

Electronic Supplementary Information

In situ dispersion of nonaqueous Fe_3O_4 nanocolloids by microdroplet coalescence and their use in the preparation of magnetic composite particles

Le Du,^a Yujun Wang,^b Jianhong Xu,^b Chun Shen,*^c and Guangsheng Luo*^b

^a*The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China*

^b*The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. E-mail: gshuo@tsinghua.edu.cn.*

^c*Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: shenchun@mail.buct.edu.cn.*

Table S1 Polydispersity indexes of the microdroplets at different conditions.

Group	1	2	3	4	5	6	7	8
Droplet size (μm)	102	197	294	395	505	604	695	791
Polydispersity index	0.042	0.042	0.039	0.041	0.044	0.043	0.047	0.048

The polydispersity index (PDI) is calculated based on the initial droplet size:

$$PDI = \frac{1}{D_d} \sqrt{\frac{1}{n} \sum (d_d - D_d)^2} \times 100\%$$

where $D_d = \frac{1}{n} \sum_1^n d_d$, $50 \leq n \leq 100$.