Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2016

Supplementary information to: From polymer to proteins: effect of side chains and broken symmetry in the formation of secondary structures within a Wang-Landau approach

Tatjana Škrbić*

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Edificio Alfa, via Torino 155,30170 Venezia Mestre, Italy

Artem Badasyan[†] Material Research Laboratory, University of Nova Gorica, SI-5270 Ajdovscina, Slovenia

Trinh Xuan Hoang[‡] Center for Computational Physics Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan St., Hanoi, Vietnam

Rudolf Podgornik[§]

Department of Theoretical Physics, J. Stefan Institute and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana - SI-1000 Ljubljana, Slovenia

Achille Giacometti[¶]

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Edificio Alfa, via Torino 155,30170 Venezia Mestre, Italy (Dated: April 13, 2016)

Supplementary material to the paper by Skrbic et al.

^{*} tatjana.skrbic@unive.it

[†] artem.badasyan@ung.si

[‡] hoang@iop.vast.ac.vn

[§] rudolf.podgornik@ijs.si

 $[\]P$ achille.giacometti@unive.it

I. PHASE DIAGRAMS OF P MODEL

In Figure 1 we report results obtained from Wang-Landau method applied to model P that are then used to draw the phase diagram (see Figure 2). These include both the specific heat per monomer $C_v(T)/(Nk_B)$ and the reduced mean-square radius of gyration $\langle R^2(T) \rangle / N\sigma^2$ as a function of the reduced temperature $k_b T/\epsilon$. In Figure 2 the phase

FIG. 1. Left panel. The specific heat per monomer $C_v(T)/(Nk_B)$ as a function of the reduced temperature $k_b T/\epsilon$ for the P model with N = 8, 16, 32, 64. Right panel. The reduced mean-square radius of gyration $\langle R^2(T) \rangle / N\sigma^2$ as a function of the reduced temperature $k_b T/\epsilon$ under the same canditions.

diagram of the P model in the reduced temperature $k_B T/\epsilon$ vs interaction range R_c plane is depicted for N = 50. Upon cooling from a coil configuration, one finds first a transition to a globule, and then a transition to a crystal. The two transitions merge below $R_c \approx 6$ Åto become a direct coil-crystal transition in agreement with the results by Taylor *et al.* At larger interaction ranges, the crystal structure becomes less definite more similar to a spherical globule as one could expect on a physical ground.

II. TEMPERATURE DEPENDENCE OF THE CORRELATION FUNCTIONS FOR THE OPSC MODEL

The three correlation functions (tangent-tangent, normal-normal, and binormal-binormal) of the OPSC model are plotted as a function of the sequence separation and of the reduced temperature $k_B T/\epsilon$ in Fig. 3. The transition from exponential to oscillating behavior upon cooling below a critical temperature line is evident in all three cases.

TABLE I. Comparison between the ground state energies obtained from the microcanonical Wang-Landau and the canonical replica exchange.

$\lambda = 1.05$	N	$-E_{\rm gs}^{\rm WL}$	$-E_{\rm gs}^{\rm RE}$
	3	1	_
	4	3	_
	5	5	—
	6	7	_
	7	10	_
	8	12	12
	9	15	—
	10	18	—
	12	23	—
	16	34	34
	20	46	_
	32	86	84
	64	205	197
	128	451	—
	256	945 	— — DE
$\lambda = 1.3$	N	$-E_{\rm gs}^{\rm WL}$	$-E_{\rm gs}^{\rm RE}$
	3	1	—
	4	3	—
	5	5	—
	6	8	_
	7	11	-
	8	13	13
	9	16	—
	10	19	_
	12	27	-
	10	40 55	40
	20 20	00 102	109
	52 64	240	102
	198	240 520	237
	256	1113	
$\lambda = 1.5$	200 N	$-E^{WL}$	$-E^{RE}$
. 1.0	3	1 2 gs	–
	4	3	_
	5	6	_
	6	10	_
	7	13	_
	8	17	17
	9	21	_
	10	25	_
	12	34	_
	16	54	54
	20	73	_
	32	139	139
	64	322	330
	128	690	_
	256	1450	_

FIG. 2. Phase diagram of the P model in the reduced temperature $k_B T/\epsilon$ vs interaction range R_c plane for N = 50.

Normal-normal correlations

FIG. 3. Three dimensional plot of the tangent-tangent, normal-normal, and binormal-binormal correlation functions as a function of the sequence separation and the reduced temperature $k_B T/\epsilon$.

0.8 0.6 0.2 -0.2

-