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S 1 Optimal sphere radius and energy

In this section we present our results for the optimal sphere radius R∗ and the

corresponding energies that are described in Section 2. We also show the optimal

Lennard-Jones radii and energies reported by Voogd in (1). They are located

in Tab. S 1. Our values are obtained from simulations in which the radius

of the spherical template slowly shrinks over a range estimated from hard disk

packings in 2D that presumably contains the optimal radius. Note that our
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radii for the Lennard-Jones packing do not improve upon Voogd’s values, they

are in the correct ballpark, with the largest difference in the radius being 2%.

Thus, our strategy provides a good way to obtain a first order estimate for the

optimal radius on which more intensive optimisation can be performed.

Table S 1: Optimal radii and corresponding potential energy for Lennard-Jones
particles and Morse particles with shape parameter α = 60/r0, where r0 is the
distance at which the pair potential has its minimum.

N R∗
LJ/r0 ULJ/N/ε R∗

LJ/r0 (Voogd) ULJ/N/ε (Voogd) R∗
M/r0 U∗

M/N/ε

10 0.904877 -2.386829 0.897777352534 -2.391701447066 0.951257 -2.099895

11 0.940335 -2.546418 0.940905005832 -2.546447320801 0.950446 -2.268700

12 0.936682 -2.795960 0.942373155294 -2.799795573727 0.951435 -2.498530

13 1.022253 -2.448824 1.023669635577 -2.448969977079 1.090487 -1.966043

14 1.051020 -2.532894 1.053553039689 -2.533348412369 1.070727 -1.999874

15 1.077747 -2.604019 1.079511939730 -2.604254157791 1.107120 -1.996530

16 1.113089 -2.629181 1.111359350373 -2.629397082119 1.135076 -1.997704

17 1.136519 -2.729079 1.134715561189 -2.729322104280 1.177153 -2.108171

18 1.169474 -2.720606 1.168431468281 -2.720681589556 1.192575 -2.143180

19 1.212959 -2.692581 1.212803380000 -2.692582368658 1.246011 -2.162748

20 1.220995 -2.812968 1.221102153780 -2.812968910809 1.243276 -2.238600

21 1.263170 -2.759161 1.256842828104 -2.761570772616 1.290012 -2.033690

22 1.280587 -2.813962 1.278935841127 -2.814127147712 1.345578 -2.309422

23 1.321960 -2.798679 1.323636299622 -2.798822415653 1.344108 -2.390687

24 1.337533 -2.916111 1.325942483975 -2.923589586974 1.343885 -2.499904

25 1.365106 -2.789403 1.370215612837 -2.790744681095 1.409161 -2.143061

26 1.405526 -2.831581 1.393253846649 -2.838736266635 1.426258 -2.064923

27 1.405019 -2.915403 1.405226921913 -2.915404947140 1.438392 -2.174199

28 1.444699 -2.834263 1.441037402745 -2.834795918128 1.486233 -2.109257

29 1.470268 -2.836935 1.470703678855 -2.836943974529 1.506661 -2.157828

30 1.481021 -2.907705 1.482942826361 -2.907879985814 1.512497 -2.264060

Continued on next page
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Table S 1 – Continued from previous page

N R∗
LJ/r0 ULJ/N/ε R∗

LJ/r0 (Voogd) ULJ/N/ε (Voogd) R∗
M/r0 U∗

M/N/ε

31 1.505503 -2.914502 1.508252602796 -2.914845518606 1.569113 -2.171004

32 1.529593 -2.973958 1.517799565208 -2.980094374797 1.556748 -2.156241

33 1.553309 -2.851437 1.565483089900 -2.857364512086 1.607324 -2.090012

34 1.576668 -2.879003 1.581507917153 -2.879973993426 1.663424 -2.215261

35 1.615217 -2.892769 1.603568457619 -2.897476940815 1.650354 -2.254401

36 1.622380 -2.926064 1.621869926831 -2.926074652855 1.651993 -2.304795

37 1.660724 -2.902360 1.645689466050 -2.907674813755 1.689376 -2.167760

38 1.666836 -2.970314 1.659845132456 -2.972138629420 1.734758 -2.155274

39 1.688627 -2.913506 1.689160940137 -2.913516422414 1.736032 -2.163549

40 1.710142 -2.935197 1.708230437867 -2.935326506885 1.752469 -2.195959

41 1.731381 -2.929093 1.729343588049 -2.929234832467 1.774234 -2.146127

42 1.752371 -2.957193 1.752712826656 -2.957197169053 1.809763 -2.265107

43 1.773111 -2.985056 1.765631923177 -2.986878602028 1.809023 -2.237259

44 1.776194 -3.038971 1.773591356738 -3.039204045422 1.813941 -2.271814

45 1.796266 -2.988776 1.801077961986 -2.989550533032 1.882977 -2.388847

46 1.833924 -2.967809 1.831567835991 -2.967979946789 1.873818 -2.265579

47 1.835750 -2.988661 1.845624666183 -2.991666695750 1.883939 -2.442927

48 1.855172 -3.043492 1.852527998434 -3.043710551686 1.884393 -2.498348

49 1.892777 -2.959511 1.884936044669 -2.961259366808 1.937731 -2.177288

50 1.893427 -2.983355 1.899868057549 -2.984583094281 1.947870 -2.204567

51 1.912270 -2.991444 1.916517435225 -2.991978366226 1.974846 -2.198855

52 1.949857 -2.984952 1.937974048925 -2.988779822952 1.984468 -2.187915

53 1.949402 -2.970368 1.961895379520 -2.974816531472 2.009351 -2.195769

54 1.967710 -3.007974 1.971909776092 -3.008467736524 2.016416 -2.273019

55 2.005315 -2.972047 1.997949144047 -2.973425131693 2.052942 -2.222675

56 2.003818 -3.005524 2.007994951024 -3.005994640032 2.056417 -2.243726

57 2.021627 -2.993537 2.027327589626 -2.994392848924 2.081772 -2.257658

Continued on next page
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Table S 1 – Continued from previous page

N R∗
LJ/r0 ULJ/N/ε R∗

LJ/r0 (Voogd) ULJ/N/ε (Voogd) R∗
M/r0 U∗

M/N/ε

58 2.059277 -2.991903 2.044677513303 -2.997051140312 2.099946 -2.252599

59 2.056791 -3.009671 2.060451925427 -3.010013049113 2.116954 -2.302388

60 2.074146 -3.032748 2.072914876984 -3.032786493941 2.127555 -2.282841

61 2.091367 -3.004137 2.099984988857 -3.005979486010 2.156723 -2.251880

62 2.108437 -3.021133 2.109459052546 -3.021158756038 2.165891 -2.216732

63 2.125373 -3.022027 2.125802560541 -3.022031670944 2.181170 -2.228638

64 2.142175 -3.020690 2.143018548376 -3.020706178561 2.203763 -2.233371

65 2.180011 -3.014365 2.159849647419 -3.023038735530 2.218712 -2.252606

66 2.175388 -3.034738 2.173766775635 -3.034797798662 2.228147 -2.242949

67 2.191807 -3.033152 2.190095552387 -3.033218086182 2.257012 -2.223577

68 2.229750 -3.009600 2.212957714507 -3.015064415231 2.269333 -2.223757

69 2.224280 -3.034493 2.221952321872 -3.034610208058 2.279338 -2.228245

70 2.240334 -3.042208 2.236128944654 -3.042587333370 2.296906 -2.255365

71 2.256281 -3.047856 2.253609149146 -3.048006785146 2.317771 -2.299356

72 2.272121 -3.056438 2.264321813954 -3.057702042394 2.316996 -2.325058

73 2.287837 -3.019305 2.292383040075 -3.019407304510 2.352293 -2.226592

74 2.303454 -3.030862 2.303497514639 -3.030862374611 2.366227 -2.242038

75 2.318974 -3.044339 2.315406949106 -3.044593521226 2.375216 -2.212863

76 2.334377 -3.043228 2.332264011995 -3.043315920487 2.395653 -2.245938

77 2.349683 -3.051799 2.342682708578 -3.052751366791 2.405489 -2.261926

78 2.364891 -3.067158 2.355651081550 -3.068799176877 2.410416 -2.237785

79 2.380009 -3.046926 2.373368483194 -3.047756931955 2.447245 -2.252494

80 2.395021 -3.053943 2.387441437503 -3.055012900626 2.449508 -1.902176

81 2.409943 -3.040082 2.405496835696 -3.040443111613 2.470801 -2.195361

82 2.424777 -3.036470 2.421820588972 -3.036629161026 2.492485 -2.259488

83 2.439512 -3.039338 2.434795696871 -3.039736810517 2.501109 -2.328417

84 2.454168 -3.051290 2.448182481981 -3.051926932936 2.500183 -2.345918

Continued on next page
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Table S 1 – Continued from previous page

N R∗
LJ/r0 ULJ/N/ε R∗

LJ/r0 (Voogd) ULJ/N/ε (Voogd) R∗
M/r0 U∗

M/N/ε

85 2.468734 -3.041139 2.464409004970 -3.041467105409 2.529841 -2.209913

86 2.483211 -3.044077 2.478604188594 -3.044445037863 2.544674 -2.224230

87 2.497608 -3.048261 2.493077153951 -3.048615801156 2.555677 -2.204192

88 2.511916 -3.058038 2.504241465416 -3.059034645237 2.571579 -2.265073

89 2.526152 -3.053892 2.519344738182 -3.054668510385 2.582359 -2.252085

90 2.540300 -3.049875 2.540613112184 -3.049877137472 2.606983 -2.251916

91 2.554376 -3.052519 2.551677109091 -3.052638760612 2.617603 -2.210665

92 2.568372 -3.067097 2.559448724569 -3.068391387274 2.616534 -2.281080

93 2.582297 -3.061326 2.578325483646 -3.061580134667 2.644918 -2.250411

94 2.596141 -3.069246 2.588610373792 -3.070146514964 2.651315 -2.127731

95 2.609915 -3.070577 2.600111381806 -3.072084399989 2.669293 -2.297233

96 2.623617 -3.078376 2.609596703568 -3.081425625804 2.678059 -2.287996

97 2.637247 -3.074433 2.626721288869 -3.076135067207 2.695931 -2.298052

98 2.650807 -3.087128 2.635565739021 -3.090663894976 2.697864 -2.282845

99 2.664295 -3.066456 2.653858334618 -3.068095087771 2.727576 -2.205642

100 2.677712 -3.072264 2.663546522523 -3.075249310690 2.743986 -2.232190

S 2 Problems associated with Voronoi tessela-

tion

In a 3D Voronoi construction, the entire simulation volume V is divided into

N polyhedra with volume Vi, one for each particle i = 1, ..., N (a Voronoi

tessellation). Each volume Vi consists of all points x that are closer to the

position of particle xi than to any other particle. Although our particles only

have access to a two-dimensional subspace of R3, they live in a three-dimensional

Cartesian space, so it is still possible to assign the aforementioned volumes to

5



them. The number of faces of each polyhedron is then the number of nearest

neighbours of each particle, and a connectivity network can be generated by

connecting all particles whose polyhedra share a face.

The network generated by the tessellation covers the entire space, and thus

automatically has the correct Euler characteristic. For particles on a sphere,

one should generate the equivalent of the three-dimensional Voronoi tesselation

on the spherical surface. This can be done by determining the convex hull of the

points (2), for which we employ the CGAL software library. (3) This produces

a partitioning of the sphere surface where again each point is assigned to the

particle that is closest to in geodesic sense.

Such a construction is very natural for hexagonal lattices, as the generated

polyhedra are hexagons as well, and they are fairly robust against thermal

fluctuations. An issue arises when particles are packed in other types of lattice,

however. For example, in a perfectly square lattice, the Voronoi tessellation

is degenerate because the cubes around the particles have touching edges and

vertices. A small thermal fluctuation will generate an additional face in two

of the polyhedra, resulting in either one pair or the other being counted as

neighbours, even though the packing should be considered square instead of

hexagonal.(4) Based on previous works (5, 6) we anticipated such problems and

hence opted for the distance criterion instead.

We present here Fig. S 1 as a clear illustration of a packing for which the

Voronoi construction is degenerate. It is an octahedral (7) packing of Lennard-

Jones particles that corresponds to the global minimum for N = 24, where we

colour the coordination of the particles according to the Voronoi tessellation

and the distance criterion. Each particle in the packing plays an equivalent

role, as they are all at the corner of a square arrangement and touch five other

particles. Nevertheless, the Voronoi construction arbitrarily assigns six nearest

neighbours to some of the particles. Hence, the Voronoi construction incorrectly

assigns 12 defects instead of 24 to this packing. This would as a result imply

that the packing has no defects at all, which is clearly incorrect as all particles
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are five-fold defects.

(a) convex hull (a) distance (b) convex hull (b) distance

Figure S 1: (Colour online.) Global potential energy minimum for N = 24
Lennard-Jones particles, shown from two vantage points (a) and (b), obtained
using the GMIN program.(8) The colour indicates the number of nearest neigh-
bours. Red particles have 6 and blue 5 nearest neighbours, as identified by the
convex hull and the distance criterion.

Despite the aforementioned deficiencies of the Voronoi tessellation, it is com-

monly used in the literature to quantify defects. Therefore, we do present a

short analysis of Voronoi tessellation here to allow for easier comparison with

said literature. In Fig. S 2 we show the excess defect fraction obtained from

the convex hull with the software library CGAL (3). Similar to the distance

criterion, we again find that for certain particle numbers, excess defects appear

at zero temperature, disappear at intermediate temperatures, then reappear at

higher temperatures. This observation suggests that our findings are indeed ro-

bust. However, details of the excess defect landscapes calculated from the two

methods do vary quite significantly.
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Figure S 2: (Colour online.) Excess defect fraction for N = 10 to N = 100
Lennard-Jones particles determined by means of the convex hull.
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For the distance criterion the number of excess defects for a given temper-

ature does not seem to follow a clear trend as a function of the number of

particles. However, for the Voronoi tesselations we see a gradual increase in the

number of excess defects with increasing N at fixed temperatures T > 1 ε/kB .

Furthermore, the total number of excess defects in this construction is signif-

icantly smaller over the entire temperature range, because of the previously

mentioned deficiencies.

For the Voronoi tesselation the largest excess defect fraction is only 0.25,

whereas that for the distance criterion it is about 0.8. This difference is explained

by the fact that at high temperatures, the particles are effectively a liquid and

there are large fluctuations in inter-particle distances. These large fluctuations

lead to a considerable fraction of particles that have other than six nearest

neighbours. The convex hull is not sensitive at all to the inter-particle distance,

and thus does not reach these large values.

S 3 Cut-off radii for distance criterion

In this section we present the cut-off radii we used for the nearest neighbour

distance criterion. The distances r∗ are chosen to coincide with the minimum

after the first peak in the pair distribution function. For those particle numbers

N where the first peak was split, we chose r∗ so that both split peaks are within

r∗. They are tabulated in Tab. S 2.

Table S 2: Cut-off radii used for the distance neighbour criterion for Lennard-
Jones particles and Morse particles with shape parameter α = 60/r0, where r0
is the distance at which the pair potential has its minimum.

N r∗ (LJ) r∗ (Morse) N r∗ (LJ) r∗ (Morse)

10 1.1522287 1.1403504 11 1.1284720 1.1997439

12 1.0750181 1.0809568 13 1.1819259 1.0809568

14 1.3500679 1.1522287 15 1.3500679 1.0809568

Continued on next page
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Table S 2 – Continued from previous page

N r∗ (LJ) r∗ (Morse) N r∗ (LJ) r∗ (Morse)

16 1.1700467 1.1284720 17 1.0987748 1.0809568

18 1.0631388 1.0809568 19 1.1047144 1.0928361

20 1.0572001 1.0809568 21 1.1759863 1.0809568

22 1.0572001 1.0809568 23 1.2235006 1.0809568

24 1.2710158 1.0809568 25 1.1225324 1.1165928

26 1.1581683 1.1225324 27 1.1878647 1.0868964

28 1.2472582 1.0393821 29 1.1759863 1.0928361

30 1.1581683 1.1225324 31 1.3363481 1.1106540

32 1.3363481 1.2472582 33 1.1938043 1.1938043

34 1.1522287 1.0809568 35 1.1344107 1.1165928

36 1.0809568 1.1759863 37 1.1700467 1.0809568

38 1.1700467 1.0809568 39 1.1581683 1.1581683

40 1.1819259 1.1522287 41 1.1700467 1.1848953

42 1.1700467 1.0809568 43 1.2472582 1.1938043

44 1.3363481 1.2472582 45 1.1284720 1.2472582

46 1.1819259 1.1670773 47 1.0928361 1.2650762

48 1.3363481 1.2650762 49 1.2531978 1.2235006

50 1.1284711 1.2205312 51 1.1700467 1.2472582

52 1.1819259 1.1165928 53 1.1462900 1.2472582

54 1.1581683 1.1522260 55 1.1641080 1.1522260

56 1.1759863 1.1670773 57 1.1819259 1.1938043

58 1.1403504 1.2383492 59 1.1641080 1.2472582

60 1.2353799 1.2472582 61 1.2591366 1.2205312

62 1.1878647 1.1938043 63 1.2116223 1.2472582

64 1.2413186 1.1848953 65 1.2710158 1.2650762

66 1.0750181 1.2160768 67 1.2413186 1.1938043

68 1.2650762 1.2027133 69 1.2116223 1.1938043

Continued on next page
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Table S 2 – Continued from previous page

N r∗ (LJ) r∗ (Morse) N r∗ (LJ) r∗ (Morse)

70 1.2472582 1.2294402 71 1.2472582 1.1938043

72 1.2918031 1.2027133 73 1.1700467 1.2116223

74 1.1641080 1.1635137 75 1.1641080 1.1848953

76 1.2027133 1.2116223 77 1.2413186 1.2135822

78 1.0868964 1.1670773 79 1.1522287 1.1848953

80 1.1670773 1.2160768 81 1.2591366 1.2918031

82 1.1700467 1.2027133 83 1.1700467 1.2828942

84 1.1047144 1.2739852 85 1.1759863 1.3363481

86 1.2413186 1.2472582 87 1.1165928 1.2472582

88 1.1047144 1.2472582 89 1.2175619 1.1492593

90 1.1047144 1.2561672 91 1.2591366 1.2561672

92 1.1938043 1.2294402 93 1.1909445 1.2561672

94 1.1878647 1.2650762 95 1.1759863 1.2294402

96 1.2531978 1.1581683 97 1.2531978 1.2472582

98 1.1789441 1.2294402 99 1.2472582 1.2353790

100 1.2365407 1.2472582

S 4 Additional figures of particle fractions

This section contains additional figures of particle and defect fractions for the

Lennard-Jones and Morse packings. In Fig. S 3 we show the fraction of particles

with 7 nearest neighbours, revealing that for a Lennard-Jones potential, excit-

ing seven-fold defects thermally is difficult. The largest fraction of seven-fold

particles is about 0.018 for 48 particles at T = 2ε/kB .

In Figs. S 4, S 5 and S 6 we show the fraction of particles with three, four

and seven nearest neighbours, respectively. Figs. S 4 and S 5 reveal that for
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Figure S 3: Fraction of particles with seven nearest neighbours for a Lennard-
Jones potential.

Figure S 4: Fraction of particles with three nearest neighbours for a Morse
potential with α = 60/r0.

the sharp Morse potential, there is a significant number of particles with three

or four nearest neighbours for smaller particle numbers. This is because for

this potential, repulsion drives the optimal packings to lower density, which in

turn leads to fewer contacts between the particles. This is also evident from the

optimal radii for N = 11, 12 and 13 particles, since the optimal radius for 12 is

smaller than that for 11 and 13 particles.

S 5 Free energies of packings

This section contains detailed descriptions related to the identification of the

packings considered in Section 4. To accurately identify the equilibrium pack-
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Figure S 5: Fraction of particles with four nearest neighbours for a Morse po-
tential with α = 60/r0.

Figure S 6: Fraction of particles with seven nearest neighbours for a Morse
potential with α = 60/r0.

ing, we average the particle positions over a short time window to average out

fast thermal fluctuations. In particular, we average 250 frames 10 time steps

apart, which corresponds to time intervals of 0.05τL apart, where τL is the

Langevin damping time. This averaging is performed every 2500 time steps,

which corresponds to intervals of 12.5τL.

For each of these averaged snapshots, we determine the number of near-

est neighbours of each particle according to the neighbour criterion with r∗ =

1.2918031r0. For each of these defects, we determine if they are in a defect clus-

ter, where a cluster is defined as all defects that are direct or indirect neighbours

of each other. From that information, one can already deduce if the packing

is icosahedral, D5h, or D3, since an icosahedral packing contains twelve defect
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clusters of one defect each, the D5h contains five clusters of six defects and two

of one defect, and the D3 packing contains six clusters of one defect and three

clusters of six particles.

For additional verification, we determine the root mean square deviation

(RMSD) of the particle positions of these snapshots with respect to the identified

packing. We do so by assigning to each packing type two axes that are easily

obtained from the defect locations. For the D5h, the first axis is the location

of the single five-fold defect and the second axis is the average position of the

five-fold defects in the cluster of six. For the D3, the main axis is the average

position of the three single five-fold defects on the same side of the three clusters

of six defects, and the second axis is the average position of one of those clusters

of six. For the icosahedral packing, we take as main axis the position of a single

five-fold defect and as second axis another defect that makes an angle of 63.435◦.

Because of fluctuations, we iterate over all vertices and find the pair that deviates

the least from this fixed angle. For all packings, we make the axes orthonormal

using the Gram-Schmidt procedure.

To extract the RMSD, we first identify the packing based on the defect

pattern. Then we find the two axes for the packing as well as the reference

packing we identified it with, and rotate the particles so that the two axes of

the packing align with the reference. Then, we simply obtain for each particle

position xi in the packing the particle position in the reference xj(i) that is

closest to it. The RMSD is then simply calculated as

RMSD =

√√√√ 1

N

N∑
i=1

‖xi − xj(i)‖2.

In Fig. S 7a we show the time trace of the RMSD and the fluctuations in

the packing type for N = 72 Lennard-Jones particles at T = 0.02 ε/kB . Note

that the RMSD for the D5h and D3 packings are significantly lower than for

the icosahedral packing, presumably due to the higher configurational entropy

of the icosahedral packing. In Fig. S 7b we show another time trace of the
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(a) (b)

Figure S 7: (Colour online.) Root mean square deviation from assumed packing
type at T = 0.02 ε/kB (a) and T = 0.066 ε/kB (b). Note the different time scale
needed for the lower temperature to sample a sufficient number of transitions
between the packings.

RMSD, but now for T = 0.066 ε/kB , which is close to the temperature used

in Ref. (7). Note that in this case the dominant packing is the icosahedral

one. The RMSD is higher for all packings due to larger thermal fluctuations.

Note furthermore that the rearrangements from D5h to icosahedral and back

are much more frequent at the higher temperature.

For the lower temperatures of T = 0.02ε/kB the average occupation fraction

of the different states was still in the process of converging, as can be seen from

figure S 8. Since the total sampling length for the temperatures T ≤ 0.03ε/kB

was ten times longer, we see that increasing the temperature from T = 0.02ε/kB

to T = 0.05ε/kB leads to convergence more than ten times as fast, from which it

becomes clear that the frequency of rearrangements for Lennard-Jones packings

increases very rapidly with temperature.

With the analysis described here, we can determine the packing for each

frame, and from this we construct occurrence frequencies for each packing. Un-

der the assumption that the simulations are ergodic, these can be converted into

free energy differences, as explained in the main text.

For the Morse potential the above procedure is not viable at low tempera-

tures, presumably because the energy barriers between the packings are much

larger. To emphasise this, we show in Fig. S 9 the frequency of observed

switches between the low energy packings per simulation time for N = 72 for

14



Figure S 8: Converging of the observed frequency of the different packings with
the fraction of total time sampled. The lower temperatures T ≤ 0.03ε/kB had
a total sample time ten times longer than that of the higher temperatures.

both the Lennard-Jones and Morse particles. The low energy packings are

shown in Figs. 3 for Lennard-Jones and 9 for Morse. Note that the Lennard-

Jones packing exhibits a maximum at around T = 0.03ε/kB . This is because at

this point all three packings are roughly equally likely. The Morse packings only

show significant rearrangements for T > 0.75 ε/kB , even though the potential

energy difference between the two packings is of a similar order as the poten-

tial energy difference between the Lennard-Jones D5h and icosahedral packings

(≈ 1.6×10−3ε for Lennard-Jones against 1.58×10−3ε for Morse). This hints at

a much larger kinetic barrier between the packings, and thus a simple sampling

of the frequencies is not a viable approach to determine the free energy of the

packings.
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