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I. NEWTONIAN DYNAMICS WITH FRICTION

In this section, we detail how we perform the Newtonian dynamic simulation (Eq. (2) of the main text) with a
friction term o & and an active oscillation in the particles’ diameters (Eq. (3) of the main text).

Our dynamical variables are the positions {r;(¢)}, velocities {v;(¢)}, and diameters of the particles {o;(t)}, where
the index 7 = 1,2,... N labels the particle and N = 1000 is the total number of particles in the system. We start our
simulation at ¢ = 0 with all particles at rest: v;(0) = 0, Vi. We also assign a random position r;(0) for each particle
i anywhere inside the simulation box. The initial particles’ diameter ¢;(0) is either 0.7140 or o with a ratio 3 : 2 to
avoid crystallization.

We then update the particles’ positions and velocities according to Newtonian dynamics (Eq. (2) of the main text):
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where m is the mass of each particle, & is the friction coefficient between the particles and the friction, and V' (r;;) is
the two body potential, given by:
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where r;; = |r; —r;| and 0;; = (0, + 0;)/2. H(x) is the Heaviside function, defined such that H(z) =1if 2 > 0 and
H(z) =0if 2 < 0. We also update the particles’ diameters using a sinusoidal function:

oi(t) = 0:(0) [1 + acos(wqt + ;)] (4)

where a is the amplitude of active oscillation and wq is the driving frequency. The phase difference 1; is chosen to
be ¢; = 2mi/N as this will conserve the global volume fraction. Note that by introducing an active oscillation in the
particles’ diameters (Eq. (4)), we drive the system out-of-equilibrium.

We then non-dimensionalize the equations of motion Egs. (1,2) by rescaling the position and time by:
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where wg = |/~ is the characteristic frequency defined in the main text. Subsequently Eq. (1) become:
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where
Fi: Z (1—’/‘ij)H(7"ij—1)%. (7)
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Finally, putting in the definition of damping coefficient { = 2\5/% from the main text, the dimensionless equations of
motion are:
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In our simulations, we fix ¢ = 0.01.
Egs. (8,9) are then discretized in time similar to velocity Verlet algorithm [1]:

ra(t+ Af) = r4(t) + vi() A (1 — CAE) + %Fi(t)AtQ (10)
Vi (t + A;) =vi(t) (1 —CAt) + %Fi(t)At (11)
vi(t + At) = (14 CA) ™" [vi (t + A;) + %Fi(t + At)At| (12)

where At < 1 is the time interval. In our simulations, we fix A¢ = 0.01. Thus, given {r;(0),v;(0),0;(0)}, we can
update {r;(t), v;(t),o;(t)} using Eqgs. (10,11,12,4).
We now give derivations of Egs. (10,11,12). To derive Eq. (10), we first Taylor expand r;(t + At):

1 dv;(t
ri(t+ At) = r;(t) + vi(t) At + §dvd—£)At2 +0 (A).

Substituting Eq. (8), we obtain:
ri(t + At) = r;(t) + vi(t) At + % (Fi(t) — 2¢v4(1) A + O (A) (13)
=r1;(t) + vi(t)At (1 — CAt) + %Fi(t)Atz +0 (A). (14)

To derive Eq. (11), we Taylor expand v; (t + %) to obtain:

v, (t + A;) = v(t) + %dvét(t) At + O (A?). (15)

Substituting Eq. (8), we obtain:
Vi (t + A;) = v;(t) + % (Fi(t) — 2¢v4(t) At + O (At?) (16)
=v;(t) (1 — CAt) + %Fi(t)At +0 (AP). (17)

Finally to derive Eq. (12), we Taylor expand v; (t + %) to obtain:

1dv;(t + At)

vi(t+ 5 =vilt+ At) - S = —=At+ 0 (AF). (18)
Substituting Eq. (8), we obtain:
At 1 )
vilt+ 5 )= vi(t + At) — 5 [Fi(t + At) — 2Cvi(t + At)] At + O (At?) (19)

and thus we recover Eq. (12).



II. NORMAL MODE ANALYSIS

In this section, we detail how to obtain the normal eigenmodes from a static configuration close to a local potential
energy minimum [2]. The total potential energy is obtained by summing all the two body potential V (r;;):
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where ¥V = (ry,ro,...,ry)T. The Hessian matrix H,; is defined to be the second derivative of the total potential
energy with respect to the positions of the particles:
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More explicitly, the Hessian matrix can be written as:
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where (z;,y;) are the Cartesian coordinates of r;. The components of the Hessian matrix can be calculated as follow:
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where V'’ and V" are the first and second derivative of the two body potential respectively. The normal eigenmodes
{e.} and eigenfrequencies {w} are then obtained by solving the eigenvalue equation:

H- e, =w’e, (24)

where the Hessian matrix is evaluated at some static configuration r{’ close to a local potential energy minimum. Eq.
(24) can be solved using standard Jacobi iteration method [3] to obtain a set of eigenmodes {e, } and corresponding
eigenfrequencies {w}.
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