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SM.1 Nondimensionalization

Let R =
√

A/π be the effective vesicle radius (A is the total area
of the vesicle) and L be the total arclength. Let S be the strength
of the applied extensional flow. Then, nondimensionalizing time
by t ′ = St and space by x′ = x/R, the nondimensional stochastic,
immersed boundary equations can be written as:

Re ∂u′/∂ t ′ = ∇
′2u′−∇

′ p̃′+χ
−1

Λ
′(F′X′)+χ

−1/2 KuB C 1/2
∇
′ ·W′,

(SM.1)

∇
′ ·u′ = 0, (SM.2)

∇
′
s ·ϒ′(u′) = 0, (SM.3)

Λ
′(F′X) =

∫
S (t ′)′

F′X(t
′) δ
′
a′(x
′−X′(s′, t ′)) ds′, (SM.4)

ϒ
′(u′) =

∫
D ′

u′(x′, t ′) δ
′
a′(x
′−X′(s′, t ′)) dx′, (SM.5)

dX′/dt ′ = ϒ
′(u′), (SM.6)

where Re = SρR2/η is the Reynolds number, χ = SηR3/κ is the
nondimensional strain, KuB =

√
kBT/κ is a bending Kubo num-

ber1,2, and C = R/Ld is a confinement number. The nondimen-
sional velocity u′ = u/(SR), p′ = (p−ΛkBT )/(ηS) is a modified
nondimensional pressure that incorporates the drift term. The
nondimensional force F′X′ is given by

F′X′ =
(

∂ 2H ′

∂ s′2
+

1
2

H ′3−H ′σ ′
)

n+
∂ σ̃ ′

∂ s′
t, (SM.7)

where s′ = s/R is the nondimensional arclength, H ′ = RH, and σ ′ =(
σR2)/κ is a nondimensional elastic tension. Finally, δ ′a′ = R2δa/R

is the nondimensional two-dimensional approximate delta func-
tion, and the nondimensional white noise tensor W′ satisfies

E
(
W ′i j(x

′, t ′)W ′kl(y
′,τ ′)

)
= δikδ jlδ

′
x′(x
′−y′)δ ′t ′(t

′− τ
′), (SM.8)

where δ ′t ′ = S−1δSt and δ ′x′ = R2δx/R are nondimensional temporal
and spatial delta functions.

SM.2 Wrinkling dynamics of a nearly circular
vesicle: Perturbation theory

The stochastic partial differential equations governing the motion
of a nearly circular vesicle in Stokes flow can be simplified to a
system of stochastic ordinary differential equations using pertur-
bation theory. Here, we outline this procedure and focus on the
model for thermal fluctuations. We assume that the vesicle in-
terface rΓ = R(1+P) is a perturbed circle of radius R, where the
perturbation P can be written as the Fourier series:

P(t,φ) = ∑
m

Pm(t)exp(imφ)/
√

2π, (SM.9)

where Pm are the Fourier coefficients. In the deterministic case,
following3–5, the Stokes equations and boundary conditions are
solved in the perturbed domain to first order in P to obtain an
evolution equation for the Fourier coefficients of P:

dPm

dt
= S sgn(trev− t)(δm,2 +δm,−2)−

κ

ηR3 βmEmPm, (SM.10)

where sgn(t) is the sign of t. Here, Em = (m2− 1)(m2− 3/2+σ)

is the elasticity coefficient, βm =
|m|

4(m2−1) is the mobility coefficient,
and σ is the elastic tension. The elastic tension σ at each instant is
determined such that the global constraint d

(
Σ(m2−1)|Pm|2

)
/dt =

0 is fulfilled. This gives

σ =
(
6S sgn(trev− t)Re(P2)− Γ̄+ ζ̄

)
/Ā, (SM.11)
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where Γ̄ = κ

ηR3 ∑(m2− 1)Γm|Pm|2, Ā = κ

ηR3 ∑(m2− 1)Am|Pm|2, ζ̄ =

∑(m2− 1)P∗mζm, and Γm = |m|(m2−3/2)/4, Am = |m|/4. A detailed
derivation can be found in3,4.

At nonzero temperatures, thermal fluctuations can be modeled
as an additive noise term in Eq. (SM.10) following3,6,7. This yields
the stochastic differential equation

dPm

dt
= S sgn(trev− t)(δm,2 +δm,−2)−

κ

ηR3 βmEmPm +ζm, (SM.12)

where ζm describes the contribution of thermal fluctuations, which
needs to be modeled. We assume that (i) S = 0, (ii) the elastic ten-
sion σ is constant, (iii) the vesicle is in equilibrium, and (iii) ζm is
a complex-valued white noise random variable that is independent
of Pm. In particular, we take

ζ±m(t) = Ξm
dBm

dt
(t), for m = 1,2,3, ..., t ≥ 0, (SM.13)

where Bm(t) are independent complex-valued Weiner processes
(e.g., standard complex Brownian motion) and Ξm are scaling fac-
tors whose values we derive below.

Consider the deviation of the mth perturbation Pm from its mean

δPm = Pm−〈Pm〉 , (SM.14)

where 〈·〉 denotes the mean value. Then, the solution to Eq.
(SM.12) with S = 0 then reads as

δPm(t) = δPm(0)e−(κ/η2R3)βmEmt +Ξm

∫ t

0
e(κ/η2R3)βmEm(u−t)dBm(u),

(SM.15)
where the integrals are Itô integrals and δPm(0) is the initial value.
By Itô’s Isometry, we obtain

E
(∣∣∣δPm(t)−δPm(0)e−(κ/η2R3)βmEmt

∣∣∣2)=Ξ
2
m

∫ t

0
e2(κ/η2R3)βmEm(u−t)du,

(SM.16)
where E denotes the expectation.

Following the Einstein relation, we set the average energy of
each mode to be proportional to kBT . Here, the relevant energy is
the elastic energy, which in two-dimensions, can be written as

Eκ =
κ

2R ∑m6=0 Em|Pm|2, (SM.17)

up to quadratic order in P. Because we are in two-dimensions, we
again need to scale kBT by a length scale Ld as in Sec. 2.2 in the
main text. Thus, the fluctuation-dissipation theorem gives

κ

2R
Em

〈
|Pm|2

〉
=

1
2Ld

kBT. (SM.18)

Because 〈Pm〉 = 0 as t → ∞, we obtain from Eqs. (SM.16) and
(SM.18) that

Ξ
2
m =

2βmkBT
ηR2Ld

, (SM.19)

which gives the correlations:

〈ζm(t)ζn(τ)〉=
2βmkBT
ηR2Ld

δm,−nδ (t− τ). (SM.20)

Note that the factor Ld in Eq. (SM.20) was replaced by R in the
2D analysis presented by Finken et al.3, which would be the cor-
responding scaling in three dimensions. Here, we take the value
of Ld used in the fully nonlinear simulations. Since R < Ld , this
means that the thermal fluctuations are smaller than would be the
case if R was used instead as in3, although the results using the
two choices are qualitatively similar.

Finally, assuming that Eq. (SM.20) is also valid for the vesicle
in a non-vanishing extensional flow, we can then investigate the
stochastic wrinkling dynamics by solving Eq. (SM.12) numerically
for a finite number of modes. Here, we took 0< |m| ≤ 256 and used
a second-order stochastic Runge-Kutta (RK2) method8 to perform
the time integration. The initial data for the perturbation theory is
obtained from taking the Fourier coefficients of the vesicle shape
just before the flow is reversed.

SM.3 Numerical method

We use a finite difference scheme to discretize the fluid equations.
The membrane is represented by N nodes that are connected by
springs each with spring constant λL. We write the velocity u =
up+u∞ where up is a doubly-periodic function and u∞ = S sgn(trev−
t)(y,−x) is the applied extensional flow. The discretized system is
given by

ρ(un+1
p −un

p)/∆t = ηLun+1
p −Dp̃n+1 +Λ

D
a (FXn)+ fn+1

thm ,

(SM.21)

D ·un+1
p = 0, (SM.22)

fn+1
thm (xm) =

√
2ηkBT/Ld(∆t∆V )−1/2Bn+1(xm),

(SM.23)

(Xn+1
[i] −Xn

[i])/∆t = ϒ
D
a (up)i +S sgn(trev− tn)

(
Y n
[i],−Xn

[i]

)T
,

(SM.24)

where p̃ = p−ΛkBT is a modified pressure, ΛD
a and ϒD

a are the
discrete versions of the structure-fluid coupling operators:

[
Λ

D
a (FXn)

]
m

= ∑i FXn
[i]
(t)δa(xm−Xn

[i])∆s[i], (SM.25)

ϒ
D
a (u)i = ∑m δa(xm−Xn

[i])u
n+1(xm)∆x2, (SM.26)

where ∆t is the time step, ∆x is the grid size in the fluid and
∆s[i] is the arclength associated with the ith node on the mem-
brane. X[i] is the position of the ith node on the membrane, with
i = 1,2, ...,N, and xm is a grid point in the fluid, with m = (m1,m2)
and ml = 1,2, ...,ND where l = 1,2. ND is the number of the lattice
points for fluid in one dimension. The term ∆V = (∆x)2 is the area
of a unit cell, and Bn+1(xm) is a spatial uncorrelated normal ran-
dom tensor9, where Bn+1

l (xm)∼ N(0,1). D is the standard central
difference gradient operator and L is the standard 5-point discrete
Laplacian. The smoothed delta functions are defined as10–12

δa(x,y) =
1
a2 ϕ

(
|x|
a

)
ϕ

(
|y|
a

)
, (SM.27)
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where a is a parameter related to the support of δa and ϕ(r), with
r ≥ 0, is defined as

ϕ(r) =


1
8 (3−2r+

√
1+4r−4r2) for 0≤ r≤ 1,

1
8 (5−2r−

√
−7+12r−4r2) for 1 < r≤ 2,
0 for 2≤ r.

(SM.28)
Here, we take a = ∆x. The fluid system, which is subject to peri-
odic boundary conditions, is solved using the two-dimensional Fast
Fourier Transform. Although we have presented the algorithm us-
ing Euler’s Method for simplicity. we actually use a stochastic RK2
method to calculate the vesicle dynamics following8. Because the
nodes of the membrane are connected by springs, we do not dis-
cretize the inextensibility equation (3) in the main text. Instead,
we take the spring constant λL sufficiently large so as to maintain
local inextensibility to within 1% (see Sec. SM.5 in Supplementary
Materials below). Finally, it remains to describe how the forces FX
are calculated.

Let ∆L = L/N where L is the total arclength of the membrane.
Initially the nodes X[i] are equally-distributed along the membrane
with spacing ∆L. Neighboring nodes are connected by elastic
springs with the spring potential being

EL = ∑
N
i=1 λL(∆s[i],[i+1]−∆L)2/2, (SM.29)

where λL is the elastic constant, ∆s[i],[i+1] is the arclength from X[i]
to X[i+1] (details on how the arclength is calculated are given be-
low), and X[N+1] = X[1] for a closed curve. The tension between
two neighboring nodes is then given by

F[i],L = λL
(
∆si,i+1−∆L

)(
X[i+1]−X[i]

)
/
∣∣∣X[i+1]−X[i]

∣∣∣ , (SM.30)

for i = 1,2, · · · ,N, acting on the ith node and pointing to the (i+1)
node.

The discrete elastic force density is given by

F[i],κ =
(

κ(H)ss,[i]+κH3
[i]/2

)
ni, for i = 1,2, ...,N. (SM.31)

The curvature H[i] and (H)ss,[i] are computed as follows. We take

X[i] =
(

x[i],y[i]
)

; the components are taken to be functions of the

index number i as x[i] = x(i), y[i] = y(i), with i = 1,2, · · · ,N. Assum-
ing the shape of the vesicle is a smooth closed curve, we calcu-
late dx/di and dy/di by the one-dimensional Fast Fourier Trans-
form. Let xi,[i] = dx(i)/di, yi,[i] = dy/di(i), xii,[i] = d2x(i)/di2, and
yii,[i] = d2y(i)/di2. Then, the mean curvature is computed as

H[i] =
(

xii,[i]yi,[i]− xi,[i]yii,[i]

)
/(x2

i,[i]+ y2
i,[i])

3/2. (SM.32)

The derivative of curvature H with respect to arclength s reads as

dH(i)/ds = Hi,[i]/si,[i], (SM.33)

where Hi,[i] = dH(i)/di and si,[i] =
√

x2
i,[i]+ y2

i,[i]. The second deriva-

tive, Hss, is then computed in a similar way. The tangent angle
θ(i), i = 1,2, · · · ,N, which is the angle between the tangent vec-
tor and the positive x-axis, is computed by integrating the relation

θi,[i] = dθ(i)/di, using the one-dimensional Fast Fourier Transform,
where

θi,[i] = H[i]si,[i]. (SM.34)

Since the values of i are consecutive positive integers, si,[i] is ac-
tually the local arclength associated with the ith node. Thus
∆s[i] = si,[i] and the arclength from X[i] to X[i+1] is given as

∆s[i],[i+1] =
(

si,[i]+ si,[i+1]

)
/2. (SM.35)

The total force acting on the ith node is the sum of the elastic and
bending forces:

FX[i](t) =
F[i],L−F[i−1],L

∆s[i]
+F[i],κ , for i = 1,2, ...,N. (SM.36)

The total area of the vesicle can then be calculated as

A = ∑
N
i=1

(
x[i] cosθ[i]− y[i] sinθ[i]

)
∆s[i]. (SM.37)

The average of the local elastic tensions, σ(t) can be calculated as:

σ(t) = λL(Ls(t)−L)/N, (SM.38)

where the Ls(t) = ∑
N
i=1 ∆s[i] is the total arclength of the discrete

membrane.

SM.4 Using the immersed boundary method
to simulate a fluctuating filament under ten-
sion

Since a filament is not a closed curve, we need to use a different
method to calculate the bending forces. The rest of the immersed
boundary method is identical to that used for the vesicle. Initially,
the filament is taken to be a straight line segment equally divided
into 20 sub-segments. Each sub-segment has a length of ∆L = 4.0×
10−7m and the total length of the filament is L = 8.0×10−6m. The
discrete bending energy for the filament is then defined as

E = ∑
20
i=2

1
2

κH2
[i]∆L[i], (SM.39)

where H[i] is the curvature at ith node, which is now computed
as (π−ϕ[i])/∆L[i] for i = 2,3, ...,20, with ∆L[i] the arclength associ-
ated with node i and ϕ[i] the angle formed by 3 successive nodeŝX[i−1]X[i]X[i+1]. The curvatures of the first and last node are set to
be zero. We then use finite difference method with unequal spac-
ing to calculate the second derivative of the curvature with respect
to the arclength. The elastic force on the ends are determined by
zero net force and torque conditions.

In the filament simulations, we set κ = 10−26J, λL = 10−4N/m,
∆t = 10−6s, and run up to 105 steps. We omit the first 103 steps
and calculate the mean filament length and standard deviation
from the remaining steps. For this set of parameters, we find
that the standard deviation of the mean length is small, relative to
the nonlinear part of the Odjik formula < LNL >=< L >−LHook =
−kBT/(2

√
κFp) where LHook = L0−FpNs/λL, although it is difficult

to estimate the standard deviation of the mean length because fil-
ament lengths at nearby times are correlated. Note that the bend-
ing stiffness and the spring constant here are smaller than those
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used in the simulations of vesicle dynamics because of the signif-
icant computational costs associated with using the experimental
parameters. For example, if one uses the experimental parameters
for the vesicle, e.g., the larger bending stiffness κ = 10−19J as in13

and spring constant λL = 4×104N/m, then |< LNL > | is very small
(on the order of 10−13m), then many more time steps are needed
to reduce the standard deviation of the mean to be a fraction of
| < LNL > |. For example, taking 105 steps with the experimental
parameters gives the standard deviation σ ≈ 10−9m. Using σ/

√
N

as a rough estimate for the standard deviation of the mean length,
then we would expect to require more than 1010 steps to reduce
the standard deviation of the mean to be 10% of the mean length.

SM.5 Numerical accuracy
We demonstrate the performance of our numerical algorithm to
simulate the dynamics of a vesicle in extensional flow. We take the
fluid domain D to be a square with side length 4×10−4m. The ini-
tial shape of the vesicle is an ellipse with long axis a = 2× 10−5m
and short axis b = 0.8×10−5m, e.g. the aspect ratio is a : b = 1 : 0.4.
Correspondingly, the excess arclength is ∆= 0.994. The extensional
flow rate is S = 4 (the nondimensional strain χ = 81) and the bend-
ing stiffness is κ = 10−19J, which is the value reported in13 for the
experimental vesicles. We set λL = 4× 104N/m to ensure that the
variation of local arclength is less than 0.1% for deterministic sim-
ulations, and 0.3% for stochastic simulations. The fluids in the
interior and exterior of the vesicle are assumed to have the same
viscosities and densities, which are taken to be those of water at
the temperature 293K (e.g., η = 10−3Pa s and ρ = 103kg/m3).

We run the simulation until the vesicle reaches an equilibrium
state (up to T = 0.1s) using N = 256 interfacial nodes. We perform
the simulations with time steps ∆t = 10−5s, ∆t/2, ∆t/4, and ∆t/8,
and check the convergence in time by measuring the vesicle area
and calculating the rate of convergence rC by

rC = log
(
|A∆t −A∆t/2|/|A∆t/2−A∆t/4|

)
/ log2. (SM.40)

The results for the deterministic and stochastic immersed bound-
ary methods are summarized in SM.Tab. 1 below and demonstrate
that our numerical schemes are second-order convergent in time.

Table 1 Convergence test in time for the vesicle area (∆A = |(As−As/2|/A)

Deterministic R-K 2 Stochastic R-K 2
Time Step ∆A rC ∆A rC
∆t - - -
∆t/2 2.43e-8 - 3.68e-7 -
∆t/4 6.08e-9 2.002 9.18e-8 2.004
∆t/8 1.51e-9 2.008 2.34e-8 2.007

SM.6 Additional realizations of wrinkling dy-
namics in time-dependent extensional flow

In the main text, we presented a single realization of the stochas-
tic dynamics of a single vesicle with excess area ∆ = 0.994 with
two nondimensional strains χ = 81 (S = 4) and χ = 323.5 (S = 16).
Here, we present multiple realizations for these cases to demon-
strate that the results presented in the main text are characteristic

of the wrinkling behavior. We also present the dynamics of a vesi-
cle using the smaller value χ = 8.1 (S = 0.4).

Small strain. We begin by presenting the results with χ = 8.1,
see SM.Fig. 1 below. The flow is reversed at time t ′ = 0. The deter-
ministic and stochastic dynamics are shown in SM.Figs. 1[a] and
[b] respectively. The corresponding experimental vesicles from13

are shown in SM.Fig. 1[c]. The deterministic vesicles are highly
symmetric and bear little resemblance to the experimental vesicles.
While the stochastic vesicles are asymmetric and better resemble
the two-dimensional cross-sections of the experimental vesicles,
compared to the results with χ = 81 and χ = 323.5, the agreement
with the experiments is less apparent. This is because when the
strain is smaller, the relative magnitudes of the thermal fluctua-
tions are larger than for the χ = 81 and χ = 323.5 cases. Con-
sequently, three-dimensional effects in the experiments are more
significant.

In SM.Fig. 1[d], the modified power spectrums |∆Pm|2 are plot-
ted for the deterministic (left) and stochastic (right) cases. Even
though the dynamics of the deterministic and stochastic vesicles
are different, the dominant wavenumbers and wavelengths are
m∗ = 4 and ω∗ = 23.0µm in both cases.

Moderate strain. We next present three additional realizations
of the wrinkling dynamics with χ = 81 in SM.Fig. 2 using the
stochastic immersed boundary method. These simulations corre-
spond to that shown in Fig. 2 (main text). The morphologies are
plotted in SM.Figs. 2[a]-[c], the modified power spectrums are
shown in SM.Fig. 2[d], the shapes at times t∗ (see main text) are
presented in SM.Fig. 2[e] and the dynamics of the elastic tensions
are plotted in SM.Fig. 2[f]. As can be seen from the figure, the
wrinkling dynamics of these different realizations are very similar
to each other and to the case presented in Fig. 2 in the main text.

Large strain. We now present three additional realizations of the
wrinkling dynamics with χ = 323.5 in SM.Fig. 3. These simulations
correspond to that shown in Fig. 3 in the main text. The morpholo-
gies are plotted in SM.Fig. 3[a]-[c], the modified power spectrums
are shown in SM.Fig. 3[d], the shapes at times t∗ (see main text)
are presented in Fig. 3[e] and the dynamics of the elastic tensions
are plotted in SM.Fig. 3[f]. As above, the wrinkling dynamics of
these different realizations are very similar to each other and to
the case presented in Fig. 3 in the main text.

SM.7 Fitting an ellipse to the vesicle and the
modified power spectrum

The vesicle is fitted by an ellipse as follows. The inclination angle
of the ellipse, Θ(t), is determined by the second mode of the vesicle
boundary. The long axis of the ellipse is set to be the diameter
of the vesicle d = max1≤i, j≤n(

∣∣XiX j
∣∣) initially and the short axis is

A/πd, where A is the vesicle area. Since this might not be the
best fit, we decrease d until

∫
L |∆P(s, t ′)|ds reaches its minimum,

where ∆P(s, t) is the difference between the vesicle boundary and
the elliptical fit.

In the main text, we calculated the modified power spectrum
|∆Pm|2 where ∆Pm are the Fourier coefficients of ∆P(s) where the
Fourier transform is taken with respect to the arclength variable.
Since Kantsler et al.13, calculated the modified power spectrum
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Figure 1 Dynamics of a vesicle in a time-dependent extensional flow with nondimensional strain χ = 8.1 and shape parameter/excess arclength
∆ = 0.994. [a] Deterministic dynamics; [b] Stochastic dynamics; [c] Experimental vesicle shapes from 13 (reprinted with permission); The numbers in
[a]-[c] are the nondimensional times t ′ at which the vesicle morphologies are shown. [d] The instantaneous modified Fourier power spectrum |∆Pm|2(t ′)
(values in color). The dominant wavenumbers and wavelengths are m∗ = 4.0 and ω∗ = 23.0µm for each case.

with respect to the polar angle for a two-dimensional cross-section
of the vesicle, instead of the arclength, we did the same. In par-
ticular, we reformulated the difference ∆P as a function of θ , the
angle between OXi and positive x-axis, where O is the center of
the vesicle (and the origin of the plane). The results are shown
in SM.Fig. 4 (top) for the three realizations of the stochastic dy-
namics with χ = 81 (presented in SM.Fig. 2). The rightmost figure
on the top shows the experimental result. These figures show that
the numerical simulations seem to excite higher modes than in the
experiment and at slightly earlier times. A difficulty with this com-
parison is that Kantsler et al. did not describe the details of their
elliptical fit. We found that the results could be sensitive to how
the fits are actually performed. Further, in SM.Fig. 4 (bottom),
we plot the the deformation D = (L−B)/(L+B), where L and B
are the large and small semi-axes of the elliptical approximation of
the vesicle. The first three plots are the simulation results and the
last plot is the corresponding plot in the experiment13. The sim-
ulation and experimental results are very similar and through the
wrinkling and re-orientation processes the deformation decreases
nearly to zero before rebounding. In the simulations, D returns to
its pre-flow reversal value after re-orientation is complete. How-
ever, in the experiments, the final D is larger than the original
value, indicating that two-dimensional cross section in the exper-
iment changes size throughout the wrinkling process because of
flow in the out-of-plane dimension. This can also affect the calcu-
lation of the modified power spectrum in the experiments.

SM.8 Influence of the shape parameter ∆

In Sec. 3.3 in the main text, we analyzed the effect of the initial
shape parameter ∆ and the flow rate on the characteristics of the
wrinkling dynamics. Here, in SM.Figs. 5 and 6 we present the de-
tailed dynamics of two cases with nondimensional flow strength
χ = 81. In SM.Fig. 5 the shape parameter ∆ = 0.3079 and in
SM.Fig. 6 the shape parameter is ∆ = 1.724. In each figure, the
deterministic dynamics is shown in [a], the stochastic dynamics
in [b], the modified instantaneous Fourier spectra [c] and the
shapes at time t ′∗ in [d]. In both cases, the deterministic dynam-
ics are slower and the wrinkling involves higher modes than in
the stochastic case. Further, the wrinkling dynamics and vesicle
re-orientation occurs more rapidly when ∆ is smaller since modes
at lower wavenumbers are activated and there is less excess ar-
clength.

SM.9 Budding dynamics at small strain

In the experiments by Kantsler et al.13, it was found that the for-
mation of buds could occur intermittently when the extensional
flow direction is reversed and the strain is small. We simulated
the vesicle dynamics under these conditions and present the re-
sults in SM.Fig. 7. The immersed boundary simulation results are
in [a], the experimental vesicle morphologies from13 are in [b]
, and longer-time simulation results are shown in [c]. As in the
experiments, the flow is reversed at time t ′ = 0. We find that like
in the experiments, the simulated vesicle surface does fold inward
suggesting the formation of a bud. However, bud formation in the
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Figure 2 Three realizations of the wrinkling dynamics of a single vesicle with nondimensional strain χ = 81 and excess arclength ∆ = 0.994. This case
corresponds to Fig. 2 in the main text. [a]-[c] The vesicle morphologies; The numbers in [a]-[c] are the nondimensional times t ′ at which the vesicle
morphologies are shown. [d] The corresponding instantaneous modified Fourier power spectra |∆Pm|2(t ′) (values in color); [e] The shapes of the
vesicle at t ′∗ (as labeled), and the corresponding m∗ and ω∗; [f] The evolution of the corresponding elastic tensions.

simulations is incomplete, likely because three dimensional effects
are important. In particular, the azimuthal curvature can aid in
bud formation as is evidenced in axisymmetric vesicles14,15. Even-
tually the simulated vesicle evolves to a bud-free equilibrium shape
as seen in SM.Fig. 7[c].

SM.10 Wrinkling dynamics of multiple vesicles

Finally, in SM.Fig. 8, we investigate the dynamics of multiple vesi-
cles in extensional flow. The conditions are the same as in Fig. 2 in
the main text and the initial vesicles are ellipses with ∆ = 0.994.
Each of the vesicles undergoes a transient wrinkling instability.
However, in the near contact region between the vesicles, wrin-
kles are suppressed because inextensibility inhibits the drainage
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Figure 3 Three realizations of the wrinkling dynamics of a single vesicle with nondimensional strain χ = 323.5 and excess arclength ∆ = 0.994. This
case corresponds to Fig. 3 in the main text. [a] Deterministic dynamics; [b] Stochastic dynamics; [c] Experimental vesicle shapes from 13 (reprinted
with permission); The numbers in [a]-[c] are the nondimensional times t ′ at which the vesicle morphologies are shown. [d] The instantaneous modified
Fourier power spectrum |∆Pm|2(t ′) (values in color); [e] The shapes of the vesicle at t ′∗ (as labeled), and the corresponding m∗ and ω∗; [f] The evolution
of the corresponding elastic tensions.

of fluid needed to accommodate interface perturbations (e.g., see
also16). In the simulation using two vesicles (SM.Fig. 8(left)),
the dominant mode and wavelength are m∗ ≈ 6.95 and ω∗ ≈ 13µm
for the vesicle on the left while for the right vesicle m∗ ≈ 7.5 and
ω∗ ≈ 12.3. Thus the wrinkling characteristics of the two vesicles
are very similar to each other. The times at which the dominant
modes/wavelengths occur are also very similar: t ′∗le f t = 1.425 for

the left vesicle and t ′∗right = 1.415 for the right vesicle. Compared
to the single stochastic vesicle shown in Fig. 2 [b] in the main
text, the dominant mode is smaller, the wavelength is larger (re-
call Fig. 4 in the main text), and the time evolution is faster (recall
Fig. 2 [e] in the main text). When three vesicles are simulated
(SM.Fig. 8(right)), the middle vesicle is shielded from the flow
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Figure 4 Top: The modified power spectrum |∆Pm|2 where the Fourier transform is taken with respect to the polar angle θ (values in color). The
nondimensional strain is χ = 81 and the excess arclength ∆ = 0.994. This is in contrast to those presented in SM.Fig. 3 where the Fourier transform
was taken with respect to arclength s. The first three plots show the simulation results from the vesicles in SM.Fig. 3 and the last plot is from the
corresponding experiment in Kantsler et al. 13. Bottom: The deformations D for the simulations (first three) and experiments (fourth).

by the outer two vesicles. Correspondingly, the dominant modes
and wavelengths are different. For the leftmost vesicle, m∗ ≈ 8.1
and ω∗ ≈ 11.4µm and, for the rightmost vesicle, m∗ ≈ 7.6 and
ω∗ ≈ 12.1µm, which are quite similar to each other and to the cor-
responding values for a single, stochastic vesicle (Fig. 4 in the main
text). However, the middle vesicle has m∗ ≈ 5.3 and ω∗ ≈ 17.4,
which shows that wrinkles on the middle vesicle are much more
widely spaced than on the outer vesicles. The times at which the
dominant modes/wavelengths occur are very similar for all three
vesicles: t ′∗le f tmost = 1.365, t ′∗middle = 1.375 and t ′∗rightmost = 1.38 and
the wrinkling dynamics is slightly faster than the case with two
vesicles.

The vesicles will not intersect if the initial positions for the vesi-
cles are well separated and the time step ∆t is small. As shown in
SM.Fig. 8, we find that the wrinkling dynamics is relatively stable,
that the characteristic frequencies of the wrinkles are not changed
significantly by the presence of neighboring vesicles. However,
nearby vesicles will partially offset thermal fluctuations since the
inextensibility inhibits fluid drainage17.

SM.11 Wrinkling dynamics in a time-
dependent shear flow

We next demonstrate that wrinkling can occur in time-dependent
shear flows as the flow direction is reversed. Defining an ex-
ternal shear flow to be u∞ = Ssgn(trev − t)(y,0), the nondimen-
sional measure of flow strength can be defined using the same
formula (χ = SηR3/κ) as in the extensional flow case. Note that

u∞ = uR + uE where uR =
S
2

sgn(trev− t)(y,−x) is a rotational flow

and uE =
S
2

sgn(trev− t)(y,x) is an extensional flow– compression

along y = −x and extension along y = x. Unlike Levant et al.7

who investigated wrinkling in the tumbling regime, we investigate

wrinkling in the tank-treading regime. As in the extensional flow
case, the initial ellipse is allowed to equilibrate in shear flow. Then,
at time t ′ = St = 1, the flow is reversed. The vesicle morpholo-
gies, modified instantaneous Fourier spectra and elastic tensions
are plotted in SM.Figs. 9[a]-[c] respectively. When the shear flow
direction is reversed, the wrinkles form in the directions of com-
pression of the underlying extensional flow uE , where the elastic
tension is negative, and the dynamics follow a three-stage process
(initiation, development, decay) as in the pure extensional flow
case18. Here, the dominant wavenumber and wavelengths are
m∗ = 7.68 and ω∗ = 12.0µm, respectively, which are achieved at
time t ′∗ = 1.30. There are apparent differences between the shear
and pure extensional flow wrinkling dynamics, however. First, the
dominant frequency for the wrinkling dynamics in shear flow is
smaller than that in the extensional flow, as shown in SM.Fig. 9[c],
because there is also a rotation of the vesicle, thus the lower even
modes dominate the dynamics. Second, the wrinkling dynamics in
shear flow is shorter and the average elastic tension at the equilib-
rium states is larger because the shear rate is two times the corre-
sponding extensional flow rate.
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Figure 6 Wrinkling dynamics in a time-dependent extensional flow with χ = 81 and excess arclength ∆ = 1.724. [a]. Deterministic dynamics; [b].
Stochastic Dynamics; The numbers in [a]-[b] are the nondimensional times t ′ at which the vesicle morphologies are shown. [c]. The modified
instantaneous Fourier spectra of the vesicle (values in color); [d] The vesicle morphologies at time t ′∗ (as labeled), and the corresponding m∗ and ω∗.
Top: Deterministic; Bottom: Stochastic.
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Figure 7 Budding dynamics in a time-dependent extensional flow with χ = 6.8 and shape parameter ∆ = 0.994. [a]. Immersed boundary simulation; [b]
experimental dynamics from 13 (reprinted with permission); [c] Immersed boundary simulation at longer times. The numbers in [a]-[c] are the
nondimensional times t ′ at which the vesicle morphologies are shown.
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and the nondimensional strain is χ = 81. The flow is abruptly started at t ′ = 1. Left: Two vesicles; Right: Three vesicles. Each of the vesicles
undergoes a wrinkling instability although the wrinkling characteristics depend on vesicle location (see text).The numbers are the nondimensional
times t ′ at which the vesicle morphologies are shown.
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Figure 9 Wrinkling dynamics in a time-dependent shear flow with nondimensional shear rate χ = 162 and excess arclength ∆ = 0.994. [a]. Vesicle
morphologies. The numbers are the nondimensional times t ′ at which the vesicle morphologies are shown. [b]. The modified instantaneous Fourier
spectra (values in color); [c]. The elastic tension dynamics for shear flow (blue) and pure extensional flow (red, with χ = 81).
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