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I. EXPERIMENTAL

A. Sample Fabrication and Caracterization

Details of the fabrication techniques can be found in Ref.1 and its associated Supplemental Information. Briefly,
the layer of porous silicon was obtained by hydrofluoric acid (HF) anodization of a <111> p-type silicon wafer.
Oxygen thermal annealing of the porous silicon allowed to improve chemical stability and hydrophilicity by surface
oxidation. The serpentine-shaped reservoir was obtained in glass by standard lithography techniques and HF wet
etching. Silicon and glass were finally assembled by anodic bonding. The cross-section areas of the serpentine channel
(a = 1.06 × 10−9 m2) and of the porous silicon layer (A = 1.31 × 10−7 m2) were measured from scanning electron
microscope (Zeiss Ultra 55 SEM) images.

The porosity φ = 0.45 of the porous silicon layer was determined gravimetrically using N2 at 77.3K. Further, BET
analysis on the N2 adsorption isotherm provided an estimate of the surface area Sp, allowing to estimate a typical pore
radius rp = 2Vp/Sp = 1.4 nm from the pore volume Vp. BJH analysis also allowed to estimate dispersity, showing a
distribution peaked around rp = 1.4 nm with a typical half width at half maximum (hwhm) of 0.4 nm.

B. Experimental Procedure

For imbibition experiments (Fig. S1a), the sample was evacuated for at least 24 hours, then transferred under
vacuum into a transparent container with the liquid of interest. Time was measured from the moment at which
the sample made contact with the liquid. The container was quickly transferred to a stereoscope and images of the
samples were recorded with time-lapse photography using 5-second intervals. The inlet hole of the serpentine channel
on the other side of the sample (left part of Fig 1a-b in the manuscript and of Fig. S1 here) was sealed with adhesive
tape for imbibition experiments so that imbibition occurred only from the open edge of the sample (right part of Fig
1a-b in the manuscript and of Fig. S1 here). It was also possible to leave the inlet hole open, resulting in additional
imbibition from the backside of the sample as the serpentine channel progressively filled with liquid. Such imbibition
fronts from the backside showed similar dynamics but led to additional uncertainties compared to imbibition fronts
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FIG. S1. Sketch of the sample (top view) during imbibition (a) and drying (b) experiments. See text for details. For simplicity,
the area of porous silicon below the serpentine reservoir is not drawn. The drying experiment is represented in the Kelvin-Darcy
regime so that the liquid pressure at the edge is effectively P = P0 + Ψext.

from the open edge due to the complex shape and progressive filling of the serpentine channel. For that reason,
imbibition front from the open edge (with sealed inlet hole) were preferred.

Independently of imbibition, drying experiments (Fig. S1)b were performed on the same sample as imbibition
experiments, with the pores initially full of liquid. The serpentine-shaped reservoir was filled through the open inlet
hole with the liquid using the following procedure : 1) evacuation for 1 minute to remove air from the reservoir, 2)
dipping the sample in the liquid while still under vacuum, 3) venting the vacuum chamber. In step 3), the outside
air pressure was sufficient to push the liquid into the reservoir and fill it completely without bubbles. Using an air
blower above the inlet hole, part of the liquid was evaporated from the left part of the serpentine channel to allow
for the creation of a visible air-water meniscus in the channel. In order to prevent further evaporation of the liquid
through the inlet hole, the latter was then sealed with at least 6 layers of stretched Parafilm. The success of the sealing
procedure was checked by exposing the sealed inlet to air while keeping the open edge of the sample submerged in
water for at least one hour and verifying that the meniscus motion was negligible.

In order to start a drying experiment, the sample was then transferred into a closed chamber. Relative humidity in
the chamber was controlled by unsaturated aqueous solutions of NaCl or LiCl calibrated using Decagon WP4C water
potential meter. For drying with liquids other than water, samples were exposed to ambient air which contains only
traces of the solvents’ vapors. This situation placed the system into the "plateau-drying" regime associated with low
relative humidities (large, negative liquid potentials, see Fig. 2c in the manuscript, regime ).

During drying, the motion of the meniscus in the serpentine-shaped reservoir was recorded by time-lapse photog-
raphy using 10-second intervals. We note that the very large hydraulic conductance of the channel compared to the
nanoporous layer ensured that the pressure gradient was established in the porous layer only (orange area on Fig.
S1b). The zone of the sample probed by drying experiments is thus the same as that probed by imbibition (Fig. S1a-
b). We also note that the presence of a meniscus in the serpentine channel was associated with a capillary pressure
on the order of σ/H ' 4 kPa where H = 20µm is the depth of the microchannel. We have neglected this capillary
pressure in our analysis, the driving forces generated by drying being on the order of 10− 100 MPa in our system.

C. Analysis

We performed the analysis of the drying experiments by measuring manually on the time-lapse images the position
X(t) of the meniscus in the serpentine channel, leading to the data in Fig. 2a-b in the manuscript. We obtained
the steady-state velocity v and its associated uncertainty ∆v by linear fitting of the data for t > 10 × τporo = 18
min to ensure sufficient decay of the poroelastic transient (see section III). We used the relation J = (a/A) × v to
calculate the Darcy velocity J of the fluid in the porous layer for the plot in Fig. 2c, propagating the uncertainty
∆v. We also calculated the error bars on the driving force Ψext by propagating through Kelvin equation Ψext =
(RT/vm) ln(pext/psat) the uncertainty of ±0.003 on the activity pext/psat imposed by the salt solutions as measured
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FIG. S2. Analysis of imbibition dynamics. ξ(y) represents the relative intensity change along the direction of front propagation.
Colors correspond to a subset of images that are 700 s apart during the experiment. The black dashed line corresponds to
ξ = αξsat with α = 0.5 and Y is the extracted front position for the first ξ(y) curve. See text for details.

by Decagon WP4C water potential meter. Uncertainties on the cross sections a and A introduce an additional
systematic error that we estimated to be ±4%. We propagated that error on the final result for the permeability
leading to κ = (1.87± 0.08)× 10−17 m2/(Pa.s).

For the analysis of imbibition dynamics, we extracted the position of the wetting front Y (t) by image analysis using
the following procedure. We note In(y′, z) the gray-level intensity matrix of the nth image in the time-lapse set, with
z corresponding to an axis perpendicular the the direction of propagation of the front, and y′ to an axis parallel to
it (with opposite direction compared to the y axis defined on Fig. 1 in the manuscript, and origin at the edge of the
sample, in other words y′ = L − y). We use the first image of the set (n = 0) as a reference image to calculate the
relative intensity change in the direction of propagation ξn(y′) = 〈(I0 − In)/I0〉z for every other image n, where 〈〉z
represents averaging over the direction perpendicular to the front propagation. A typical subset of generated ξn(y′)
curves for an experiment is shown in Fig. S2. These curves transition from ξ = 0 where the porous silicon is dry to
a positive value ξsat where it is saturated with liquid. We extracted the average front position Y by searching each
curve for the location where ξ = αξsat. The data of Fig. 3a in the manuscript was obtained using α = 0.5 (main,
black curve). Further, we used α = [0.25; 0.75] to evaluate a typical uncertainty on the front position (grey dotted
lines on Fig. 3a).

D. Liquid properties

Tabulated values of the viscosities and surface tensions of the bulk liquids were used for η and σ with an uncertainty
estimated from the temperature dependence of these properties in the range 20− 25◦C (Table S1 columns 1 and 2).
The molecular sizes were computed from the tabulated bulk molar volumes using d = (vm/NA)1/3 (Table S1 columns
3 and 4). Finally, contact angles were measured using the sessile drop method: organic liquids always showed complete
spreading (θ = 0) while we measured θ = 25± 5◦ for water (Table S1 column 5), in agreement with values from the
literature2.

We have neglected the effect of contact angle hysteresis, an assumption that is supported by our consistent results
between both drying and imbibition, which should involve the receding and the advancing contact angles, respectively.
The consistency of our experimental results across partially and fully wetting liquids and for both drying and imbibition
also suggests that the possible existence of pre-wetting films during imbibition for liquids with θ = 0 and positive
spreading coefficient (see for example Ref.3) does not measurably influence the dynamics presented in our manuscript.
Immobile layers of liquids at the pore walls, on the other hand, impact both drying and imbibition in the same way,
by reducing the effective diameter across which the Poiseuille flow is established. This explains why the drying and
imbibition responses follow an identical pattern when using different liquids (Fig. 4b) and also explains why the
tortuosity extracted from the best-fit lines on Fig. 4b is the same for drying and imbibition (τ = 4.5), as the effective
geometry of the pore space is affected identically by immobile layers in both cases.

We neglected the dependence of the molar volumes on the liquid pressure. An order of magnitude of the relative
variations of vm can be obtained through ∆vm/vm = χliq∆P where χliq is the liquid isothermal compressibility
and ∆P the pressure variation. Using the maximum driving forces ∆Pmax ' 100 MPa obtained with water (χw =
4.5×10−10 Pa−1, we estimate (∆vm/vm)max ' 4.5%. In fact, using the International Association for the Properties of
Water and Steam (IAPWS) equation of state for water, we find that the error in the liquid pressure estimated from
Kelvin equation when assuming vm constant is < 1% at Ψ = −50 MPa and 2.6% at Ψ = −100 MPa.
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TABLE S1. Physical parameters for the different liquids used. All values from Ref.4 except the viscosity of isopropanol5 and
the contact angle values (measured, see section ID). Uncertainties on the molecular size are less than 0.13%.

Surface Tension Viscosity Molar Volume Molecular size Contact Angle
σ [mN/m] η [mPa.s] vm [×10−5m3/mol] (vm/NA)1/3 [nm] θ [◦]

Water 72.4± 0.6 0.946± 0.056 1.806± 0.001 0.311 25± 5
Acetone 23.0± 0.5 0.315± 0.009 7.377± 0.028 0.497 0
Ethanol 22.2± 0.4 1.145± 0.071 5.848± 0.021 0.460 0

Isopropanol 21.1± 0.4 2.242± 0.172 7.664± 0.028 0.503 0

II. STEADY-STATE DRYING MODEL

A. Single pore

Here we consider drying-induced permeation through a hypothetical single straight cylindrical pore of length L and
of radius rp (see Figs. 2d-e in the manuscript), characterized by an intrinsic capillary pressure Ψc = −2σ cos θ/rp.
We assume that θ is the equilibrium contact angle, thus neglecting contact angle hysteresis effects.

One edge of the pore (x = 0) is in contact with a bulk reservoir of liquid so that Ψx=0 = 0 in the pore liquid while
the other edge is in equilibrium with the vapor pressure pext imposed outside of the sample so that Ψx=L = Ψext with
Ψext = RT/vm ln(pext/psat) (Eq. (1) in the manuscript).

• If Ψext ≥ Ψc, the pore remains completely filled with liquid. The meniscus is located in x = L and adopts a
radius of curvature r set by the external relative humidity through Kelvin equation (Eq. (2) in the manuscript)
and Laplace equation Pedge − P0 = −2σ/r. The capillary stress, of magnitude Pedge − P0 = Ψext results in a
pressure-driven viscous flow proportional to Ψext. The resulting mass flux per unit area q [kg/(m2.s)] in the pore
liquid (i. e. mass flux divided by πr2

p the cross-section area of the pore) is

q =
−Ψext

L/gliq
=
−Ψext

R
(S1)

where we have defined the linear mass conductivity of a liquid-filled pore gliq and the total mass transport
resistance of the liquid-filled pore R = ∆Ψ/q = L/gliq.

• If Ψext < Ψc, mechanical capillary equilibrium at the pore end cannot be satisfied anymore. The meniscus
recedes within the pore to a location x = L− ε so that Ψ(L− ε) = Ψc for mechanical equilibrium to be satisfied
again. Mass transport is thus determined by a succession of liquid transport on a distance L − ε, and vapor
transport on a distance ε. There are now two mass transport resistances in series Rliq = (L − ε)/gliq and
Rvap = ε/gvap. The liquid potential drops being imposed in each phase (∆Ψliq = −Ψc and ∆Ψvap = Ψc−Ψext),
a single value of ε leads to a unique mass flux (∆Ψvap/Rvap = ∆Ψliq/Rliq), as required by the steady-state
situation, satisfying ε/(L− ε) = ∆Ψvap/∆Ψliq × (gvap/gliq), or

ε

L− ε
=

Ψc −Ψext

−Ψc
× β. (S2)

The distance from the edge at which the meniscus recedes, ε, thus scales as the ratio of conductances, β =
gvap/gliq which we now estimate. Assuming Poiseuille flow in the liquid-filled pore, gliq = ρr2

p/(8η) where ρ is
the liquid density. Assuming diffusion in the vapor phase, q = M

RTD
∆p
ε whereM = ρvm is the species molar mass,

D is the vapor diffusivity, and ∆p is the vapor pressure drop, related to the liquid potential drop ∆Ψvap through
Kelvin equation. Thus gvap = (∆p/∆Ψvap) ×MD/(RT ). From Kelvin equation, ∆Ψvap/∆p ' RT/(vmpext).
We further assume Knudsen diffusion for the vapor6: D = (2rp/3)× (8RT/πM)1/2. We eventually find

β ' 32

3

(
2

π

)1/2(
RT

M

)−3/2
η pext

ρ2rp
. (S3)

For water, taking a typical value of the vapor pressure pext = 1 kPa, we find D = 6.7× 10−7 m2/s and β ' 10−4

with rp = 1.7 nm. We deduce from eq. (S2), that ε/L � 1. This conclusion is unaffected when taking into
account the negative slip length δ < 0 for the flow of the liquid in the pores (resulting in a correction factor on
β of (1 + δ/rp)

−4 ' 2 for water and ' 4 for the organic liquids). Similarly, taking into acount the tortuosity τ
of the pores does not affect the result, as vapor and liquid transport are affected in the same way (flux divided
by τ).



5

In the following we assume β = 0 (and thus ε = 0), which results in the simple expression for the mass flux in a
single pore of radius rp: {

q = −gliqΨext/(τL) if Ψext ≥ Ψc = −2σ cos θ/rp

q = −gliqΨc/(τL) if Ψext < Ψc
(S4)

where we have introduced the factor τ to take into account the tortuosity of the pores. Assuming that the porous
medium is constituted of identical pores of radius rp, the two-parts response described in (S4) for a single pore
naturally extends to the whole medium, resulting in regimes ¬ and  described in the manuscript.

B. Pore size distribution

We now evaluate the effects of pore size distribution on the conclusions drawn above and in the manuscript, which
were based on the assumption that all pores have the same radius. For simplicity, we assume that the porous medium
is constituted of a bundle of non-interacting cylindrical pores, each pore i having a radius ri. Under this assumption,
the total mass flow rate Q [kg/s] in the porous medium is the sum of the flow rates from all individual pores, following
Eq. (S4).

Q = − 1

τL

∑
i

Ψi × gliq,i × πr2
i (S5)

with gliq,i = ρ(ri + δ)4/(8ηr2
i ), Ψi = Ψext if Ψext > Ψc,i = −2σ cos θ/ri and Ψi = Ψc, i otherwise. Using the relation

Q = ρAJ and the definition of porosity φ =
∑
πr2
i /A, we obtain the volumetric flux

J = − φ

8ητL

〈
Ψi × (ri + δ)4

〉
〈r2
i 〉

(S6)

where 〈〉 is the ensemble average over all pores. It is useful to consider the limiting case for low values of −Ψext where
Ψi = Ψext for all pores (Kelvin-Darcy regime ¬). The flux is then

J1 = −κΨext

L
(S7)

with the permeability κ defined as

κ =
φ

8ητ

〈
(ri + δ)4

〉
〈r2
i 〉

(S8)

which is a generalized version of the Carman-Kozeny equation (Eqs. 5 and 9 in the manuscript). Combining Eqs.
(S6) and (S8), we find

J = −κ
〈
Ψi × (ri + δ)4

〉
L 〈(ri + δ)4〉

(S9)

which we plot in Fig. S3 using κ = 1.87 × 10−17 m2/(Pa.s), for two different pore size distributions: first, a peaked
distribution around rp = 1.7 nm which is the ideal case considered in the manuscript. Second, a gaussian distribution
centered on 1.4 nm and with a half-width-at-half-maximum of 0.4 nm, which reproduces the BJH estimates of the
pore size distribution (see section IA). As can be seen on Fig. S3, the two distributions reproduce the experimental
data very well and differ only in the transition region between regimes ¬ and .

This last remark suggests that the width of the transition region can be used as an indicator of the pore size
distribution. For example, the first experimental data point that shows deviation from the Kelvin-Darcy regime ¬
is the one at Ψext = −57 MPa. Using the Laplace equation, this corresponds to the dewetting of a pore of radius
r′ = 2σ cos θ/Ψext = 2.3 nm, which agrees well with the maximum pore size from the BJH distribution. Similarly,
regime  is reached for the data point at Ψext = −128 MPa which corresponds to r′′ = 1.0 nm.

We finally note that the model above assumes non-interacting pores. The existence of lateral connections between
pores in porous silicon could result in additional collective effects not accounted for in our model. Such collective
effects have been evidenced recently7,8. For capillary flows in nanoporous solids, these local correlations may induce
anomalous widening of wetting fronts but do not appreciably modify the global dynamics of imbibition7,9. We expect
similar conclusions to hold for capillary flows in our system.
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FIG. S3. Effect of the pore size distribution on the drying response. Full line correspond to a gaussian distribution or average
radius 1.4 nm and hwhm of 0.4 nm (see inset) while the dotted line corresponds to a sharp distribution around 1.7 nm. The
square data points represent the experimental results from Fig. 2c in the manuscript.

III. POROELASTIC TRANSIENTS

Here we evaluate the transient time to reach steady-state when the sample is taken out of water and placed in
a sub-saturated atmosphere in order to interpret the results of Fig. 2b in the manuscript. Transient flows in rigid
porous systems such as porous silicon are governed by the interplay of viscous flow in the pores (characterized by the
permeability κ) and the elasticity of the fluid-filled medium through its effective compressibility χ [Pa−1]1. Generally,
χ = (χ−1

liq +χ−1
matrix)−1 where χliq is the liquid isothermal compressibility and χmatrix the solid matrix compressibility.

This interplay results in a poroelastic diffusion-like equation for the pressure (equivalently, liquid potential Ψ)

∂Ψ

∂t
= C

∂2Ψ

∂x2
(S10)

with C = κ/(φχ) the poroelastic diffusivity. Initially, the sample is saturated with water and the liquid potential is
zero everywhere. When the sample is placed in a sub-saturated atmosphere, a liquid potential Ψ(x = L) = Ψext is
imposed at the edge, while the presence of bulk liquid water in the serpentine reservoir imposes Ψ(x = 0) = 0 at all
times. The liquid potential profile (equivalently the pressure profile), initially a step function, thus evolves towards a
linear steady-state

Ψs(x) = Ψext x/L. (S11)

The solution of the diffusion equation with the above boundary conditions and initial state is

Ψ(x, t) = Ψs(x) + Ψext

[ ∞∑
n=1

(−1)n+1 2

πn
sin
(
πn

x

L

)
exp

(
−π

2n2Ct

L2

)]
. (S12)

The flux at the reservoir level (x = 0) can be calculated from Darcy’s law J = −κ∂Ψ/∂x, leading after integration
to the volume V (t) transferred from the reservoir to the sample and equivalently to the position of the meniscus as a
function of time X(t) = V (t)/a where a is the cross-section area of the serpentine channel:

X(t) = v

[
t− L2

6C
(1− ξ(t))

]
(S13)

with v = Aκ|Ψext|/(aL) the meniscus steady-state velocity and

ξ(t) = 12

∞∑
n=1

(−1)n+1 exp
(
−(πn)2Ct/L2

)
/(πn)2 (S14)

a dimensionless decay function. It follows that all transient responses can be normalized by plotting X/v as a function
of t, as is done on Fig. 2b in the manuscript. We note from Eq. (S14) that the slowest decaying mode is associated
with a timescale

τporo =
L2

π2C
(S15)
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In our system, the porous silicon matrix is much more rigid than the water itself, thus we expect the medium
elasticity χ = (χ−1

liq + χ−1
matrix)−1 to be dominated by the liquid compressibility, χ ' χliq. The results of Fig. 2b

show very good agreement with Eqs. (S13) and (S14) when using the bulk value χliq = 4.5 × 10−10 Pa−1 of the
isothermal compressibility of liquid water to calculate the poroelastic diffusivity C = κ/(φχ) = 9.2× 10−8 m2/s (and
the poroelastic timescale τporo = 110 s from Eq. S15).

This agreement suggests that in addition to the viscous and capillary properties, the bulk elastic properties (com-
pressibility) of water remain the same in the ∼ 3 nm-diameter pores studied here.

IV. EXTERNAL MASS TRANSFER

Here we estimate the contribution of external mass transfer in the vapor outside of the sample and show that its
role can be neglected. The mass flux in the porous medium follows(

dm

dt

)
po

= ρκA
−Ψext

L
(S16)

while the mass flux in the external boundary layer in the air in contact with the edge is(
dm

dt

)
ext

=
M AShDv,air

HpRT
(pext − p∞) (S17)

where p∞ refers to the imposed vapor pressure far from the sample, Hp is the thickness of the porous layer, Sh is the
Sherwood number characterizing external mass transfer. The vapor pressures are related to the liquid potentials Ψext

and Ψ∞ through Kelvin equation.
At steady-state, the two mass fluxes (S16) and (S17) have to be equal, which leads to

p∞ − pext

psat
=

ln
(
pext
psat

)
βext

(S18)

where we have defined the dimensionless number

βext = Sh
( vm

RT

)2 LDv,air psat

Hp κ
(S19)

In order to estimate the Sherwood number, we consider that evaporation at the edge, which occurs from a long
strip, can be approximated as evaporation from a half-cylinder attached to a non-evaporating wall. This geometry
can be further approximated as a full cylinder in an infinite domain by the method of images. Using the analogy
between heat and mass transfer in the gas phase, we can assume that the Sherwood number for mass transfer is the
same as the Nusselt number for heat transfer. A minimum Nusselt number of 0.3 has been evaluated in the literature
in geometries similar to ours10, so that assuming Sh > 0.3 we find βext > 120 for our system.

We conclude that the boundary layer mass transfer is not limiting in the overall fluxes and that Ψext = Ψ∞, in
other words the water at equilibrium with the edge of the sample is equal to the liquid potential imposed by the
relative humidity control far away from the sample.

V. ALTERNATIVES TO THE MOLECULAR STICKING HYPOTHESIS

In this section, we discuss alternative scenarios to the hypothesis of a negative slip length (δ < 0) of molecular size
to explain the observed drying and imbibition dynamics, and we argue that δ < 0 is the most plausible hypothesis to
explain our experimental data.

First, from Eqs. (5− 9) in the manuscript, the plateau-drying and imbibition responses are respectively

Jc =
φ rp

4Lτ

(
1 +

δ

rp

)4
σ cos θ

η
(S20)

and

w =
rp

2τ

(
1 +

δ

rp

)4
σ cos θ

η
(S21)
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FIG. S4. Plateau-drying (Jc) and imbibition responses for different liquids as a function of the driving force σ cos θ/η. The
lines are a fit giving τ = 13.

and should both scale with σ cos θ/η when setting δ = 0. As seen on Fig. S4, the data does not collapse when using
this scaling. Furthermore, the tortuosity τ = 13 extracted from Eqs. (S20 – S21) with δ = 0 and using the best-fit of
the data (lines on Fig. S4) would describe an unlikely convoluted flow path of the liquid in the pores.

Alternatively, an alignment of the data points on Fig. S4 can be obtained by choosing values of the contact angle
θ, viscosity η or surface tension σ that differ from the bulk values listed in table S1. For example, the contact angles
can be modified to θ = 0 for water and θ = 55◦ for organic liquids. Such values are unlikely since they correspond to
a wetting behavior that is opposite to the bulk behavior (organic liquids wet porous silicon significantly better than
water). This choice of contact angles would also correspond to a high value of tortuosity, τ = 11.

Increasing the value of viscosity by a factor γ, on the other hand, allows to keep reasonable values of τ . Choosing
γ = 2.5 for water and γ = 5 for the organic liquids yields a satisfactory rescaling of the experimental data and a
tortuosity τ = 3.8 . While the trend for organic liquids to have a larger viscosity increase under confinement than
water is discussed in the literature11, the choices of γ above are arbitrary and not justified by data in the literature.
While γ = 2.5 for water lies in the upper range of the uncertainty of experimental measurements in the range 0 − 4
nm11, the increase of viscosity for organic liquids has been shown to exhibit a very sharp transition to a solid-like
behavior12, which is unlikely to result in a unique effective value γ = 5 for all three organic liquids tested here.

Identical results are obtained when dividing the surface tensions by the same values of γ instead of multiplying the
viscosities by these factors. This choice, however, is similarly arbitrary, and not supported by literature data which
suggest negligible deviations to the bulk values of σ above radii of curvature of 1 nm13.

For the reasons above, we favor the hypothesis of a boundary condition modification in the form of an immobile
monolayer of molecules on the pore walls, resulting in a negative slip length δ = −d which agrees very well with our
results as shown in the manuscript.
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