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I. NEWTONIAN DYNAMICS WITH FRICTION

In this section, we detail how we perform the Newtonian dynamic simulation (Eq. (2) of the main text) with a
friction term ∝ ξ and an active oscillation in the particles’ diameters (Eq. (3) of the main text).

Our dynamical variables are the positions {ri(t)}, velocities {vi(t)}, and diameters of the particles {σi(t)}, where
the index i = 1, 2, . . . N labels the particle and N = 1000 is the total number of particles in the system. We start our
simulation at t = 0 with all particles at rest: vi(0) = 0, ∀i. We also assign a random position ri(0) for each particle
i anywhere inside the simulation box. The initial particles’ diameter σi(0) is either 0.714σ or σ with a ratio 3 : 2 to
avoid crystallization.

We then update the particles’ positions and velocities according to Newtonian dynamics (Eq. (2) of the main text):

m
dvi
dt

+ ξvi = −
N∑

j=1,j 6=i

∂V (rij)

∂ri
(1)

vi =
dri
dt

(2)

where m is the mass of each particle, ξ is the friction coefficient between the particles and the friction, and V (rij) is
the two body potential, given by:

V (rij) =
ε

2

(
1− rij

σij

)2

H(rij − σij) (3)

where rij = |ri − rj | and σij = (σi + σj)/2. H(x) is the Heaviside function, defined such that H(x) = 1 if x ≥ 0 and
H(x) = 0 if x < 0. We also update the particles’ diameters using a sinusoidal function:

σi(t) = σi(0) [1 + a cos(ωdt+ ψi)] (4)

where a is the amplitude of active oscillation and ωd is the driving frequency. The phase difference ψi is chosen to
be ψi = 2πi/N as this will conserve the global volume fraction. Note that by introducing an active oscillation in the
particles’ diameters (Eq. (4)), we drive the system out-of-equilibrium.

We then non-dimensionalize the equations of motion Eqs. (1,2) by rescaling the position and time by:

ri → ri/σ

t→ ω0t (5)

where ω0 =
√

ε
mσ2 is the characteristic frequency defined in the main text. Subsequently Eq. (1) become:

dvi
dt

+ ξ
σ√
mε

vi = Fi (6)
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where

Fi =

N∑
j=1,j 6=i

(1− rij)H(rij − 1)
rij
rij
. (7)

Finally, putting in the definition of damping coefficient ζ = ξσ
2
√
mε

from the main text, the dimensionless equations of

motion are:

dvi
dt

+ 2ζvi = Fi (8)

vi =
dri
dt

(9)

In our simulations, we fix ζ = 0.01.
Eqs. (8,9) are then discretized in time similar to velocity Verlet algorithm [1]:

ri(t+ ∆t) = ri(t) + vi(t)∆t (1− ζ∆t) +
1

2
Fi(t)∆t

2 (10)

vi

(
t+

∆t

2

)
= vi(t) (1− ζ∆t) +

1

2
Fi(t)∆t (11)

vi(t+ ∆t) = (1 + ζ∆t)
−1

[
vi

(
t+

∆t

2

)
+

1

2
Fi(t+ ∆t)∆t

]
, (12)

where ∆t � 1 is the time interval. In our simulations, we fix ∆t = 0.01. Thus, given {ri(0),vi(0), σi(0)}, we can
update {ri(t),vi(t), σi(t)} using Eqs. (10,11,12,4).

We now give derivations of Eqs. (10,11,12). To derive Eq. (10), we first Taylor expand ri(t+ ∆t):

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2

dvi(t)

dt
∆t2 +O

(
∆t3

)
.

Substituting Eq. (8), we obtain:

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2
(Fi(t)− 2ζvi(t)) ∆t2 +O

(
∆t3

)
(13)

= ri(t) + vi(t)∆t (1− ζ∆t) +
1

2
Fi(t)∆t

2 +O
(
∆t3

)
. (14)

To derive Eq. (11), we Taylor expand vi
(
t+ ∆t

2

)
to obtain:

vi

(
t+

∆t

2

)
= vi(t) +

1

2

dvi(t)

dt
∆t+O

(
∆t2

)
. (15)

Substituting Eq. (8), we obtain:

vi

(
t+

∆t

2

)
= vi(t) +

1

2
(Fi(t)− 2ζvi(t)) ∆t+O

(
∆t2

)
(16)

= vi(t) (1− ζ∆t) +
1

2
Fi(t)∆t+O

(
∆t2

)
. (17)

Finally to derive Eq. (12), we Taylor expand vi
(
t+ ∆t

2

)
to obtain:

vi
(
t+ ∆t

2

)
= vi(t+ ∆t)− 1

2

dvi(t+ ∆t)

dt
∆t+O

(
∆t2

)
. (18)

Substituting Eq. (8), we obtain:

vi

(
t+

∆t

2

)
= vi(t+ ∆t)− 1

2
[Fi(t+ ∆t)− 2ζvi(t+ ∆t)] ∆t+O

(
∆t2

)
(19)

and thus we recover Eq. (12).



3

II. NORMAL MODE ANALYSIS

In this section, we detail how to obtain the normal eigenmodes from a static configuration close to a local potential
energy minimum [2]. The total potential energy is obtained by summing all the two body potential V (rij):

U(rN ) =
1

2

∑
i

∑
j 6=i

V (rij) (20)

where rN = (r1, r2, . . . , rN )T . The Hessian matrix Hij is defined to be the second derivative of the total potential
energy with respect to the positions of the particles:

Hij =
∂2U

∂ri∂rj
. (21)

More explicitly, the Hessian matrix can be written as:

H =



∂2U
∂x1∂x1

∂2U
∂x1∂y1

∂2U
∂x1∂x2

. . . ∂2U
∂x1∂yN

∂2U
∂y1∂x1

∂2U
∂y1∂y1

...

∂2U
∂x2∂x1

. . .

...
∂2U

∂yN∂x1
· · · ∂2U

∂yN∂yN


(22)

where (xi, yi) are the Cartesian coordinates of ri. The components of the Hessian matrix can be calculated as follow:

∂2U

∂xi∂xi
=
∑
j 6=i

{
V ′′(rij)

(
xi − xj
rij

)2

+ V ′(rij)
1

rij

(
1−

(
xi − xj
rij

)2
)}

∂2U

∂yi∂yi
=
∑
j 6=i

{
V ′′(rij)

(
yi − yj
rij

)2

+ V ′(rij)
1

rij

(
1−

(
yi − yj
rij

)2
)}

∂2U

∂xi∂xj
= −V ′′(rij)

(
xi − xj
rij

)2

+ V ′(rij)
1

rij

(
1 +

(
xi − xj
rij

)2
)

∂2U

∂yi∂yj
= −V ′′(rij)

(
yi − yj
rij

)2

+ V ′(rij)
1

rij

(
1 +

(
yi − yj
rij

)2
)

∂2U

∂xi∂yi
=
∑
j 6=i

{
V ′′(rij)

(
xi − xj
rij

)(
yi − yj
rij

)
− V ′(rij)

1

rij

(
xi − xj
rij

)(
yi − yj
rij

)}
∂2U

∂xi∂yj
= −V ′′(rij)

(
xi − xj
rij

)(
yi − yj
rij

)
+ V ′(rij)

1

rij

(
xi − xj
rij

)(
yi − yj
rij

)
(23)

where V ′ and V ′′ are the first and second derivative of the two body potential respectively. The normal eigenmodes
{eω} and eigenfrequencies {ω} are then obtained by solving the eigenvalue equation:

H · eω = ω2eω (24)

where the Hessian matrix is evaluated at some static configuration rN0 close to a local potential energy minimum. Eq.
(24) can be solved using standard Jacobi iteration method [3] to obtain a set of eigenmodes {eω} and corresponding
eigenfrequencies {ω}.
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