defined in the text.
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Note that the expression contains minor corrections to the previously used dis-
tance from the cell r , since we now take into account the spatial distribution
of poles. However, taking the limit of z � z0 and expanding in a Taylor series
up to linear order, reduces to the strain as given by the dipole approximation,
as expected. Although we cannot use the same analysis as above to estimate
the point of 10% error, due to the exponential nature of both functions, we
may guess the solutions coincide for z/z0 of order unity (a single cell length
as above). These results show that the qualitative behavior for a force dipole
remain the same, even when the distance between the probe and the cell (or
between two cells) is comparable with the size of the cell itself.

We consider two generic situations that are relevant for a cell that is in a
matrix deformed by another cell or probe. The first case we consider is when
the cell is relatively close (a distance of the order of the cellular size z0) to the
source of the local deformations (another cell or a probe). In this case, the cell
cannot be accurately described by a force dipole, and one must consider the
more accurate picture of two equal and opposite point forces separated by a
distance z0. As we show in Appendix C, the interaction energy in this case is
given by the scalar product of the force applied by the cell at ~r with the local
displacement field ~u(~r) due to the other cell (or probe). Note that the forces
are coupled only to the components of the displacement that are in the same
direction. Thus, force vectors pointing along the z-direction are coupled only to
the z-component of the deformation field caused by a nearby cell or probe (see
Appendix C).

In the top row of Fig. D.1 we plot (A) the static displacement of the medium
uz(~r) induced by a force dipole pzz located at the origin, (B) the superimposed
displacement fields of two equal and oppositely directed point forces that act
in the z-direction and are located at x = y = 0, z = ±z0/2 and (C) a force
monopole that acts along the x direction and is located at the origin. The first
two panels (A and B) represent the displacement in the medium induced by a
neighboring cell, while the third panel (C) represent the displacement in the
medium due to a probe as in Tzlil’s experiments. Note that in all cases,for a
symmetric, needle-like cell oriented along the z-direction (whose center is lo-
cated at z = 0 and a distance x from the origin, x � z0), the displacement
field is antisymmetric as a function of z so that the cellular force at (x, z0/2)
(pointing in the −z direction) acts on a region of the matrix whose displacement
is positive, while the force at (x,−z0/2) (pointing in the +z direction) acts on
a region of the matrix whose displacement is negative. Thus, for a contractile
cell, contraction always occur in a direction opposite to the displacement in the
medium, which lowers the its elastic energy. Conversely, when the cell is close to
the source of deformations (x ≤ z0), the spatial separation of the forces within
the cell can become important, because as the separation of forces z0 increases
there is a crossover to a regime where the force located at (x, z0/2) acts on a
matrix displaced in the negative direction, and the force at (x,−z0/2) acts on
a matrix displaced in the positive direction. In that case, contraction always
increase the total elastic energy of the medium.

Extending these ideas to time dependent, oscillatory deformations, this im-
plies that if cells are close enough, this could potentially cause an “anti-phase”
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beating behavior. “Anti-phase” beating can also be induced by changing the
elasticity of the medium, as presented in Fig. 3B in and discussed in the text.
Finally, for the situation in which the cell at ~r is modeled by two point forces
that are close to the source of the deformations, the assumption that changes
in cell length z0, resulting from the mechanical deformations of the matrix, are
negligible might also be incorrect. The additional time dependent size z0(t)
adds another layer of complexity that might also promote ”in-phase” synchro-
nization. All of these effects require a more detailed model which is beyond the
scope of our treatment whose goal is to examine the simplest, generic situation.

The second general case that one can think of is when the cell is far enough
from the source that the effects of its size are negligible. This is the case dis-
cussed in the text, where the cell is modeled as a force dipole, and the major
contribution to the interaction energy is from the product of the force dipole
and the external strain (see Eq. 4 in the text and explanation in Ap. C).

In the bottom row of Fig. D.1 we compare (D) the strain field εzz(r) induced
by a force dipole pzz located at the origin, (E) two equal and opposite forces
acting on the z-direction and located at x = y = 0, z = ±z0/2, and (F) a force
monopole located at the origin and aligned along the x-axis. One can see that
the variation of the zz component of the strain as a function of the distance
of the cell from the probe along the x-axis, is similar in all three cases. This
implies that the results of ”in-phase” beating should be similar, regardless of
the way one models the probe.

Finally, Tzlil [4] has reported that when the probe is oscillated in the z-
direction, the cells do not synchronize with the phase and frequency of the probe.
In this case, for a probe modeled as a force monopole aligned along z-direction
and located at the origin, both ends of a cell which are located at z = ±z0/2
and a distance x from the probe are subjected to the same magnitude and
sign of deformation/strain along the z-direction. This means (since the forces
are equal and opposite while the displacements at +z0 and −z0 are the same)
that the cellular force acting on the matrix displacement causes an increase in
matrix elastic energy at one end and a decrease at the other so that both effects
cancel by symmetry. Therefore, contraction of the cell in phase or in synchrony
with the probe does not contribute to the medium elastic energy when the
probe deforms the matrix in the z direction. This argument can be extended to
the dynamical steady-state interactions through averaging, as described in the
text. Again, the temporal average of deformations near the cell is zero due to
symmetry, so no modification of phase and frequency is observed. If, however,
the experiments were to be performed with a probe that “pinches” the substrate
(and is therefore better described by a dynamic force dipole), we predict that
the cell will synchronize in a manner that is dictated by the mutual orientation
of cell and probe, as described in the text.
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Figure D.1: Displacement uz (top) and strain component εzz (bottom) in an
incompressible medium (ν = 0.5) for (A,D) a force dipole located at the origin
and aligned along the z-axis, (B,E) two equal and opposite point forces aligned
along the z-axis, a distance z0 = 1 apart and (C,F) a point force aligned along
the x-axis. Both x and z axes are measured in units of z0. Lighter shades
(green,yellow) correspond to positive values, while darker shades (blue) to neg-
ative values.
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E Other Forms of Friction

We address here two additional models for visco-elastic friction, as presented in
Table 1 in the text. For each model, we present the displacement field induced
by either static contraction or dynamical beating with fixed frequency. We then
briefly discuss the interactions of two oscillating dipoles and how those differ
from the ”simple friction” model. We apply the same methods as described in
appendix A and discuss details only as necessary.

E.1 Local dissipation model (Kelvin-Voigt)

The local dissipation model, also known as the Kelvin-Voigt model describe a
frictional force with no spatial dependence (see Table 1). One can relate the
dissipation of energy in this model to the friction that arises form the motion of
the polmyers comprising the gel that move against each other. One of the key
features of this model is that it assumes that dissipation is uniform everywhere
inside the medium. An analogous 1-D system for this model is a spring and
dashpot connected in parallel. By pulling on such a construct, some of the en-
ergy gets stored in the spring, while some get dissipated through the dashpot.
Terms in Eq. 2 that involve the gradient now involve an additional term pro-
portional to d~u/dt. This spatially uniform dissipation of energy gives rise to an
infinitely fast propagation of elastic signals. Note that the Kelvin-Voigt model
predicts solid like elastic response at long time scales, and not fluid-like, viscous
flow, making it relevant for our case of cells adhered to a hydro-gel substrate.
In this model, the shear and bulk viscosities are given by η1, η2 respectively. Us-
ing the expression for ~fv in Table 1, the displacement field for static contraction
becomes:

ux(r, 0, 0, t) = Fz0(1+ν)
4πE(1−ν)r2

(
1 + (1−2ν)

2 e−t/τs − (1− ν)e−tτc
)

uz(0, 0, r, t) = −Fz0(1+ν)
4πEr2 (1− e−t/τs)

(E.1)

Here we define the characteristic time scales τs = 2η2(1+ν)
E and τc = (η1+2η2)(1+ν)(1−2ν)

E(1−ν)

corresponding to the shear and compressional modes.

It can be seen immediately that aside from the normal r−2 decay the dis-
placement has no spatial dependence since the viscoelastic response is spatially
uniform and is characterised by an exponential decay in time. Once the dipole is
“turned on” at time t = 0 and statically contracts, the viscous response dictates
the time required for the medium to stabilize, but the elastic response is carried
instantly throughout.

For the oscillating force dipole, the steady-state displacement of the oscilla-
tory part is given by:

uosx (r, 0, 0, t) = Fz0(1+ν)
4πE(1−ν)r2

√
(1+(ω0τa)2)

(1+(ω0τc)2)(1+(ω0τs)2) cos(ω0t− Φx)

uosz (0, 0, r, t) = −Fz0(1+ν)
4πEr2

√
1

1+(ω0τs)2
cos (ω0t− Φz)

(E.2)
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where we define another time scale τa = 2(η1+η2)(1+ν)(1−2ν)
E . Here, the phase

difference Φi is spatially independent, dictated only by the viscous response of
the medium:

Φx = tan−1(
ω0(τa−τc−τs)−ω3

0τaτcτs
1+ω2

0(τaτc+τaτs−τcτs) )

Φz = ω0τs

(E.3)

Since dissipation is local and does not depend on the distance from the oscil-
lating dipole, the phase difference is uniform throughout the medium and is an
intrinsic function of the elastic parameters E and ν.

For two oscillating dipoles interacting through the strain field as outlined in
the text (Eq. 4), and with the strains calculated from the Eq. E.2, one can assert
that the result for the “local dissipation” model does not change the qualitative
results for synchronization deduced for the “simple friction” model in the text.
Consequently, for dipoles in close proximity as depicted in Fig. 2, the ”in-phase”
and ”anti-phase” beating synchronization remains the same.

E.2 Network-fluid dissipation model

The Network-fluid model accounts for dissipation of energy that arises from the
relative motion of water molecules with respect to the polymeric matrix. When
the network is deformed by external forces (in this case cells modeled as force
dipoles), the polymeric chains that comprise the gel network can move relative
to the surrounding solvent molecules (water in hydrogels). This relative motion
results in frictional shear forces that dissipate energy. For this “two-fluid model”
[1], one can show that by coupling the equations of motion for the elastic medium
to the Navier-Stokes equation for the solvent within the gel, the frictional force
only affects the compressional mode, while the shear mode propagates infinitely
fast [5]. This yields the expression for the frictional force shown in Table 1.
However, the expression of Table 1 is only an approximation appropriate for
long times t > 4E(1 − ν)/γ(1 + ν)(1 − 2ν)r2. Since we deal with dynamical
steady-state, we must take extra care when decoupling the compressional and
shear modes for dissipation. To this end, we correct the expression in Table 1
by adding a factitious, local friction term Γ that also affects the shear mode:

ffr = − γ

q2

∂

∂t
∇(∇ · ~u)− Γ

q2

∂

∂t
~u (E.4)

Once a real space expression for ~u is obtained, we take the limit of Γ →
0 to obtain the solution in the limit of fast propagation of shear mode. By
doing so, we find that this corresponds to the limit of χs → 0, ρs → 0 in
Eq. A.8- A.11, yielding a simplified expression of the compressional mode alone.
This does not qualitatively change the results for synchronization and indeed
demonstrates how the “network-fluid” friction model is a simple version of the
“simple-friction” model used throughout the text.

16



F One dimensional model for frequency match-
ing

We model the beating cell as a 1-D viscoelastic system comprising a spring and
dashpot connected in parallel, with a time dependent, active, contractile force
fc(t) applied by the sarcomeres to the rest of the cell as well as an external,
time dependent force fp(t) generated by the probe, and measured at the close
vicinity of the cell (See Fig. F.1). The spring constant kc is a measure of cellular
elasticity which accounts in a coarse-grained manner for the elastic response of
the cell to deformations of the cytoskelton. The “friction constant” γc is an
outcome of both fluid-cytoskeleton friction in the cytosol as well as dissipation
due to structural and activity differences in the sarcomeres that comprise the
cell. The force balance equation due to a displacement δx from the equilibrium
length is:

fc(t)− γc
dδx

dt
− kcδx+ fp(t) = 0 (F.1)

We now suppose that the force exerted by the probe is a periodic function with
frequency ωp (single mode approximation). The force exerted by the cell is more
generally treated as a sum of n different modes, each with frequency ωj .

fp(t) = F0 cosωpt

fc(t) =
∑n
j=1 Fj cosωjt

(F.2)

The power spectrum of the probe (with a single mode) and the cell are given
by:

Pp =
∫∞

0
|fp|2dt F 2

0

Pc(n) =
∫∞

0
|fc|2dt ∼ Σnj=1F

2
j

(F.3)

Using Fourier transform, the steady state displacement is calculated as:

δx(t) =

n∑
j=0

Fj
(k2
c + γ2

cω
2
j )

cos(ωjt+ φj) φj = tan−1(
γcωj
kc

) (F.4)

One can see that the spring displacement is a superposition of the different
modes in the system. The higher the frequency, the less that mode contributes
to the sum, and the more out-of-phase it becomes.

Suppose that the cell has only one intrinsic frequency ωc and an amplitude
Fc that it is comparable with the frequency of the probe. Clearly, if the ampli-
tude of the probe is far greater than the amplitude of the cell (Fp � Fc) the
dominant contribution will come from the probe, and the entire system will os-
cillate with a frequency ωp. Note that this is not synchronization, (since the cell
does not adopt a new intrinsic frequency) but one frequency whose amplitude
dominates the other.

However, if the cell can oscillate in n different modes, each with its own
frequency ωj and amplitude Fj , the comparison between the probe and cell os-
cillations is more subtle. A cell that can beat in many modes can be the result of
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Figure F.1: A one dimensional model for a beating cardiomyocyte subjected to
external probing. The viscoelastic nature of the cell is modeled as a spring and
dashpot connected in parallel. The contractile force exerted by sarcomeric units
within the cell is modeled by the periodic function fc(t), and the oscillating force
applied by the probe is modeled by the periodic function fp(t).

the fact that the sarcomeres within the cell are not identical, and each beats with
a different frequency and amplitude dictated by structural differences, availabil-
ity of ATP etc. To compare this case to the one where the cell beats with a
single frequency, we require that the power expended by the beating cell be the
same, independent of the number of modes, n. This implies that the amplitude
of each mode must be smaller than the amplitude of the single mode discussed
previously (Fj < Fc). In that case, the probe can indeed dominate the beat-
ing amplitude of any one of the cell’s intrinsic modes as soon as Fp � Fj,max.
This is a much “softer” constraint compared with the previous case of single
intrinsic frequency. Although complete synchronization (in terms of the Adler
equation) is not possible in the absence of non-linearities, we see that cells that
beat within a range of frequencies can be much more easily dominated by the
probe deformation amplitude.
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G Derivation of Adler equation

Jülicher and Prost [6, 7] have shown that active acto-myosin contractility com-
bined with an elastic response (due in the case of sarcomeres to either the
Z-body or actin deformations in response to contractility), result in an effective
equation for the oscillator displacement as a function of time, x(t) that obeys
the van der pol (VDP) equation for a non-linear oscillator:

γẍ+ rẋ+ Λẋ3 + kx = fext(t) (G.1)

While the van der Pol oscillator usually refers to the inertial response (rep-
resented by the ”mass” γ) to a system which can have either positive (r > 0)
or ”negative friction” (r < 0) due to an input of energy, the standard inertia in
low Reynolds number dynamics, is negligible. However, Jülicher and Prost show
[6, 7] that acto-myosin dynamics results in an ”effective mass” γ > 0 that is a
function of the rate constants and binding energy. The unique characteristic of
the VDP oscillator is that when the active input of energy dominates over the
regular friction, so that r < 0, the system displays spontaneous oscillations at a
frequency ωc =

√
k/γ - even in the absence of an external driving force fext(t).

This is inherently different than a regular damped oscillator, where r > 0. To
maintain stable oscillations, the non-linear term is essential, and Λ > 0 deter-
mines the amplitude of oscillations.

Introducing periodic forcing by an external probe/cell fext(t) = F cos(ωpt),
which oscillates at a frequency that is, in general, different from the intrinsic
frequency ωc of the spontaneous oscillations, and rescaling all the coefficieets by
the effective mass, γ, so that ρ = r/γ, λ = Λ/γ, α = F/γ we get:

ẍ+ ρẋ+ λẋ3 + ω2
cx = α cos(ωpt) (G.2)

We now find the criterion for the entrained regime, where the system oscillates at
the probe frequency ωp instead of its intrinsic frequency ωc, where the solution
has the form:

x(t) = a(t)eiωpt + a∗(t)e−iωpt, a(t) = A(t)eiΦ(t), a∗(t) = A(t)e−iΦ(t) (G.3)

where A(t), Φ(t) are the time dependent amplitude and phase of oscillations
respectively.

Since the process of synchronization is much slower than the characteristic
frequency of the probe/cell (15 minutes compared to a time scale of 1 second,
corresponding to ∼ 1 Hz oscillations) we use the method of averaging – where
we average over the slowest mode of oscillation [8]. Inserting Eq. G.3 into Eq.
G.2, and averaging over the slowest mode (with a time scale given by 2π/ω) we
write the dynamics of a(t) as:

(ä+ 2iωpȧ)− (ω2
p − ω2

0)a− ρ(ȧ+ iωpa) + λ
4

(
3ȧ2(ȧ∗ − iωpa∗)

+6ȧ(aa∗ω2
p + iωpaȧ∗)− 3a2(ȧ∗ω2

p − iω3
pa
∗)
)
− α = 0

(G.4)
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We now define the time scale a/ȧ ∼ τ which is much longer than the time
scale for oscillations 1/ωp (since the amplitude and phase are slowly varying).
Because this time scale is long, for the terms that multiply λ and ρ separately,
we consider only the lowest terms in 1/τ . For the same reasons, we neglect
ä in the first term. Using the definitions in Eq. G.3 and comparing real and
imaginary terms, we obtain two dynamical equations for the phase Φ(t)and
amplitude A(t):

2ωpȦ =ρωpA−
3

4
λω3

pA
3 − α sin(Φ) (G.5)

2ωpAΦ̇ =(ω2
0 − ω2

p)A− α cos(Φ) (G.6)

For weak forcing α, the dynamical equation for the amplitude becomes in-
dependent of phase, and one can calculate the steady-state amplitude As =√

(4ρ/3λω2). Introducing the steady state amplitude As into the dynamical
equation for the phase, and making the further assumption that the frequency
of forcing and the oscillator are relatively close (i.e. ωc ∼ ωp) we obtain the
Adler equation as presented in the text:

Φ̇ = ωc − ωp −
α

2ωpAs
cos(Φ) (G.7)
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[7] Jülicher, F., Adjari, A. & Prost, J., Modeling molecular motors. Rev. Mod.
Phys., 1997, 69, 1269-1281.

[8] Verhulst, F., Nonlinear differential equations and dynamical systems.
Springer Science & Business Media, 2006.

20


	Method and explicit results
	General Method
	Static dipole solution
	Oscillating dipole solution

	Matrix deformation as a function of phase of two, non-interacting, beating force dipoles. 
	Derivation of the elastic free energy
	Near-field solution (where dipole approximation fails)
	Other Forms of Friction
	Local dissipation model (Kelvin-Voigt)
	Network-fluid dissipation model

	One dimensional model for frequency matching
	Derivation of Adler equation

