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Simulation methods

We treat the polymer as a linear chain of N beads of diameter b connected by N − 1 rigid

rods of length `. In this study, N = 200 and we will examine three different bead diameters:

touching beads (b = `), non-touching beads (b = 0.8`), and overlapping beads (b = 1.5`).

If we neglect hydrodynamic interactions between chain segments, the force balance on

each bead satisfies the discrete Langevin equation:

ri(t + ∆t) = ri(t) +
∆t
ζ

[
Tiui − Ti−1ui−1 −

∂U
∂ri

+ Frand
i (t)

]
(1)

In the above equation, ui are the unit vectors of each bond, and Ti are the tensions that

enforce the constaints of contant bond length, i.e., |ri+1 − ri| = ` for i = 1, ...N − 1. For a

linear chain, u0 = uN = 0 and T0 = TN = 0. The force Frand
i is uncorrelated white-noise

that satisfies the fluctuation-dissipation theorem: < Frand
i (t)Frand

j (t) >= 2kTζIδij/∆t,
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where kT is the temperature, ζ is the friction coefficient of each bead, I is the identity

matrix, δij is the Kronecker delta, and ∆t is the simulation time step. Lastly, the term U is

the potential energy due to the excluded volume interactions and the externally applied

force. Expressions for each of these energy functions is below.

The externally applied force takes the form:

Uext = − ∑
pore

f (t)zi (2)

where f (t) is a time-dependent body force and zi is the position of bead i along the pore

axis. We only sum over beads that lie inside the pore. The force profiles we examine are

either a constant force or a square wave (see Fig 3a in main text).

The excluded volume interactions between polymer segments are treated as harmonic

potentials between non-neighboring beads:

Ubead−bead
EV =

H
2

N

∑
j=1

j−1

∑
i=1

(rij − b + ε)2 (3)

where rij is the distance between beads i and j, H is a spring constant, and ε is a small

number. We only sum over beads that overlap (i.e., rij < b). The spring constant H tunes

the softness of the excluded volume interactions – we choose H = 5000 kT/`2 so that the

beads are reasonably stiff. We note that the excluded volume interactions are the stiffest

potentials in our system, so the time step of the simulation must be at least ∆t ∼ O(ζ/H)

or smaller to resolve the dynamics properly. Following the ideas of Heyes and Melrose,1

we choose ∆t = 0.5ζ/H and ε = 10−3` so that on average, two beads that are overlapping

at the beginning of the time step will move slightly past contact at the end of the step.

To enforce the excluded volume interactions between the chain and the pore, we apply

a similar harmonic potential between the pore wall and the beads:

Ubead−wall
EV = H

N

∑
i=1

(ρi −
b
2
+ ε)2 (4)
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where ρi is the distance between bead i and the pore wall. We only sum over beads that

overlap with the wall (i.e., ρi < 0.5b). The pore is planar slab with a cylindrical hole of

radius R and depth L. If the z axis corresponds to the center axis of the cylindrical hole,

the equations for the slab’s surface are given by r = R for |z| < L/2 and z = ±L/2 for

r > R. We use the same spring constant H in the bead-bead repulsion case (i.e., H = 5000

kT/`2). The values we choose for the pore radius and length are R = ` and L = 10`.

To update the position of the chain, we integrate eqn 1 subject to the constraints of

fixed rod distance (i.e., |ri+1 − ri| = `, i = 1, ..., N − 1). Enforcing the constraints leads to a

system of nonlinear equations for the tensions Ti,2 which we solve at each step using a

modified Newton’s method.3 Note: to make the statistics of the chain equivalent to that

of a bead-spring chain of very large stiffness, we also add a pseudo-bending force to the

Langevin equation (1),4,5 although we believe that this force will not make any qualitative

changes to our results. Below, we discuss the initial conditions of our simulations and the

knot tracking techniques we employ.

We start our simulations by introducing a knot6 into the center of a straight polymer

and allow the knot to relax in free space for 1000 rod diffusion times, a.k.a., t = 1000

`2ζ/kT. During this process, we periodically add reptation moves7 to fix the knot at the

center of the polymer. After this process is complete, we add the pore and introduce the

last monomer of the polymer into the pore region. We run the simulation for 5000 rod

diffusion times or until the polymer completely translocates through the pore. We perform

between 20-100 replicate simulations in order to obtain error estimates for the translocation

speeds.

To measure the boundaries of the knotted region in our simulations, we employ two

techniques. The first technique involves projecting the knot onto a plane parallel to the

pore axis and then determining the smallest subset of crossings that retains the chain

topology via computation of the Alexander polynomial.8,9 Since there are many planes

that satisfy this condition, we choose the plane that gives rise to the smallest knot size.
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When the knot is jammed at the pore wall, we can also use a simpler technique to obtain

the knotted boundary. We start one bead into the pore and calculate its number of nearest

neighbors, defined as the number of beads within a cutoff radius Rcuto f f = 1.2b. We march

left until Nneighbors = 2, at which we assign this bead as the left knot boundary. We typically

use the simpler technique to calculate the knot’s radius of gyration when it is jammed at

the pore, although it can only be used in the situation when the knot is relatively tight.

Estimating voltage drop from the applied force

In the manuscript, we stated that a force of f = 1− 20 kT/` corresponds to a voltage

drop of 0.20− 4.1 V across a pore of radius R = b = ` = 1 nm and length L = 10`. We

provide details of this calculation here. The method we perform is similar to the procedure

outlined by van Dorp et al.10

When a single-stranded DNA moves through the pore at large forces, the strand is

nearly straight inside the pore. We thus approximate the strand in this region as a cylinder

of diameter b aligned with the pore axis. The polymer has a linear charge density of

σbare = −0.48 nC/m and the pore wall has an areal charge density of σpore = −15 mC/m2,

a value that is reasonable for SiO2 surfaces at neutral pH.11 If we apply a potential ∆V

across the pore, the total force on the polymer will be F = σbare∆V + Feo, where Feo is

the electro-osmotic force due the flow of the counterions inside the pore. We give the

expression for F below.

To determine an expression for Feo, we solve for the flow field inside the pore: ∇2
r uz =

−Ezρ(r), where Ez = −∆V/L is the applied electric field and ρ(r) is the charge density of

the counterions in the solution. From Gauss’s law of electrostatics, the density satisfies

ρ = − ekT
ε ∇2

r ψ̃, where ε is the electric permittivity of water and ψ̃ = ψe/kT is the reduced

electrostatic potential. We solve for the velocity and obtain Feo by integrating the shear

stress over the strand’s surface. After some algebra, the total force on the strand is:
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Ftot =
2πεkT

e ln (2R/b)
[ψ̃(R)− ψ̃(0.5b)]∆V (5)

The force is directly proportional to the voltage drop ∆V and the radial potential

difference between the pore and the strand: [ψ̃(R)− ψ̃(0.5b)]. Noting that F = Npore f ,

where f is the force per bead and Npore = 10 is the number of beads in the pore, we

re-arrange the above formula to obtain the expression for the voltage drop:

∆V = f
eNpore ln (2R/b)

2πεkT [ψ̃(R)− ψ̃(0.5b)]
(6)

Our goal is to determine the voltage drop in eqn (6) given the parameters of our

problem. Unfortunately, we we must calculate the potential drop ψ̃ between the strand

and the pore as we do not knot this quantity a-prori.

We determine electrostatic potential ψ̃ by solving the Poisson-Boltzmann equation in

the pore region:

∇2
r ψ̃ = λ−2

D sinh(ψ̃) (7)

where λD is the Deybe screening length. For a solution of ionic strength 0.1 M in water, the

value for λD ≈ 0.97 nm. The boundary conditions for this equation are:

∂ψ̃

∂r
= − σbaree

πbεkT
at r = 0.5b (8)

∂ψ̃

∂r
=

σporee
εkT

at r = R (9)

Both equations state that the electric displacement matches the charge density at

the strand and at the pore surface. We solve this boundary value problem and plug

the solution into eqn (6). We obtain ∆V = 0.20 − 4.1 volts across the nanopore for

f = 1− 20 kT/` per bead. The effective charge density of the DNA inside the pore is thus
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qe f f = f Npore/∆V = −0.20 nC/m, or equivalently 42% of the charge on the bare strand. If

we repeat the same calculation without any charge at the pore wall, we obtain the effective

charge density to be qe f f = −0.24 nC/m, or equivalently 49% of the charge on the bare

strand.

Translocation profiles – constant force

In Fig 2a of the paper, we plotted trajectories of a 41-knotted polymer moving through

a pore when the bead size is equal to the rod length (b = `). At low applied forces, the

polymer moves at a nearly uniform speed. At high forces, the knot jams and halts the

polymer’s motion. At intermediate forces, the polymer’s speed and transit time exhibit

large fluctuations. Here, we show the trends for the other knot topologies, namely 31, 51, 52,

and 61.

Fig S1 and S2 show trajectories with the 51 and 61 knots. For the most part, the

trajectories demonstrate the same qualitative trends as the 41 knot. Just below the jamming

transition ( f ≈ 10 kT/` for 51 and f ≈ 7 kT/` for 61), the transit times exhibit a broad

distribution. At larger forces, the 61 knot becomes practically jammed while the 51 knot

traverses through the pore at a very small, nearly constant velocity.

Polymers with a 31 or 52 knot exhibit different trends than ones with a 41 knot. For

example, we observe stick-slip motion for the 31 topology, but the fluctuations in the

polymer’s speed are smaller when compared to the 41 topology (Fig S3). For the 52 knot,

we observe multiple regimes where the fluctuations are large. In Fig S4, we see that the

polymers with a 52 knot move at a nearly constant speed at f = 1 kT/`. The speed has a

bimodal distribution at f = 3 kT/` and then gets back to a unimodal distribution at f = 5

kT/`. At f = 7 kT/`, some of the trajectories are jammed while others move through

at a relatively constant speed. In this situation, the configuration of the knot at the pore

determines the ultimate dynamics of the polymer. At very large forces ( f = 15 kT/`), the
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trajectories are jammed for the most part. In summary, we observe large fluctuations close

to the jamming transition (see f = 7 kT/`), but observe these fluctuations at other force

values as well (see f = 3 kT/`). In the future, it will be interesting to explain why this

phenomenon occurs for the 52 topology in particular.

(a) f = 7 kT/` (b) f = 10 kT/` (c) f = 15 kT/`

Figure S1: Translocation trajectories of a polymer with a 51 knot under constant force. (a)
f = 7 kT/`, (b) f = 10 kT/`, (c) f = 15 kT/`. The bead size is the same as the rod length
(b = `).

(a) f = 3 kT/` (b) f = 7 kT/` (c) f = 15 kT/`

Figure S2: Translocation trajectories of a polymer with a 61 knot under constant force. (a)
f = 3 kT/`, (b) f = 7 kT/`, (c) f = 15 kT/`. The bead size is the same as the rod length
(b = `).

Translocation profiles – pulsed force field with b = `

In the main text, we found that cycling the force field at large amplitudes can enhance

fluctuations in the translocation speed. This effect was observed for the 41 knot topology
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(a) f = 3 kT/` (b) f = 5 kT/` (c) f = 7 kT/`

Figure S3: Translocation trajectories of a polymer with a 31 knot under constant force. (a)
f = 3 kT/`, (b) f = 5 kT/`, (c) f = 7 kT/`. The bead size is the same as the rod length
(b = `).

(a) f = 1 kT/` (b) f = 3 kT/` (c) f = 5 kT/`

(d) f = 7 kT/` (e) f = 15 kT/`

Figure S4: Translocation trajectories of a polymer with a 52 knot under constant force. (a)
f = 1 kT/`, (b) f = 3 kT/`, (c) f = 5 kT/`, (d) f = 7 kT/`, and (e) f = 15 kT/`. The bead
size is the same as the rod length (b = `).
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but not for the 31 topology when the bead size b is equal to the rod length ` (see Fig 6 in

text). We examine other topologies in this section.

Fig S5 shows trajectories of a 52-knotted polymer and a 61-knotted polymer moving

through a pore under an oscillating force field. The force switches on and off with the

on-time being τ1 = 80 `2ζ/kT and the off-time being τ2 = 20 `2ζ/kT. At force f = 7 kT/`,

both polymers ratchet through the pore at a fairly constant speed. However, if the force

becomes very large ( f = 15 kT/`), the 52 knot experiences a broad distribution in its transit

times. A few trajectories of the 61 knot appear to be caged as well.

Unlike the 52 and 61 topologies, the 51 knot ratchets smoothly through the pore at these

high forces (Fig S6). These dynamics are similar to what occurs for the 31 knot as seen in

the main text (see Fig 6). Thus, based on our observations, it appears that the non-torus

knots (41, 52, 61) receive enchanced fluctuations when one cycles the force field at very

high amplitude. This effect is negligible for torus knots (31, 51, 71) in the range of forces we

study.

In Fig S7, we examine the mechanism behind this phenomenon. Like in the main text,

we run a simulation of a knotted polymer undergoing a step relaxation at the pore wall.

When the initial force is very large ( f = 15 kT/`), we see that the torus knots 31 and 51

swell during the relaxation process, but some of the non-torus knots (41, 52, 61) remain

caged. Thus, it appears that non-torus knots are more likely to remain jammed during

knot relaxation. This caging is what leads to enhanced fluctuations in the polymer’s speed

when we cycle the field on and off.

We close by determining how topology affects the ratcheting dynamics of a knotted

polymer when the knot swells normally during relaxation (i.e., does not arrest). We cycle

the force field between f1 = 7 kT/` and f2 = 0 kT/`, and we set the total cycle time to be

τ1 + τ2 = 100 `2ζ/kT for the twist-knot topologies we examine (31, 41, 52, 61). We observe

similar translocation speeds for these knots (Fig S8), but the torus knots 51 and 71 do not

ratchet since the forces are below the jamming transition. This result suggests that topology
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is important in determining the jamming transition of the knot, but topology plays a weak

role in the ratcheting behavior as long as the knot jams at the pore entrance and the knot

swells normally during relaxation. Of course, this statement is only valid up to a certain

point, and we fully expect topology to play a much greater role in the ratcheting dynamics

for more complicated knots. This topic would be interesting to pursue in future work.

Figure S5: Ratcheting dynamics for the 52 and 61 knotted topologies. Top row: trajectories
of a 52-knotted polymer moving through a pore via an oscillating force field. The time of
the on cycle is τ1 = 80 `2ζ/kT, and the time of the off cycle is τ2 = 20 `2ζ/kT. Bottom row:
trajectories for a 61-knotted polymer with the same cycle times. At moderate forces ( f1 = 7
kT/`), the 52 and 61 knots ratchet through the pore at a fairly constant velocity. At larger
forces ( f1 = 15 kT/`), the translocation speeds start exhibiting large fluctuations. Here,
the bead size is equal to the rod length (b = `).

Effect of polymer backbone corrugation on the jamming of

knots

Here, we examine how the roughness along the polymer backbone alters the jamming

dynamics of knots. We will examine three different corrugations from our bead-rod model:
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Figure S6: Ratcheting dynamics of a 51-knotted polymer. The force field oscillates between
force f1 = 15 kT/` and f2 = 0. The cycle times are τ1 = 80 `2ζ/kT and τ2 = 20 `2ζ/kT.
The bead size is equal to the rod length (b = `).

(a) 31 knot (b) 51 knot

(c) 41 knot (d) 52 knot (e) 61 knot

Figure S7: Knot swelling after step relation: (a) 31, (b) 51, (c) 41, (d) 52, (e) 61. The initial
force before relaxation is f = 15 kT/`. The black curves for each plot corresponds to
the average knot swelling over 100 runs. The top row corresponds to torus knots and
the bottom row corresponds to non-torus knots. The bead size is equal to the rod length
(b = `).
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Figure S8: Topology dependence of translocation speed under a pulsed force field. We
cycle the force between f1 = 7 kT/` and f2 = 0 kT/`, and we set the total cycle time
to be τ1 + τ2 = 100 `2ζ/kT. The force f1 is such that the knot jams at the pore entrance
but swells normally during the relaxation cycle. The bead size is equal to the rod length
(b = `).

touching beads (b = `), non-touching beads (b = 0.8`), and overlapping beads (b = 1.5`).

Fig S9 plots the translocation speed of the 31 and 41 knots when they move through a

pore under constant force. The pore radius is R = 0.8` for Fig S9a, and the pore radius

is R = 1.0` for Fig S9bc. In Fig S9a, we see that the knot jams at lower forces when the

backbone is more corrugated (b = 0.8` compared to b = `). When the polymer backbone

is fairly smooth (b = 1.5`), the jamming behavior depends greatly on the topology of

the chain. For example, we do not observe jamming for the 31 knot over the force range

studied (Fig S9b), but we observe jamming for the 41 knot for forces f ≥ 20kT/` (Fig S9c).

Traces of polymer trajectories show that the 41 knot jams in a multi-step process when the

polymer backbone is smooth (b = 1.5`). This behavior contrasts to case of touching beads

(b = `) where the polymer jams when the knot first contacts the pore (see Fig 2a in main

text).

In Fig S10, we examine how the corrugation along the backbone affects the relaxation

behavior of a knot. We simulate a 31 and 41-knotted polymer undergoing a step-relaxation

at the pore wall. The initial force on the chain is well above the knot’s jamming transition,

and we track the knot size as a function of time after the field is turned off. When the
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polymer backbone consists of non-touching beads (b = 0.8`), we observe an enhancement

of the topology-dependent caging phenomenon described in the main text. The 31 knot

swells normally during relaxation (Fig S10a), but almost all of the 41 knots fail to unjam

(Fig S10a). We suspect that similar caging will occur for all other non-torus topologies

as well. When the polymer backbone is fairly smooth (b = 1.5`), we find that all knots

swell even at very large initial forces (fig S10c). Thus, glassy dynamics are suppressed for

smooth backbones since the escape potential is much less than kT.

Figure S9: Effect of polymer backbone corrugation on the jamming behavior of knots at
the pore entrance. (a) Translocation speed of a 31 knot through a pore of radius R = 0.8`.
We examine two different corrugations: touching beads (b = `) and non-touching beads
(b = 0.8`). (b) Translocation speed of a 31 knot through a pore of radius R = 1.0`. The
corrugations we examine are touching beads (b = `) and overlapping beads (b = 1.5`).
(c) Same as (b) except that we examine the 41 knot. Traces of polymer trajectories show
that jamming occurs in a multi-step process for the smoother polymer backbone (b = 1.5`).
The translocation speed plotted on the left hand side reflects the speed during the final
stage of motion.
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Figure S10: Step relaxation of knotted polymers with different backbone corrugations. (a)
31 knot with non-touching beads (b = 0.8`). The pore radius is R = 0.8` and the initial
force before relaxation is f = 5kT/`. (b) 41 knot with non-touching beads (b = 0.8`). The
pore radius is R = 0.8` and the initial force before relaxation is f = 5kT/`. (c) 41 knot
with overlapping beads (b = 1.5`). The pore radius is R = 1.0` and the initial force before
relaxation is f = 40 kT/`.
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Model for translocation velocity

In this section, we provide insight into how the polymer ratchets through the pore. Suppose

we cycle the force field between two values: f1 = f and f2 = 0, where f is above the

jamming transition of the knot. There are two contributions to the stair-step translocation

profiles as seen in Fig 4c in the main text. During the off cycle, the knot swells and diffuses

away from the pore, which allows contour to reptate into the left hand side of the knot

(provided the polymer moves left to right). When the force is turned back on, additional

contour can reptate through the knot as it tightens. Let ∆`le f t be the contour that moves

into the left boundary of the knot during relaxation, and let ∆s be distance between the

pore wall and the right entrance of the knot after relaxation (Fig S11). When the force turns

back on, the time it takes for the knot to contact the pore again is ∆t = ζ∆s/ ftot, where

ftot = (L/`) f is the total force on the chain. During this time, the additional contour that

reptates through the knotted core is ∆xknot = ∆t ftot/ζknot = ∆s · (ζ/ζknot). Thus, the total

contour that goes through the knot during one cycle is:

`rep = ∆`le f t + ∆s · (ζ/ζknot) (10)

We expect the friction ratio ζ/ζknot < 1 as it is more difficult to reptate through the

knotted core than free space. However, since the knot is swollen at the end of relaxation,

we expect ζ/ζknot to be an O(1) quantity. We can test this physics by performing step

relaxation simulations of knots (Fig S7) to obtain ∆`le f t and ∆s during the relaxation cycle.

We estimate the average translocation speed per cycle < v >= `rep/τcycle and compare it

to the actual translocation speed using the friction ratio ζ/ζknot as a free parameter . We

obtain good agreement with the actual translocation speed when the friction parameter

is ζ/ζknot ≈ 0.69 for both the 31 and 51 knots (Fig S11). Thus, the physical picture we

present here is consistent with what is observed and could be used in the future to develop

predictive models for the ratcheting dynamics.
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Figure S11: Comparison between model and simulations for ratcheting dynamics. Top:
When a knot relaxes, it swells and diffuses away from the pore. The quantities ∆`le f t
and ∆s are the amount of contour that reptates into the knot’s left side and the distance
between the pore and the right side of the knot, respectively. Bottom: Using eqn (10),
we estimate the translocation speed of the polymer using ∆`le f t and ∆s calculated from
step-relaxation simulations. We compare these results to simulations where we ratchet
the polymer with a field that turns on and off. For the 31 knot, the parameters for the
ratcheting simulations are: f1 = 7kT/`, f2 = 0, τ1 + τ2 = 100 `2ζ/kT. For the 51 knot, the
parameters are: f1 = 15kT/`, f2 = 0, τ1 + τ2 = 100 `2ζ/kT.
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Movies

Below we describe the movies included in the supporting info. In these videos, we color

the knotted region red. This region is determined by calculating the smallest subset of the

chain that retains its topology via computation of the Alexander polynomial (see Methods).

For illustration purposes, we do not show the planar wall of the pore and the beads on the

bead-rod chain.

• 4_1_f3.mpg – This movie shows a 41-knotted polymer moving through a pore when

the external field is constant ( f = 3 kT/`). The bead size is equal to the rod length

(b = `). Here, the polymer translocates at a nearly uniform speed.

• 4_1_f5.mpg – This movie shows a 41-knotted polymer moving through a pore when

the external field is constant ( f = 5 kT/`). The bead size is equal to the rod length

(b = `). Here, the polymer moves in a stick-slip fashion.

• 4_1_f7.mpg – This movie shows a 41-knotted polymer moving through a pore when

the external field is constant ( f = 7 kT/`). The bead size is equal to the rod length

(b = `). Here, the knot jams at the pore entrance and halts translocation.

• 3_1_f7_f0_t80.mpg – This movie shows a 31-knotted polymer ratcheting through a

pore when the field cycles on and off at values f1 = 7 kT/` and f2 = 0 kT/`. The

cycle times are τ1 = 80`2ζ/kT and τ2 = 20`2ζ/kT. The bead size is equal to the rod

length (b = `).

• knot4_1_relax_swell.mpg – This movie shows a step-relaxation simulation of a 41-

knotted polymer. Here, the knot swells normally during relaxation. The initial force

is f = 15 kT/` and the bead size is equal to the rod length (b = `).

• knot4_1_relax _no_swell.mpg – This movie shows a step-relaxation simulation of

a 41-knotted polymer. Here, the knot gets trapped in a metastable state during
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relaxation. The initial force is f = 15 kT/` and the bead size is equal to the rod length

(b = `).
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