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How cracks are hot and cool - a burning issue for pa-
per – supplementary material†
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Muriel Naert-Guillot,a and Knut Jørgen Måløyd,b

1 Computation of the Green kernel of diffu-
sion with lateral losses

The Green function sought for, G1(x,y, t), is the solution of

∂tG1(x,y, t) = D∇
2G1−G1/τ +δ (x)δ (y)δ (t) (1)

with boundary conditions G1 → 0 when x2 + y2 → ∞ and initial
conditions G1 = 0 when t < 0.

Call G0 the Green function of the classical two dimensional dif-
fusion problem, without any extra loss term, i.e. the solution of

∂tG0(x,y, t) = D∇
2G0(x,y, t)+δ (x)δ (y)δ (t) (2)

This Green function can be expressed as1,

G0(x,y, t) =
1

4πDt
exp
[
−x2 + y2

4Dt

]
(3)

Then, forming G0(x,y, t)e−t/τ , we can check directly that

∂t(G0(x,y, t)e−t/τ ) = (4)

∂t(G0(x,y, t))e−t/τ − (G0(x,y, t)e−t/τ )/τ

= D∇
2G0(x,y, t)+δ (x)δ (y)δ (t)− (G0(x,y, t)e−t/τ )/τ

and satisfies the proper intial and boundary conditions, i.e. the
Green function sought for is G1(x,y, t) = G0(x,y, t)e−t/τ

Using the linearity of the problem, the solution of

∂t∆T (x,y, t) = D∇
2
∆T −∆T/τ +g(x,y, t) (5)

can be obtained by convolving the source g(x,y, t) with the
Green function G1(x,y, t), i.e. the solution is
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∆T (x,y) =
∫ t

0
ds
∫ ∫

dξ dηG1(x−ξ ,y−η , t− s)g(ξ ,η ,s) (6)

which corresponds to the form used.

2 Calibration experiments
Two characteristics of the paper are independently obtained dur-
ing two types of calibration experiments, detailed in the supple-
mentary material: the inplane heat diffusion coefficient is deter-
mined by heating a localized zone in the paper, and determining
the spread of the temperature rise by the second moment of the
temperature elevation field. From the classical expression of heat
diffusion, neglecting out of plane diffusion for short times, one
expects to observe a temperature rise proportional to the Green
function of diffusion, Eq. (3).

The standard deviation of a temperature profile through the
center can be expressed, and should thus be:

σ =

√∫
x2G0(x,0, t)dx/

∫
G0(x,0, t)dx =

√
4Dt (7)

Indeed, such behavior is observed for early times, as shows
Fig. 1. This allows to determine an inplane heat diffusion con-
stant around D = 4.4 ·10−8m2/s.

Conversely, the out-of-plane thermal flux leads to a thermal
decay rate due to loss into the surrounding air, formulated as
(T −Tair)/τ. Heating paper sample homogeneously, and observ-
ing their temperature converge to the atmospheric one, allows to
determine τ ' 5s - from Fig. 2.

3 Illustration of the far-field and crack tip
temperature as function of the process
zone size

Although the far field temperature increase at distances larger
than the process zone size does not depend on this size, the max-
imum temperature around the crack tip is crucially dependent on
this term. To illustrate this, Fig. 3 shows the temperature along
the trajectory of the center of the process zone, for zones of sizes
100, 50, 20 and 10µm, at v = 1 cm/s, with the other parameters
determines from the experimentsl(v = 1 cm/s, αG/(ρc) = 0.0025
K m).
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Fig. 1 Calibration experiments: Left: Measured temperature elevation
T (in K), during the relaxation of a local heating. Right: Temperature
elevation profiles across the hot spot during this relaxation, at distance d
from the spot, with a spatial normalization: f (d) = T (d)/

∫
T dS). The

black curve represents a Gaussian fit. Top: Width σ of the Gaussian fits
determined, as function of time, in bilogarithmic representation. The
linear fits correspond to the predicted behavior σ =

√
4Dt for in plane

heat diffusion 2, and allow to determine D using the central value of the
prefactor. The deviation at large times correspond to out of plane
diffusion, that leads to a modified Green function G1 where the tail of the
distribution is screened.
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Fig. 2 Calibration experiments: Measured temperature (in K) during
the relaxation of a global heating, in semilogarithmic representation, in
three calibration experiments on three different paper samples. The
relaxation according to a straight line corresponds to the predicted
∆T = ∆T0e−t/τ , the central slope allows to estimate τ.
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Fig. 3 Simulated temperature rise along the trajectory of the crack tip,
for four different process zone sizes, l = 20µm (continuous), 50µm
(dash-dotted) and 100µm (dashed curve), at similar crack velocities
v = 1 cm/s. The far field temperatures are identical, and the maximum
temperature rise reached ∆T , around the back of the process zone,
varies importantly with the size of the process zone l - see zoom in the
inset – according to the prediction, ∆T ' αG/(ρcl).

The far field temperature is identical in all cases, but the tip
temperature is highly dependent on the process zone size – as
seen in the inlet of Fig. 3 over a zone of 100µm. This is also visible
in the temperature field map resulting from these simulations,
and displayed at "large scale" (a few mm) in Fig. 4, for process
zones of sizes l = 20µm , 50µm and 100µm, and at small scale
(comparable to the process zone size) in Fig. 5 for a size of l =
10µm and Fig. 6 for l = 20µm , 50µm and 100µm.

The temperature reached in this case corresponds to an al-
most linear increase of temperature across the process zone from
the front to the back, i.e. to a regime where the heat diffusion
skindepth δ is smaller than the process zone size l, as seen on
these zooms, and on the inset of Fig. 3 (see on the inset the
straight temperature profiles from the head of the process zone,
on the right, to the back of the process zone, on the left – these
process zones are propagating to the right. The position of the
head and back are at positions±l/2 in this representations, where
l is the process zone size, 4 different curves with 4 different l val-
ues are displayed).

Simulations are also done for v = 1mm/s, with temperature
along the tip trajectory shown in Fig. 7, and temperature rise
fields shown in Fig. 8, for process zone sizes l = 10,20,50,100µm.

Simulations are also done at v = 0.1mm/s, in the slow regime
where δ > l for all process zone sizes probed, l = 10,20,50,100µm.
The temperature along the tip trajectory shown in Fig. 9, and
temperature rise fields shown in Fig. 10, for process zone sizes
l = 10,20,50,100µm.

Eventually, simulations for a fast moving crack, v = 1cm/s,
where done, the temperature rise along the tip trajectory is shown
in Fig. 11.
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Fig. 4 Simulated temperature rise above the background one, around a
crack tip moving at v = 1 cm/s, with a process zone of size (from left to
right), l = 20,50,100µm , i.e. 10,25,50µm radius. The color bar is in
Kelvins, the spatial scale in µm.
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Fig. 5 Closeup view of the temperature rise above ambient
temperature around the process zone, v = 1 cm/s, l = 10µm.The
dash-dotted line indicates the limit of the process zone. The back of the
process zone (left part, the crack moving to the right) could reach a
temperature where oxidization of cellulose takes place over a
micrometric zone. The color bar is in Kelvins, the spatial scale in µm.
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Fig. 6 Closeup view of the temperature rise around the process zone,
v = 1 cm/s, , with different process zone sizes: from left to right,
l = 20,50,100µm. The color bar is in Kelvins, the spatial scale in µm.
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Fig. 7 Temperature rise across the trajectory of the crack tip,
propagation velocity v = 1 mm/s.
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Fig. 8 Closeup view of the temperature rise around the process zone,
v = 1 mm/s, with different process zone sizes: from left to right,
l = 10,20,50,100µm. The color bar is in Kelvins, the spatial scale in µm.
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Fig. 9 Temperature rise across the trajectory of the crack tip,
propagation velocity v = 0.1 mm/s, l = 10µm. The temperature scale is
in Kelvins, the spatial scale in µm.
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Fig. 10 Closeup view of the temperature rise around the process zone,
v = 0.1 mm/s, l = 10,20,50,100µm. The temperature scale is in Kelvins,
the spatial scale in µm.
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Fig. 11 Temperature rise across the trajectory of the crack tip,
propagation velocity v = 10 cm/s, l = 10,20,50,100µm.

4 Numerical resolution of heat transport
and generation via the Alternating Direc-
tion Implicit Method.

The partial differential equation to solve, Eq. (1) in the main text,
is:

∂t∆T = D∇
2
∆T −∆T/τ +αG f (x,y, t)hv/(ρc), (8)

where f (x,y, t)h is a normalized constant, equal to 4/(πl2) over a
disk of diameter l centered on the crack tip, modeled as moving
at constant speed.

The initial state is a uniform null temperature excess over the
room one, ∆T = 0.

The resolution is made using the Alternating Direction Implicit
Method, a variant of the Cranck-Nicholson one, which guarantees
inconditional stability2.

Writing ∆T (xi,y j, tn) = un
i, j on a discrete square lattice of step ∆x

with time steps of size ∆t, so that xi = x0 + i∆x,y j = y0 + j∆x, tn =

t0 + n∆t, the discretized time step is split in two half steps, with
alternatively an implicit expression of the Laplacian operator over
x and an explicit one over y, or the contrary: this corresponds to

un+1/2
i, j −un

i, j

∆t/2
= D(δ 2

x un+1/2
i, j +δ

2
y un

i, j)−
un

i, j

τ
+Ω

n
i, j (9)

un+1
i, j −un+1/2

i, j

∆t/2
= D(δ 2

x un+1/2
i, j +δ

2
y un+1

i, j )−
un+1/2

i, j

τ
+Ω

n+1/2
i, j

where the source term is Ωn
i, j = αG f (xi,y j, tn)hv/(ρc) and the sec-

ond order spatial derivative operators on a field Φ are written

δ
2
x Φi, j = Φi−1, j−2Φi, j +Φi+1, j

δ
2
y Φi, j = Φi, j−1−2Φi, j +Φi, j−1 (10)

The boundary conditions, in the far field, correspond to u = 0 on
the boundary nodes. To avoid influence of the boundary condi-
tion, the simulations are carried out with boundaries further away
than two times the diffusion skindepth, 4

√
D(t− t0) from the tra-

jectory of the crack tip. The crack, center of the process zone,
is displaced by v∆t/2 along x every half-step. The precision of
the heat transport in the process zone requires a sufficient num-
ber of pixels in the process zone size. A linear size ∆x = l/10 is
in practice sufficient - it has shown on examples to achieve re-
sults 3% close to those obtained with ∆x = l/20 and ∆x = l/40. A
similar precision is achieved with a choice of time steps equal to
∆t = 0.9(∆x)2/D or smaller.

This leads to the following system to obtain the tempera-
ture field after the first half iteration: using the notation s =

D∆t/[2(∆x)2],

(1+2s)un+1/2
i, j − sun+1/2

i−1, j − sun+1/2
i+1, j = (11)

(1−2s−1/τ)un
i, j + sun

i, j−1 + sun
i, j+1 +

∆t
2

Ω
n
i, j
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In matrix form, this is written for every column j ∈ {1,Ny} as



(1+2s) −s 0 · · · 0

−s (1+2s) −s
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −s

0 · · · 0 −s (1+2s)





un+1/2
1, j

un+1/2
2, j

...

...

un+1/2
Nx, j


=



(1−2s−1/τ)un
1, j + sun

1, j−1 + sun
1, j+1

(1−2s−1/τ)un
2, j + sun

2, j−1 + sun
2, j+1

...

...
(1−2s−1/τ)un

Nx, j + sun
Nx, j−1 + sun

Nx, j+1



+
∆t
2



Ωn
1, j

Ωn
2, j
...
...

Ωn
N, j


(12)

where the boundary conditions ui, j = 0 are used in the second
hand term when i = −1, j = −1, i = Ny + 1 or j = Nx + 1. The in-
version of this tridiagonal matrix is done for every j using the
TDMA algorithm2.

The second half-step is done with the same logic, for every i ∈
{1,Nx}, by inversion of the following tridiagonal system:



(1+2s) −s 0 · · · 0

−s (1+2s) −s
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −s

0 · · · 0 −s (1+2s)





un+1
i,1

un+1
i,2
...
...

un+1
i,Ny



=



(1−2s−1/τ)un+1/2
1, j + sun+1/2

1, j−1 + sun+1/2
1, j+1

(1−2s−1/τ)un+1/2
2, j + sun+1/2

2, j−1 + sun+1/2
2, j+1

...

...

(1−2s−1/τ)un+1/2
Nx, j + sun+1/2

Nx, j−1 + sun+1/2
Nx, j+1



+
∆t
2



Ω
n+1/2
i,1

Ω
n+1/2
i,2

...

...

Ω
n+1/2
i,Ny


(13)

There are thus Nx inversions of tridiagonal matrices of size Ny ·
Ny and Ny inversions of tridiagonal matrices of size Nx ·Nx per

full time step - the algorithm requires O(N) operations, where
N = Nx ·Ny is the number of knots, and is of second order in space
and time, i.e. its precision if of order O(∆t2) and O(∆x2).

5 Joint instantaneous evaluation of energy
release rate and Joule power.

To illstrate the variability of the system from an experiment to an-
other, and through time during one experiment, we present here
another detailed analysis of the main observables, usig another
experimental example carried out under conditions identical to
the one presented in the main text. Snapshots of the experimen-
tally measured temperature are displayed on Fig. 13. A fast prop-
agation stage, associated to a large temperature increase, hap-
pens transiently and is shown on Fig. 13(b). Determining the
velocity of the hottest spot, shown on Fig. 14 (a), the crack tip is
also seen to oscillate between a slow regime, with a propagation
around 1mm/s, and a fast one with a velocity v > 1cm/s. Contrar-
ily to the case in the main text, the stage at high velocity happens
far from the external boundary, and only lasts for a small por-
tion of the crack trajectory - it is followed by a slow motion stage
for the rest of the experiment. In this experiment, the instanta-
neous tracking of force and boundary displacement allows to de-
termine instantaneously the force F(t) and displacement δ (t). It
was checked that the elastic behavior of the paper sheet is close to
linear, i.e. it presents an instantaneous relation during unloading
of the type F = k(δ−δ0), where δ0, the undeformed elongation, is
close to a constant during the process, and k is a constant (during
the unloading - it changes when the crack progresses). Hence,
the elastic energy can be estimated as

Eel(δ ) =
∫

δ

δ0

F(δ )dδ = (1/2)k(δ−δ0)
2 = (1/2)F(δ )(δ−δ0). (14)

The change in elastic energy during crack propagation is thus

dEel = (1/2)d[F(δ )(δ −δ0)]. (15)

This can also be evaluated as dEel = (1/2)d(k(δ − δ0)
2) = k(δ −

δ0)dδ +(1/2)(δ −δ0)
2dk = F(δ )dδ +Eeldk/k = dW +Eeldk/k, The

work brought by the external mechanical setup on the paper, is

dW = Fdδ . (16)

The total change in mechanical energy, in the loading setup plus
the paper, corresponds to3

dEm = dEext +dEel =−dW +dEel = Eeldk/k. (17)

To obtain this instantaneous change, dW , dEel and dEm are eval-
uated via the above expressions Eqs. (15,16,17) from the ex-
perimentally measured series of elongation δ (t) and force F(t)
and from δ0 = δ (t0), the initial elongation. These expressions
and their relationship to the displacement-force relation are il-
lustrated on Fig. 12.

The instantaneous rate −dEm/dt, evaluated over 1 s long time
intervals, is shown on Fig. 14 (b).

The energy release rate is by definition the ratio between the
mechanical energy change −dEm and the surface created dS =
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Fig. 12 Incremental variations of work, elastically stored energy, and
total mechanical energy during an experiment, from the force
displacement curve.

hvdt: Thus, Fig. 14 (b). corresponds to −dEm/dt = GdS/dt, and
the ratio G = −(dEm/dt)/(hv) is shown on Fig. 14 (c), when the
two quantities in the ratio are not too small - to avoid too large
errors.

The power of the heat release is determined by integration of
the temperature excess along a transverse profile 0.5 mm behind
the crack tip (hottest point), leading to I0(t). The heating power
corresponding, I0(t)/(ρc), is shown on Fig. 14 (d). The total ra-
tio of these powers, Joule heating rate over mechanical energy
release rate, αT = I0(t)/(ρcG), fluctuates for most of the exper-
iment, and jumps to a significantly higher value after the crack
jumps to a high velocity. There are nonetheless important fluctu-
ations in this instantaneous estimate, which can be attributed to
the imprecision of the instantaneous energy estimates - ratios of
small numbers give artifacts of jumps to high values of α. Typ-
ically, measured low values of G give an apparent high value of
α. Independently from this tendency, we not a jump to a higher
value of α when the crack jumps at velocities exceeding 1cm/s.
The fact that velocity jumps correlate reasonably with an increase
of α is compatible with the triggering during this velocity jumps,
of a mechanism where a fraction of the energy coming from an
exothermal reaction. Note that this jump to high velocities is
significantly away from the boundaries (around 4 cm away in a
sample of 10 cm by 10 cm), so that this increase of α, in this ex-
periment, cannot be attributed to different interactions with the
boundaries. Such a case is analysed in Figs. 14 and 13.
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Fig. 14 Experimental determination of (a) velocity v of the hottest point,
(b) total mechanical power brought to the system
−dEm/dt =−dW/dt +dEel/dt. (c) Energy release rate
G =−(dEm/dt)/(hv). (d) Heat release rate determined from transverse
temperature profiles I0(t)/ρc. (e) Heating ratio αT = I0(t)/(ρcG).
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