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1 Drag coefficient analysis

The average velocity v throughout the trajectory is 1 µm/s and the radius of the colloid a = 8 µm. Using

typical material constants density ρ = 1.38 g/cm3, viscosity η = 14.31 mPa · s, elastic constant K = 10−12

g/cm3, we can find Re = ρva
η = 3 ×10−6 � 1 and Er = ρva

K = 0.1� 1. Therefore the viscous force

balances the elastic force and elastic forces will exceed the viscous forces and so the director field will not

be strongly affected by the flow field.

Since the particle moves near the wall is in close proximity to three surfaces (those that form the top and

bottom of the cell, and the wavy wall), corrections to the viscous drag on the sphere must be addressed to

account for interactions with these boundaries. Since there are no exact analyses or simulations that

address this geometry, we approximate the drag coefficient as the sum of two contributions, Cgap

accounting for the sphere in a thin gap, using the analysis of Ganatos [1], the other, C‖ accounting for the

motion of a sphere parallel to a bounding wall, adopting the results of O’Neill [2]. In addition, the particle

moves toward the wavy wall, which could require an additional contribution to the drag coefficient, C⊥.

We estimate the magnitude of this contribution using the analysis of Brenner [3], and find that the changes

in the drag coefficient for the wall distances explored by our particles is sufficiently weak that this

contribution can be ignored.
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The motion with respect to the wavy wall can be decomposed into v⊥ and v‖:


v =

√
v2⊥ − v2‖

v⊥ = vcos(θ − ψ)

v‖ = vsin(θ + ψ)

(1)

where θ = tan−1
(
vy
vx

)
and ψ = tan−1

(
dy
dx

)
= tan−1(h′(x)), assuming the wavy surface is located at

y = h(x).

Brenner [3] studies the interaction of a spherical moving perpendicular to a surface, where the Stokes’ drag

is corrected by a factor of C⊥ as a function of normalized distance to the wall α = d
a :

F⊥
6πηav⊥

= C⊥(α) (2)

C⊥ is calculated via Equation (2.19) in Brenner’s paper, the drag correction values are tabulated in Table 1

in the above reference. At α = 1, C⊥ →∞, but for the course of our trajectory, C⊥ varies from 1.6 to 1.9.

The parallel motion of a sphere near the wall is studied by O’Neill [2], the correction to Stokes’ equation

owing to the presence of the wall is:

F‖
6πηav‖

= C‖(α) (3)

where C‖ is also a function of α. It is determined by Equation (26) and tabulated in [2].

Based on the α from our trajectory, C⊥ and C‖ both vary from 1.3-1.9 (as shown in Fig. 1).

The movement is also constrained in ẑ. Given the symmetries of the experimental configuration and the

elastic repulsion from the gap walls, it is reasonable to assume that the particle is centered in the gap. The

drag coefficient is given graphically in Fig. 3(a) in terms of β = l
a for a gap of half-width l comparable to

the sphere radius a in the analysis of Ganatos, Pffefer and Weinbaum [1]. From that graph, for spheres and

gaps of size that correspond to our experiment, the combined effect of two surfaces yields Cgap = 3.

Furthermore, the anisotropy of viscosities must be accounted for in LC. For micron-sized particle moving

in 5CB, typical values of viscosities are η⊥ = 14.3mPa · s and η‖ = 7.83mPa · s. Our trajectories

consist of prolonged motion parallel to the wall (transverse to the director field), followed by a reversal and



Figure 1: Drag coefficients at each arclength s from Brenner (C⊥) and O’Neill (C‖) calculated from the

distance of the colloid from the wall at each point along the trajectory

docking event (parallel to the director field, with significant near field splay-matching interactions. For this

docking segment, the more relevant viscosity may be η‖.

Our aim is to extract an order of magnitude estimate for the interaction energy. We do this in two ways. In

one, we use the transverse viscosity η⊥ for the entire trajectory, and estimate the net drag coefficient from

the gap and interactions with the wavy wall to be about CD ≈ 4. Based on this correction factor, the energy

U can be found by integrating the velocity over the entire trajectory:

U = CD6πηa

sf∫
0

vds (4)

By this method, we find U ≈ 105 kBT .

In a more careful treatment, we decompose the motion into v⊥ and v‖. We assume the colloid is close

enough to the surface that the relevant viscosity for v⊥ is η‖, and that for v‖ is η⊥. We let Cgap ≈ 3. The

drag force can be decomposed as follows:


F‖,gap = Cgap6πη⊥av

F‖,wall = C‖(α)6πη⊥av‖

F⊥,wall = C⊥(α)6πη‖av⊥

(5)

The energy dissipation throughout the trajectory, summing up all contributions:



U = 6πa

η‖
sf∫
0

Cgapvds+ η‖

sf∫
0

C‖v‖ds‖ + η⊥

sf∫
0

C⊥v⊥ds⊥

 (6)

where s‖ and s⊥ are the parallel and perpendicular components of the arc length s. s‖ = s · sin(θ− ψ) and

s⊥ = s · cos(θ − ψ).

By this method, we find U to differ by 2 percent from the one viscosity and one drag coefficient

approximation. This small difference is owing to the fact that the rate of migration for the last stage of

docking after the reversal is extremely slow. For the purposes of an order of magnitude estimate, we give

the simpler discussion in the main text.

2 Videos

2.1 Video 1

A spherical particle (2a = 15 µm) with a “Saturn ring” defect migrates near a wavy wall. The particle

migrates at 8 µm/s, due to external flow, and its center of mass is 14 µm away from the surface. The

viscous force distorts the director field. The distortion of the wall decays farther away from the wall. As a

result, the particle cannot dock. The video is real time.

2.2 Video 2

A spherical particle (2a = 15 µm) with a “Saturn ring” defect migrates near a wavy wall. The particle is

under the influence of homeotropic boundary condition of the wall, consists of “hills” and “dales”, which

distorts the director field. The particle traces out a curved trajectory: first it is “kicked” up, then it reverses

its direction and finally it docks into its final position, matching its splay distortion with that of the “dale”.

The video is real time.

2.3 Video 3

A spherical particle (2a = 5 µm) with downward-orienting dipolar defect finds its equilibrium position on

top of a “hill” which best matches its director field. The video is real time.



2.4 Video 4

A spherical particle (2a = 5 µm) with upward-orienting dipolar defect finds its equilibrium position on the

bottom of a “dale” which best matches its director field. The video is real time.
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