Interfacial Rheology of Polymer/Carbon Nanotube Films Co-Assembled at the Oil/Water Interfaces

Tao Feng¹, David A. Hoagland^{1*}, Thomas P. Russell^{1,2,3*}

¹Polymer Science and Engineering Department, University of Massachusetts at Amherst, Amherst, 01003, USA

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³WPI—Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan

Figure S1. (a) Apparatus for oscillatory pendant drop rheometry; (b) axisymmetric profile of an aqueous droplet created in the oil phase; and (c) scheme for generating dilatational strain by drop expansion and contraction.

Figure S2. Apparatus for PS-NH2 desorption by bulk phase exchange.

Figure S3. SEM micrograph of a dried co-assembled film on a Si substrate. (The condition of film formation: C_{SWCNT} =0.08 mg/ml; C_{PS-NH2} =0.2 mg/ml, pH=3.1) (Scale bar: 1 µm).

Figure S4. (a) $\gamma(t)$ for co-assembled film as a function of C_{SWCNT} (C_{PS-NH2} =0.2 mg/ml, PS-NH₂ $Mn \sim 2,800$ g/mol, pH=3.0). (b) Characteristic timescale τ of SWCNT adsorption deduced by fit to a single exponential decay.

Figure S5. $E'(\omega)$ and $E''(\omega)$ for an Au NP/PS-NH₂ co-assembled film (5 nm, multiply carboxylated Au NPs; $C_{Au NPs}$ =0.05 mg/ml; C_{PS-NH2} =0.2 mg/ml; PS-NH₂ Mn~2,800 g/mol; pH=3.0).

Figure S6. $E'(\omega)$ and $E''(\omega)$ at different compressed areal density for a C_{PS-NH2} below saturation (C_{PS-NH2} =0.05 mg/ml, PS-NH₂ Mn~2,800 g/mol, pH=3.0).