Control deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation

Van Duong Ta^{a,*}, Richard M. Carter^a, Emre Esenturk^b, Colm Connaughtond^{b,c}, Jonathan

Stringer^d, Patrick J. Smith^d, Thomas J. Wasley^e, Ji Li^e, Robert W. Kay^e, Jonathan D. Shephard^a

aInstitute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS,

UK

^bWarwick Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL,

UK

^cCentre for Complexity Science, Zeeman Building, University of Warwick, Coventry CV4 7AL,

UK

^dLaboratory of Applied Inkjet Printing, Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 4BJ, UK

^eAdditive Manufacturing Research Group, Loughborough University, Leicestershire, LE11 3TU,

UK

*Corresponding Author, Email address: d.ta@hw.ac.uk

Fig. S1 3D profile of the "coffee-stain" obtained when \sim 5 µL-droplet is left to dry under ambient conditions and without external radiation.

Fig. S2 3D profile of the reverse of the coffee-stain obtained when ~5 μ L-droplet is irradiated with a laser beam at droplet's centre. Laser power density was 151 W/cm² and laser diameter was 0.43 mm.

Fig. S3 3D profile of the formation pattern obtained when ~5 μ L-droplet is irradiated with a laser beam at droplet's centre. Laser power density was 47 W/cm² and laser diameter is ~ 22% of initial droplet size (~3.5 mm).

Fig. S4 Optical images of formation pattern under ambient conditions without and with external radiation. (a) Without laser irradiation. (b) and (c) Under laser irradiation with laser diameters of ~0.49 mm and ~0.67 mm, respectively. The laser power is 220 mW. All droplets have the same volume of ~2 μ L and contain Rhodamine 6G molecules with concentration of 16 mM.