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These notes supplement our paper Interfacial and morphological features of a twist-bend nematic drop, producing a

number of analytical details of the mathematical model employed there to interpret the experimental observations of

equilibrium shapes of a twist-bend nematic drop in two space dimensions. For the sake of continuity and completeness,
some figures and equations are also reproduced here.

1 Equilibrium equations

Our starting point here is the energy functional

F [r] :=

∫ L

0

{
1 +

1

2
ω
[
(t · n)2 − c2

]2}
ds, (1)

where L is the (undetermined) length of the curve C

bounding the drop, t is a unit tangent vector to C , and s
is the corresponding arc-length co-ordinate, so that C is

described by the mapping s �→ r(s) and t = r′, where a
prime ′ denotes differentiation with respect to s.

Figure 1a illustrates an admissible shape for C , sym-

metric with respect to both axes x and y, the former des-
ignating the orientation of n. The area A enclosed by C

can be expressed in terms of r as

A[r] := −1

2

∫ L

0

r × t · ezds, (2)

where ez := ex × ey.

Constrained equilibrium for F requires that r makes

the first variations δF and δA proportional to one an-
other,

δF = λδA, (3)

where λ is a Lagrange multiplier, still to be determined.

The first variation δF is a functional, δF (r)[u], linear in
the variation u of r. Formally,

δF (r)[u] :=
d

ds
F [rε]

∣∣∣∣
ε=0

, (4)

where rε := r+ εu and ε is a small, perturbation param-

eter. The perturbed curve Cε described by rε has unit

tangent vector tε delivered by

tε = t+ ε(I− t⊗ t)u′ + o(ε), (5)
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where I is the identity tensor. Moreover, the local dilation
ratio between lengths along Cε and lengths along C is, to

within first order in ε, 1+ εt ·u′. Thus, by letting n = ex
from (1) and (4) we obtain

δF (r)[u] =

∫ L

0

{
2ω

[
(t · ex)2 − c2

]
(I− t⊗ t)ex

+

(
1 +

1

2
ω
[
(t · ex)2 − c2

]2)
t

}
· u′ds.

(6)

Similarly, we arrive at

δA(r)[u] =
1

2

∫ L

0

(ν · u− ez × r · u′) ds, (7)

where ν := ez × t is the outer unit normal to C .
As shown in Fig. 1a, C may possess a corner, that is

a point, say at s = s0, where the unit tangent t jumps
from t− to t+ as s increases through s0. If this is the

case, splitting the integral in (7) into subintervals where

t is continuous, allowing both u and u′ to be everywhere
continuous, and integrating by parts, we easily show that

δA(r)[u] =

∫ L

0

ν · uds. (8)

Contrariwise, proceeding just in the same way, we ex-

tract a jump contribution to δF (r) from every point of
discontinuity for t, which reads as �f� · u, where

f := 2ω[(t · ex)2 − c2](t · ex)(I − t⊗ t)ex

+

(
1 +

1

2
ω[(t · ex)2 − c2]2

)
t

(9)

and, as customary, for any discontinuous field ψ the jump

�ψ� is defined by �ψ� := ψ+ − ψ−, where ψ+ and ψ− are
the right and left limits of ψ at the point of discontinuity.

Requiring (3) to be valid for arbitrary u, by (6) and (8)

we conclude that the equilibrium equation for the regular
arcs of C , where t is continuous, is

f ′ + λν = 0, (10)

1–5 | 1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2016



x

y nN

t
Ntb

C

(a)

x

y

α

β

(b)

Fig. 1: (a) An admissible curve C with a two-fold symmetry.

The symmetry axis x designates the orientation of the uniformly

aligned nematic phase, N. The region delimited by C is occu-

pied by the Ntb phase; t is the tangent unit vector to C , to be

identified with the twist director on the drop’s interface. The

specific curve C depicted here has a corner where it meets the

x axis, whereas it is smooth where it meets the y axis. The gray

quarter, which by repeated reflections covers the whole drop,

admits a Cartesian representation, y = y(x). (b) A two-fold

symmetric shape exhibiting four corners on the symmetry axes;

α and β are the corresponding inner corner angles.

while the equation

�f� = 0 (11)

must hold at all corners, where t is discontinuous. These

are precisely equations (8) and (9) in our main paper.

2 Equilibrium corners

In general, the equilibrium equations (10) and (11) are

rather complicated. Symmetry may simplify them. In
keeping with the experimental observations, we shall

hereafter assume that C has the two-fold symmetry dis-

played in Fig. 1 and that its corners may only occur on
the symmetry axes.

For a corner on the y axis, t− and t+ satisfy

t+ · ex = t− · ex, t+ · ey = −t− · ey, (12)

and it can be shown that equation (11) reduces to

3ωχ2 − 2ωc2χ− 2− ωc4 = 0, (13)

where we have set χ := (t · ex)2. It can be easily proved
that there is precisely one root of (13) in [0, 1], which

reads

χ = χ1(c, ω) :=
1

3

(
c2 +

√
4c4 +

6

ω

)
, (14)

if and only if

ω � ω(1)
c (c) :=

2

(1 − c2)(3 + c2)
. (15)

Otherwise, there is none and at equilibrium no corner

can arise where C meets the y axis. The inner corner
angle β depicted in Fig. 1b is given by

β = 2 arcsin
√
χ1, (16)

where χ1 is as in (14); in particular, (16) implies that

lim
ω→∞

β(c, ω) = 2 arcsin c. (17)

Similarly, for a corner on the x axis,

t+ · ex = −t− · ex, t+ · ey = t− · ey (18)

and (11) reduces to

3ωχ2 − 2ω(c2 + 2)χ− (ωc4 − 4ωc2 + 2) = 0. (19)

It can be easily proved that there is precisely one admis-
sible root of (19), which reads

χ = χ2(c, ω) :=
1

3

(
c2 + 2−

√
4(1− c2)2 +

6

ω

)
, (20)

if and only if

ω � ω(2)
c (c) :=

2

c2(4 − c2)
. (21)

Otherwise, there is none and at equilibrium no corner

can arise where C meets the x axis. The inner corner

angle α depicted in Fig. 1b is given by

α = 2 arccos
√
χ2, (22)

where χ2 is as in (20); in particular, (22) implies that

lim
ω→∞

α(c, ω) = 2 arccos c = 2ϑ, (23)

where ϑ is the ideal cone angle.

The graphs of both ω
(1)
c and ω

(2)
c as functions of c are

plotted in Fig. 2.
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Fig. 2: Phase diagram in the plane (c, ω). Regions I, II, and

III ranging over 1√
2
� c � 1 are delimited by the graphs of the

functions ω
(1)
c and ω

(2)
c in (15) and (21). These graphs, which

cross at the (red) triple point ( 1√
2
, 8
7
), are transformed one into

the other by the mapping c �→
√
1− c2. The corresponding

images I′, II′, and III′ of regions I, II, and III, on the other side of

the dashed separatrix c = 1√
2
, cover together with I, II, and III

the whole admissible parameter plane (c, ω). The equilibrium

shape of the drop has no corners in III, but has two and four

symmetric corners in I and II, respectively. All transitions from

one region to an adjacent region take place continuously: they

are second-order.

3 Equilibrium arcs

To arrive at a tractable form of the equilibrium equation
in (10) for the regular arcs of C , we found it convenient

to describe a quarter of a doubly symmetric curve C as in

Fig. 1a in the form of a Cartesian graph y = y(x). With C

thus reparameterized, the functional F in (1) subject to

the constraint of the area enclosed by C can equivalently

be rewritten as

F ∗[y] :=∫ a

0

{[
1 +

1

2
ω

(
1

1 + y′2
− c2

)2
]√

1 + y′2 + λy

}
dx,

(24)

which has also absorbed the area functional A and the

Lagrange multiplier λ associated with it. In (24), a prime

now denotes differentiation with respect to x and the

function y(x) is subject to

y(a) = 0, (25)

where a > 0 is to be determined.
Since we have already obtained the geometric con-

ditions valid at the equilibrium corners of C , here we
are only interested in finding the equilibrium arcs of C

in their Cartesian parametrization. The Euler-Lagrange

equation associated with F ∗ is easily obtained and inte-
grated once, leading to

Φ(y′; c, ω) = λx+ b, (26)

where

Φ(u; c, ω) :=
1

2

1√
(1 + u2)5

[
2− 3ω + 2ωc2 + ωc4

+2(2 + ωc2 + ωc4)u2 + (2 + ωc4)u4
]
u

(27)

and b is an arbitrary integration constant. Altering both

x and y by the same factor, say µ, so as to produce a ho-
mothetic dilation (or contraction) of C does not alter the

left side of (26). Consequently, λ must be changed into

λ/µ for C to remain an equilibrium curve. This shows
that λ can be determined (and the area constraint can

be satisfied) by simply rescaling any solution y = y(ξ)
of (26) with ξ := λx + b. Similarly, since the differential

equation (26) does not contain y explicitly, the constraint

(25) can be satisfied by translating in space a solution.
Figure 3 illustrates a graphical argument to integrate

(26). For an arbitrary ξ, the light gray area represents

the integral of y′ in ξ; such an area can be obtained by
subtracting the dark gray area which represents the inte-

gral of Φ in u from the whole area uΦ(u) of the rectangle
delimited by the coordinate lines through (u, ξ). Thus, to

within additive constants to be chosen so as to adjust the

solution to the geometric constraint, a regular arc of C

can be represented in the parametric form

y = Y (u; c, ω) := uΦ(u; c, ω)−Ψ(u; c, ω), (28a)

ξ = Φ(u; c, ω), (28b)

where Ψ is the primitive of Φ in u. It is easily seen that,
for a regular arc with x > 0 and y < 0 as shown in Fig. 1,

Y can be given the following explicit representation

Y (u; c, ω) = −1

2

1√
(1 + u2)5

[2 + ω − 2ωc2 + ωc4

+2(2 + 2ω − 3ωc2 + ωc4)u2 + (2 − 4ωc2 + ωc4)u4].

(29)

With the aid of (27) and (29), by direct inspection one

easily sees that the functions Φ and Y enjoy the following
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Fig. 3: The plot of the function Φ against u for (c, ω) in region

I of the phase diagram in Fig. 2. The asymptote ξ∞ is delivered

by (32); the single value uM of y′ where a regular arc of C

may meet a corner on the x axis is identified by (31). This

specific plot, while typical of the whole region I, was obtained

for c =
√

3
2

and ω = 3
2
.

property,

Φ

(
1

u
;
√
1− c2, ω

)
= Y (u; c, ω), (30)

which combined with (28) mean that changing c into√
1− c2 exchanges ξ with y.

As shown in Fig. 3, in region I a regular arc of C can

extend from ξ = 0, where y′ = 0, to ξ = Φ(uM ), where

y′ = uM , with uM related to χ2 in (20) through

uM :=

√
1

χ2
− 1. (31)

At ξ = Φ(uM ), it meets an equilibrium corner on the

x axis, whereas it meets none on the y axis. In princi-
ple, nothing would prevent one from further extending a

regular arc for ξ > Φ(uM ), but as soon as ξ crosses the

asymptote of Φ at

ξ∞ := 1 +
1

2
ωc4, (32)

two distinct values of y′ can be associated with one and

the same ξ in equilibrium, a multiplicity compatible only

with a corner of C away from the symmetry axes, a
case that here we have excluded from our considera-

tion as we reckon it likely that these shapes would be
metastable. Thus, in region I all equilibrium shapes of

C considered here have two symmetric corners on the x
axis [see Fig. 17a in the main paper]; they are tactoids

with axis along the direction of nematic alignment out-
side the drop.

In completely the same fashion, we analyze the equi-

librium shape of C in region II. Figure 4 illustrates the
typical appearance of the graph of Φ in such a region.

Here um, which is related to χ1 in (14) through
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Fig. 4: The plot of the function Φ against u for (c, ω) in re-

gion II of the phase diagram in Fig. 2. There are two values of

y′, namely, um and uM identified by (33) and (31), where an

equilibrium regular arc of C can meet with corners on the two

symmetry axes. Though characteristic of the whole region II,

this specific graph was drawn for c =
√

3
2

and ω = 5.

um :=

√
1

χ1
− 1, (33)

identifies the value of y′ where an equilibrium regular
arc can meet a corner of the y axis. These corners to-

gether with those on the x axis, where y′ = uM , make

the equilibrium shape of the drop resemble a diamond
[see Fig. 17b in the main paper]. Precisely, as above, one

could try and extend an equilibrium regular arc of C also

for y′ < um, but again the lack of monotonicity of Φ for
0 < u < um is likely to bring C in the realm of metasta-

bility.
Figure 5 illustrates the typical graph of Φ against u in

region III of the phase diagram in Fig. 2. Here Φ is mono-

tonic and so y′ grows steadily from nought to infinity as ξ
traverses the interval [0, ξ∞], with ξ∞ still given by (32).

The whole curve C is smooth at equilibrium, as shown

for example by Fig. 17c in the main paper.
By (28), for 1√

2
� c � 1, the aspect ratio ρ of the

extensions of the drop along n and orthogonally to n

can be expressed as

ρ(c, ω) :=

∣∣∣∣Φ(umax; c, ω)

Y (umin; c, ω)

∣∣∣∣ , (34)
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Fig. 5: The plot of the function Φ against u for (c, ω) in region

III of the phase diagram in Fig. 2. Φ is monotonically increasing

in the whole range u � 0, saturating at ξ∞, still given by (32).

where

umax :=

{
uM in I ∪ II,

∞ in III,
umin :=

{
0 in I ∪ III,

um in II.

(35)
As a consequence of (30), ρ is easily seen to satisfy equa-

tion (16) in the main text.
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