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1 Simulation parameters

Table 1. shows simulation parameters of figure 1 in the main text.

Subfigure σ α τu τv Size xlen
(b1) 180 0.04 1.0 100.0 128 2.0
(b2) 160 0.4 1.0 100.0 128 1.0
(b3) 100 0.1 1.0 100.0 128 2.0
(b4) 160 0.08 1.0 1.0 64 1.5

Table 1: Simulation parameters of Fig. 1

2 Details of theoretical model

Here we summarize the theoretical basis of the Cahn-Hilliard equation. In a blend of
AB-diblock copolymer, the state of the system is defined by an order parameter, v, as
a measure of the fraction of component A and B in the blend. Thus, v acquires values
from the interval [−1, 1] with ending points corresponding to A and B. The dynamics
of the state of the above system evolves to minimize the value of an energy functional
like in the following expression:

Fε (v) =

∫
Ω

{
ε2

2
|Ov|2 +W (v)

}
dr (1)
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In eq. 1, the first term accounts for the interaction between neighboring positions
and the second term is a double well potential to represent two different possible states,
−1 or +1, in a phase transition. Ω is a smooth bounded domain in RN . Here we focus
on three-dimensional confinement and thus N = 3.

The Euler-Lagrange equation associated to this energy functional is the Allan-Cahn
equation:

τvt = −δF
δv

(2)

= ε24v + (1− v) (1 + v) v (3)

In eq. 3, parameter ε is proportional to the thickness of the propagating front. The
Allan-Cahn equation is not conservative in the sense that all material is converted to
−1 or +1. In order to have two different phases coexisting –for instance two different
kinds of polymers– we request conservation of volume as:

v =
1

|Ω|

∫
Ω

vdr = constant, (4)

where v is the mass ratio between two polymers.
We also want to incorporate long-range interactions, and to do this we need a

non-local term in the energy functional, like [1, 2, 3]:

Fε,σ (v) =

∫
Ω

{
ε2

2
|Ov|2 +W (v) +

σ

2

∣∣∣(−4)−1/2 (v − v)
∣∣∣2} dr (5)

The associated Euler-Lagrange equation to the functional in eq. 5 is the Cahn-
Hilliard equation:

τvt = 4
(
δF

δv

)
(6)

= −4
{
ε24v + (1− v) (1 + v) v

}
− σ (v − v) (7)

In eq. 7 we have parameter σ which is related to the bonding between block A
and block B in the copolymer. If σ = 0 then there is no bonding, which means that
there is not non-local term and in such case the first term in the energy functional will
minimize the free energy simply by separating macrophases into domains −1 and +1.
If σ 6= 0 then we have microphases within the copolymer and different morphologies
will arise.
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We propose a mixed system in which one component has σ = 0 and the other com-
ponent has σ 6= 0. The first component plays the role of an auxiliary order parameter
which separates two regions, which we call homopolymer and copolymer domains, and
the second component undergoes microphase separation within the copolymer domain.

2.0.1 Free energy and Euler-Lagrange equations of the mixed system.

A mixed system has two order parameters u and v corresponding to σ = 0 and σ 6= 0,
respectively. The energy functional for the mixed system is as follows:

Fε,σ (u, v) =

∫
Ω

{
ε2u
2
|Ou|2 +

ε2v
2
|Ov|2 +W (u, v) +

σ

2

∣∣∣(−4)−1/2 (v − v)
∣∣∣2} dr, (8)

where

W (u, v) =
(u2 − 1)

2

4
+

(v2 − 1)
2

4
+ αuv + βuv2 + γu2v2 (9)

Again v is the mass ratio between two polymers and now the double-well potential
in eq. 9 has two dimensions and coupling parameters α, β and γ. We set γ = 0.0
Notice the functional in eq. 8 is basically the resultant of combining two systems, each
one with order parameter u and v.

In this scheme u describes the system with σ = 0, which undergoes macrophase sep-
aration into fully separate domains. If the system represents a blend of homopolymer
and copolymer components, then u describes macrophase separation into homopoly-
mer and copolymer domains. u takes values within the interval [−1,+1] and for a
homopolymer-copolymer blend, the ending points correspond to the homopolymer rich
domain and the copolymer rich domain. Similarly, order parameter v describes the mi-
crophase separation within the copolymer domain and it also acquires values within
the interval [−1,+1]. To set an example, if we assume that the copolymer component
is constituted by hydrophilic block A and hydrophobic block B, then the ending points
of the interval correspond to the hydrophilic rich domain and the hydrophobic rich
domain.

The associated Euler-Lagrange system of equations corresponding to the mixed
system are two coupled Cahn-Hilliard equations, as follows:
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τuut = 4
(
δF

δu

)
(10)

= −4
{
ε2u4u+ (1− u) (1 + u)u− αv − β v

2

2

}
(11)

τvvt = 4
(
δF

δv

)
(12)

= −4
{
ε2v4v + (1− v) (1 + v) v − αu− 2βuv

}
− σ (v − v) (13)

Equations 11 and 13 constitute a mixture of two systems: one with σ = 0 and
the other with σ 6= 0. The former represents the separation into two domains or
macrophases and the boundary between these two domains roughly plays the role of
a confinement space containing the other system inside. The latter system with σ 6= 0
can evolve to form microphases in the copolymer domain.
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