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SURFACE TENSION MEASUREMENTS

DOH concentration dependence

Since the adsorption/desorption process of both SDS
and DOH are involved in the stabilisation of the air-water
interface [1–7], we measured the time evolution of the
surface tension for different DOH bulk concentrations at
constant SDS concentration (2 CMC), using the rising
bubble technique [8] at constant temperature T=25 ◦C.

The experiments presented in Fig.1 were performed at
a constant bubble volume equal to Vb = 8.0 µL in the
rising bubble geometry. The finest time resolution used
at short times in the experiments presented in Fig.1 is
equal to 4 ms. When the air-water interface is only sta-
bilised by SDS (i.e. [DOH] = 0), the surface tension does
not evolve with time (γ0 = 38.5 mN.m−1), which means
that the characteristic adsorption time for SDS at 2 CMC
is shorter than 4 ms. Hence we observe that the value
of the surface tension at equilibrium decreases when in-
creasing the DOH bulk concentration (see Fig.1), which
gives access to the evolution of γeq with the DOH bulk
concentration (see Fig.2):

∂γeq
∂c

= −1.00 N.m2.mol−1 (1)

Temperature dependence

Since the surface tension depends on temperature, we
coupled a thermal bath with a Wilhelmy plate to char-
acterise the evolution of ∂T γ as a function of the DOH
bulk concentration. Fig.3 shows that the dependence of
the surface tension as a function of the temperature is
fairly independent of the DOH concentration, leading to:

∂γ

∂T
= −2.1 10−4 N.m−1.K−1 (2)

LANGMUIR-VON SZYSZKOWSKI ISOTHERM

Since DOH is an insoluble surfactant presenting a lo-
calised adsorption and no interaction with SDS [3, 4],

FIG. 1. Time evolution of the surface tension for a liquid
phase consisting of SDS at 2 CMC and DOH respectively at: 0
mol.L−1 (open circles), 8.0 10−7 mol.L−1 (open squares), 1.6
10−6 mol.L−1 (open diamonds), 3.2 10−6 mol.L−1 (crosses),
6.4 10−6 mol.L−1 (plus signs), 9.6 10−6 mol.L−1 (open tri-
angles) and 1.3 10−5 mol.L−1 (solid circles). Inset: Snapshot
showing the rising bubble experiment. The scalebar repre-
sents 1.00 mm.

FIG. 2. Equilibrium surface tension as a function of DOH
bulk concentration. The solid blue line is the best linear fit.

we assume that the DOH surface concentration at the
air-water interface (Γ(c)) follows Langmuir’s adsorption
kinetics:

Γ(c)

Γ∞
=

Kc

1 +Kc
(3)

where Γ∞ and K are respectively the maximum surface
excess and the Von Szyszkowski constant [9–12], which
will be estimated in the following. Hence the Gibbs-
Duhem relation [13] links the variation of surface tension
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FIG. 3. Evolution of the surface tension as a function of the
temperature for water phases consisting of SDS at 2CMC and
DOH at 0 mol.L−1 (inverted triangles), 8.0 10−7 mol.L−1

(crosses), 1.6 10−6 mol.L−1 (circles), 3.2 10−6 mol.L−1

(squares), 6.4 10−6 mol.L−1 (diamonds), 9.6 10−6 mol.L−1

(triangles) and 1.3 10−5 mol.L−1 (plus signs). Solid lines
correspond to a linear fit for each dataset.

to the variation of chemical potentials (µi) for all the
chemicals (index i) in presence: dγ = -

∑
i Γi dµi. Since

the SDS concentration is a constant in all the experi-
ments performed, only the variation of chemical potential
for DOH has to be taken into account:

dγ = −Γdµ
DOH

(4)

Integrating Eq.4 leads to the Langmuir-Von
Szyszkowski isotherm:

γeq(c)− γ0 = −Γ∞RT ln(1 +Kc) (5)

where R = 8.31 J.mol−1.K−1 is the ideal gas constant
and T = 298 K is the absolute temperature, taken
constant in all the experiments carried on in this sec-
tion. Fitting the values of K and Γ∞ from the experi-
mental data leads to: K = 2.86 (±0.30) 105 L.mol−1 and
Γ∞ = 5.53 (±3.12) 10−6 mol.m−2, see Fig.4. The maxi-
mum interfacial coverage ω∞ can thus be estimated from
the value of Γ∞:

ω∞ =
1

N a Γ∞
(6)

where N a = 6.02 1023 mol−1 is the Avogadro constant.

We find ω∞ = 30.3 Å
2
/molecule with lower and upper

bounds respectively equal to 19.3 and 70.4 Å
2
/molecule,

taking into account the incertitude on Γ∞. These values
are consistent with the literature [13].

ELASTIC BEHAVIOUR EVIDENCE

This section brings to light the elastic behaviour of
the air-water interface when stabilised by DOH molecules

FIG. 4. γeq − γ0 as a function of DOH bulk concentration
(logscale). The solid blue line is the best fit obtained from
the Langmuir-Von Szyszkowski isotherm (Eq.5).

[14–17]. For an insoluble monolayer like the one created
by DOH molecules at the air-water interface, the Gibbs-
Marangoni elastic modulus (EGM ) writes [13, 18]:

EGM = +
dγ

d lnA
= − dγ

d ln Γ
(7)

where A is the area considered. Here we carried on bub-
ble volume cycles to get insight in the elastic behaviour
of the air-water interface in two cases, corresponding to
an interface stabilised by (i) SDS at 2 CMC on its own,
and (ii) SDS at 2 CMC together with DOH at 3.2 10−6

mol.L−1, see Fig.5. For both experiments, we performed
5 cycles of 5 s-period, for a volume variation amplitude
set to ∆Vb/Vb= 12.5 %.

Fig.5-a shows that for an interface stabilised by SDS
only, the surface tension is not altered by the volume
variation, which means that the adsorption-desorption
kinetics of the SDS molecules at the interface is much
faster than the characteristic time of the applied stress.
This qualitative observation is consistent with the fact
that r is always equal to zero in that case, independently
of the value of e/R.

Fig.5-b corresponds to an interface stabilised by both
SDS and DOH. First we wait for the surface tension to
reach its equilibrium value before applying the volume
variation cycles. Results show that a surface tension
variation goes along with a volume variation, going in
the same direction. This means that for a compression
of the interface (i.e. a decrease in Vb), the number of
DOH molecules adsorbed per unit area increases, lead-
ing to a decrease in surface tension. Similarly, a dilation
of the interface (i.e. an increase in Vb) translates into
a decrease in the number of DOH molecules adsorbed
per unit area, leading to an increase in surface tension.
Finally, these measurements shed light on the qualita-
tive elastic behaviour of an air-water interface stabilised
by both SDS and DOH, in the range of concentrations
considered hereby.
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FIG. 5. Surface tension (in red) and bubble volume (in blue)
as a function of time for a liquid phase consisting of SDS at
2 CMC and DOH respectively at 0 mol.L−1 for (a) and 3.2
10−6 mol.L−1 for (b).

ADDITIONNAL MODELS FOR THE GIBBS
ELASTICITY CONTRIBUTION

• Model 2: diffusion across the film.

The first scaling law proposed for the diffusion field was
based on the assumption of diffusion along the shortest
line between bubbles 1 and 2. Here we assume in con-
trast that the surfactants diffuse across the thinnest layer
of solution. In our confined geometry, below a critical
liquid fraction, the bubbles are deformed by the pres-
ence of the others. This leads to the formation of thin
films between bubbles, of thickness h ∼ 20 nm set by the
disjoining pressure, and of characteristic size R ×

√
eh

[19, 20]. These films are located at the contact between
the meniscii touching respectively the top and bottom
plates. As their vertical extension

√
eh is very small,

they have been neglected in the modeling of the ther-
mocapillary drainage. However, as their thickness is also
very small, they may be relevant for the diffusion pro-
cess. Here we thus write that the surfactants accumulate
at the surface of the meniscii at the front of a bubble
(i.e. meniscii almost perpendicular to the flow), and that
they diffuse from bubble 1 to bubble 2 across the section
R×
√
eh, with a concentration gradient scaling as ∆c/h.

Hence the diffusive flux writes Φ1→2
diff ∼ DDOHR∆c

√
e/h,

see Fig.6.c. Still considering that the system is in a
steady-state at all time, the equality between the dif-
fusive flux and the convective flux Φ1

conv ∼ (ΓUs)e leads
to:

rthD,2 ∼
α0Γ∞

√
h
∣∣∣∂γeq∂c

∣∣∣
ηDDOH

× Kc

1 +Kc
×e

3/2

R2
∼ 0.45× Kc

1 +Kc
×e

3/2

R2

(8)

meniscus in contact with the walls

a) b)$Film$diffusion

mid-plane
hbubble 1

bubble 2

FIG. 6. a) Sketch representing the solutocapillary stress in-
duced by the DOH molecules. pPb refers to the pseudo-
Plateau borders [21]. b) diffusion of surfactant across the
films.

Fig.7 represents the damping factor r as a function
of (Kc/1 + Kc) × e3/2/R2. The linear fits evidenced
by the solid and dashed lines in Fig.7 lead to prefactors
ranging from 2.34 up to 6.45, which can be considered
correct; however, it is clear that a linear fit does not
reproduce the general trend of the curves as they exhibit
an intercept. This intercept could be attributed to the
effect of the surface shear viscosity, since e3/2/R2 → 0
corresponds to R→∞. However, as in the case depicted
in section 4.3 of main paper, the value of the intercept
increases with e for a given DOH concentration, which is
not relevant with the scaling found for Bqs (main text,
rthsh ∼ ε

ηe ).

• Model 3: convection across the meniscus

The last transport mechanism one may envision is a
convective transport across the meniscus. In this config-
uration, the convective flux along the interface φ1

conv ∼
ΓUse is equilibrated by the convective flux across the
meniscus φvert

conv ∼ ∆ cv̄the2. Such equilibrium leads to
the following scaling :

re ∼ Γ∞ ×
∂cγ|eq

∂T γ∂xT
× Kc

1 +Kc
× 1

eR
(9)

Such scaling does not allow us to recover the experimen-
tal data as plotted on figure 7 of main text. Also, we
have shown that r does not depend on the driving term
∂T γ∂xT (see Fig.5). This contribution is thus clearly
negligible.
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FIG. 7. Evolution of r as a function of (Kc/1+Kc)×e3/2/R2

for different DOH concentrations: 1.6 10−6 mol.L−1 (cir-
cles), 3.2 10−6 mol.L−1 (squares) and 5.6 10−6 mol.L−1 (di-
amonds). For each dataset, the hollow (resp. solid) symbols
correspond to e = 19.3 µm (resp. e = 54.2 µm). Dashed
(resp. solid) lines represent the best linear fitting curves for
e = 19.3 µm (resp. e = 54.2 µm), for each dataset.
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