Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Soft Matter manuscript 'Foams Stabilized with Solid Particles Carrying Stimuli-responsive Polymer Hairs' by S. Nakayama *et al.* Corresponding author: Dr. Syuji Fujii; syuji.fujii@oit.ac.jp

Table S1. Reaction conditions for the atom transfer radical polymerization of DEA using $AMBEP^{a}$ and molecular weights and their distributions data for PDEA_n-based macroinitiators.

		PDEA ₃₀ -PS ^{b)}	PDEA ₆₀ -PS ^{c)}	PDEA ₉₀ -PS ^{d)}
AMBEP	(g)	0.528	0.264	0.176
DEA	(g)	10.0	10.0	10.0
Isopropanol	(mL)	10.0	10.0	10.0
Cu(I)Cl	(g)	0.178	0.089	0.061
Вру	(g)	0.562	0.281	0.188
$M_{\rm n}({\rm cal})^{e)}$	(g/mol)	11613	22700	33845
$M_{\rm n}({\rm GPC})^{\rm p}$	(g/mol)	18100	22200	26000
$M_{\rm w}({ m GPC})^{ m g)}$	(g/mol)	20000	25000	29800
$M_{\rm w}/M_{\rm n}{}^{h)}$		1.10	1.12	1.14
$M_{\rm n}(^1{\rm H}~{\rm NMR})^{ij}$	(g/mol)	12800	23100	34300
$\mathbf{DP}^{j)}$		33	61	91

^{a)} 25 °C, 24 h, N₂

^{b)} AMBEP / DEA / Cu(I)Cl / Bpy, 1 / 60 / 2 / 4 (molar ratio)

^{c)} AMBEP / DEA / Cu(I)Cl / Bpy, 1 / 120 / 2 / 4 (molar ratio)

^{d)} AMBEP / DEA / Cu(I)Cl / Bpy, 1 / 180 / 2 / 4 (molar ratio)

e) Theoretical number-average molecular weight

^{f)} Number-average molecular weight determined by GPC

g) Weight-average molecular weight determined by GPC

h) Polydispersity determined by GPC

ⁱ⁾ Number-average molecular weight determined by ¹H NMR spectroscopy

^{j)} Degree of polymerization determined by ¹H NMR spectroscopy

		PDEA ₃₀ -PS	PDEA ₆₀ -PS	PDEA ₉₀ -PS
PDEA ₃₀ -MAI ^{b,c)}	(g)	2.787	—	—
PDEA ₆₀ -MAI ^{b,c)}	(g)	_	5.455	—
PDEA ₉₀ -MAI ^{b,c)}	(g)	—	—	3.250
VA-086 ^{<i>b,c</i>}	(g)	0.623	0.623	0.249
Styrene ^{c)}	(g)	25	25	10
Isopropanol	(mL)	250	250	100

Table S2. Recipes for syntheses of the PDEA_n-PS latex particles by dispersion polymerization^a).

^{*a*)} 80 °C, 1 week, N₂, 300 rpm, $R_i = 7.93 \times 10^{13} \text{ mL}^{-1} \text{ s}^{-1}$

^{b)} PDEA-MAI / VA-086, 1/10 (molar ratio)

^{c)} Azo group / styrene, 1/100 (molar ratio)

	n = <mark>30</mark> D _v / nm	n = 60 D _v / nm	n = 90 D _v / nm
1000 rpm	21380±45810	18000±27450	28280±41090
2000 rpm	690±280	10670±4560	17570±23670
3000 rpm	680±240	7310±3000	9450±7540

Table S3. Particle size measured for $PDEA_n$ -PS particles at various stirring ratesin dispersion apparatus. Measurements were conducted at pH 10 and 0.1 M NaCl.See also Figure S3 for particle size distribution curves.

Figure S1. Volume-average diameters of the PDEA_n-PS particles versus the number of pH cycles between pH 3 and pH 10: n = (a) 30, (b) 60, (c) 90.

Figure S2. Optical microscopy images of bubbles stabilized with PDEA_n-PS particles (n = (a, d) 30, (b, e) 60 and (c, f) 90) at pH 10. Figs. (d-f) are magnified images of Figs. (a-c), respectively. Bubbles were prepared using a touch mixer.

Figure S3. Particle size distribution curves obtained for $PDEA_n$ -PS particles at various stirring rates in dispersion apparatus. Measurements were conducted at pH 10 and 0.1 M NaCl.

Figure S4. Optical microscopy images of foams stabilized with PDEA₆₀-PS particles (pH 10, 0.1 M NaCl) prepared at particle concentrations of (a) 0.5 wt%, (b) 1.0 wt%, (c) 2.0 wt%, (d) 5.0 wt%, (e) 10.0 wt%, (f) 15.0 wt%, (g) 20.0 wt%, (h) 30.0 wt% and (i) 40.0 wt%. Insets in Figs. (a-e) are magnified images showing non-spherical bubbles stabilized with PDEA₆₀-PS latex particles.

Dispersal experiments

(8.0 g distilled water+ 0.01 g dried PDEA-PS powder)

Homogenizer

Touch mixer

0 min 1	min	2 min	5 min	10 min	20 min	30 min	
		(D)C	ST.C	(asur)		ATT	Dispersal
							> 30 s

Mixing experiments

(8.0 g water + one droplet of Alizarine Blue Black B aqueous solution: 2.5 wt%)

Figure S5. A comparison of mixing efficiencies of the homogenizer and the touch mixer.

Figure S6. Optical microscopy images of bubbles stabilized with PDEA₆₀-PS particles (10 wt%, pH 10, 0.1 M NaCl). Preparation conditions: (a) homogenizer, 20000 rpm; (b) touch mixer, 2500 rpm.