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Equations of bead-spring chain. In this supplementary material, the dimensionless governing 
equation of bead motion, i.e., Eq. (4a) in the main text, are derived in details as below:

The movement of beads  and  of a bead-spring chain shown in Fig. S1 are given by Eq. 𝑗 𝑗 ‒ 1
(3a):

{ 𝜁𝑏�̇�𝑗 = 𝜁𝑏(∇𝑣)𝑇 ∙ 𝑟𝑗 + 𝐹𝑠𝑝,𝑡
𝑗 + 𝐹𝑅

𝑗  
𝜁𝑏�̇�𝑗 ‒ 1 = 𝜁𝑏(∇𝑣)𝑇 ∙ 𝑟𝑗 ‒ 1 + 𝐹 𝑠𝑝,𝑡

𝑗 ‒ 1 + 𝐹 𝑅
𝑗 ‒ 1 �                                  (𝑆1)

 

Fig. S1 Illustration of bead-spring chain and the forces exerted on beads  and . Note that  is the 𝑗 𝑗 ‒ 1 𝐹𝑓
𝑗

friction force defined as 𝐹
𝑓
𝑗 = 𝜁𝑏(∇𝑣)𝑇 ∙ 𝑟𝑗

From Fig. S1, we have  and ; thus𝑅𝑗 = 𝑟𝑗 ‒ 𝑟𝑗 ‒ 1 𝐹𝑠𝑝,𝑡
𝑗 = 𝐹 𝑠𝑝

𝑗 + 1 ‒ 𝐹𝑠𝑝
𝑗

𝜁𝑏(�̇�𝑗 ‒ �̇�𝑗 ‒ 1) = 𝜁𝑏(∇𝑣)𝑇 ∙ (𝑟𝑗 ‒ 𝑟𝑗 ‒ 1) + (𝐹𝑠𝑝,𝑡
𝑗 ‒ 𝐹 𝑠𝑝,𝑡

𝑗 ‒ 1) + (𝐹𝑅
𝑗 ‒ 𝐹 𝑅

𝑗 ‒ 1)
𝜁𝑏�̇�𝑗 = 𝜁𝑏(∇𝑣)𝑇 ∙ 𝑅𝑗 + (𝐹 𝑠𝑝

𝑗 + 1 + 𝐹 𝑠𝑝
𝑗 ‒ 1 ‒ 2𝐹𝑠𝑝

𝑗 ) + (𝐹𝑅
𝑗 ‒ 𝐹 𝑅

𝑗 ‒ 1)   
       (𝑆2)

According to Eqs. (2) and (3b):
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𝐹𝑠𝑝
𝑗 =

3𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏2
𝐾

𝑅𝑗

1 ‒ (|𝑅𝑗| 𝑅0)2
,   𝑅0 = 𝑁𝐾,𝑠𝑝𝑏𝐾,   𝑁𝐾,𝑠𝑝 =

𝑁𝐾

𝑁𝑠𝑝
,   𝐹𝑅

𝑗 =
6𝑘𝐵𝑇𝜁𝑏

∆𝑡
𝑛𝑗

We substitute the above expressions into Eq. (S2), yielding:

𝜁𝑏

Δ𝑅𝑗

Δ𝑡
= 𝜁𝑏(∇𝑣)𝑇 ∙ 𝑅𝑗 +

3𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏2
𝐾

[ 𝑅𝑗 + 1

𝑓(𝑅𝑗 + 1)
+

𝑅𝑗 ‒ 1

𝑓(𝑅𝑗 ‒ 1)
‒

2𝑅𝑗

𝑓(𝑅𝑗)] +
6𝑘𝐵𝑇𝜁𝑏

∆𝑡
(𝑛𝑗 ‒ 𝑛𝑗 ‒ 1)  (𝑆3)

where .𝑓(𝑅𝑗) = 1 ‒ (|𝑅𝑗| 𝑅0)2

And for the polymeric stress,

Σ𝑝 = 𝜈〈Σ
𝑁𝑠𝑝

𝑗 𝑅𝑗𝐹
𝑠
𝑗〉 =

3𝜈𝑘𝐵𝑇

𝑁𝐾,𝑠𝑝𝑏2
𝐾

〈Σ
𝑁𝑠𝑝

𝑗 𝑅𝑗𝑅𝑗/𝑓(𝑅𝑗)〉                             (𝑆4)

Replacing  with the corresponding dimensionless variable , Eqs. (S3) and 𝑅𝑗 �̃�𝑗 = 𝑅𝑖/ 𝑁𝐾,𝑠𝑝𝑏𝐾

(S4) can be rewritten as:

{Δ�̃�𝑗 = (∇𝑣)𝑇 ∙ �̃�𝑗Δ𝑡 +
3Δ𝑡
𝜏𝑠𝑝 [ �̃�𝑗 + 1

𝑓(�̃�𝑗 + 1)
+

�̃�𝑗 ‒ 1

𝑓(�̃�𝑗 ‒ 1)
‒

2�̃�𝑗

𝑓(�̃�𝑗)] +
6Δ𝑡
𝜏𝑠𝑝

(𝑛𝑗 ‒ 𝑛𝑗 ‒ 1)

Σ𝑝 = 3𝜈𝑘𝐵𝑇〈Σ
𝑁𝑠𝑝

𝑗 �̃�𝑗�̃�𝑗/𝑓(�̃�𝑗)〉 �     (𝑆5)

where .𝑓(�̃�𝑗) = 1 ‒ (|�̃�𝑗| �̃�0)2,  �̃�0 = 𝑁𝐾,𝑠𝑝,  𝑎𝑛𝑑 𝜏𝑠𝑝 = 𝜁𝑏𝑁𝐾,𝑠𝑝𝑏2
𝐾/𝑘𝐵𝑇

Since for chains in equilibrium, , and otherwise , we have Σ𝑝 = 0 Σ𝑝 = 𝐺𝑝(𝜎𝑝 ‒ 𝐼)

Σ𝑝 = 𝐺𝑝{ 〈Σ
𝑁𝑠
𝑗 [�̃�𝑗�̃�𝑗 𝑓(�̃�𝑗)]〉

〈Σ
𝑁𝑠
𝑗 [�̃�𝑗�̃�𝑗 𝑓(�̃�𝑗)]〉𝑒𝑞

‒ 𝐼},   𝐺𝑝 = 3𝜈𝑘𝐵𝑇                         (𝑆6)

Simulation algorithm. Here we describe our procedure for combining our bead-spring 
Brownian dynamics simulation results into specific types of deformation, i.e., uniaxial extension 
and simple shear, in either steady deformation or creep.  

Under homogeneous deformation, , the original upper-convective Maxwell equation ∇ ∙ 𝜎 = 0
for segmental dynamics (Eq. (5)) can be simplified as:
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{ �̇�𝑠 = 𝜎𝑠 ∙ ∇𝑣 + (∇𝑣)𝑇 ∙ 𝜎𝑠 ‒ (𝜎𝑠 ‒ 𝐼)/𝜏𝑠

�̇�𝑠 = 1 ‒ 𝜆(𝜏𝑠 ‒ 𝜏𝑠
0),   𝜆 = 𝜇 2𝑡𝑟(𝐷 ∙ 𝐷) 

Σ𝑠 = 𝐺𝑠(𝜎𝑠 ‒ 𝐼),   �𝜏𝑠|𝑡 = 0 = 𝑡𝑊

  �                                     (𝑆7)

If we assume the external stress is applied along the  direction, then the detailed form of 𝑧
deformation rate tensor  is given as:1𝐷

For uniaxial extension:

𝐷 = ∇𝑣 = [�̇�𝑥 0 0
0 �̇�𝑦 0
0 0 �̇�𝑧

]                                                   (𝑆8.1)

For simple shear:

∇𝑣 = [0 0 �̇�𝑥𝑧
0 0 0
0 0 0 ],   𝐷 = [ 0 0 �̇�𝑥𝑧/2

0 0 0
�̇�𝑥𝑧/2 0 0 ]                         (𝑆8.2)

where , , and  are the extension rates in  directions, and  is the simple shear rate in �̇�𝑥 �̇�𝑦 �̇�𝑧 𝑥, 𝑦, 𝑧 �̇�𝑥𝑧

 plane.𝑥𝑧
The condition of incompressibility, i.e., , implies𝑡𝑟(∇𝑣) = 0
For uniaxial extension:

�̇�𝑥 = �̇�𝑦 =‒ �̇�𝑧/2 = �̇�                                            (𝑆9.1)

For simple shear:
�̇�𝑥𝑧 = �̇�                                                           (𝑆9.2)

Therefore, application of our simulation model to the above two types of deformations is 
accomplished by substituting the above expressions into Eqs. (4a) and (S7). Since for both cases, 
the deformation in the  direction is the same as in the  direction, Eq. (S7) can be rewritten in a 𝑦 𝑥
scalar form with only  and  components, i.e., 𝑥 𝑧

For uniaxial extension:

{ �̇� 𝑠
𝑧𝑧 = 2�̇�𝜎 𝑠

𝑧𝑧 ‒ (𝜎 𝑠
𝑧𝑧 ‒ 1)/𝜏𝑠

�̇� 𝑠
𝑥𝑥 =‒ �̇�𝜎 𝑠

𝑥𝑥 ‒ (𝜎 𝑠
𝑥𝑥 ‒ 1)/𝜏𝑠

�̇�𝑠 = 1 ‒ 𝜇(𝜏𝑠 ‒ 𝜏𝑠
0) 3|�̇�| �                                        (𝑆10.1)

For simple shear:

{ �̇� 𝑠
𝑥𝑧 = �̇�𝜎 𝑠

𝑥𝑥 ‒ 𝜎 𝑠
𝑥𝑧/𝜏𝑠

�̇� 𝑠
𝑥𝑥 = ‒ (𝜎 𝑠

𝑥𝑥 ‒ 1)/𝜏𝑠

�̇�𝑠 = 1 ‒ 𝜇(𝜏𝑠 ‒ 𝜏𝑠
0)|�̇�| �                                              (𝑆10.2)

Equations (S10) are now ready for numerical analysis if a constant deformation rate is imposed. 
For the imposition of a constant stress, a general force balance can be established as: 
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∇ ∙ (Σ + 2𝜂𝐷) = 0                                                (𝑆11.1)

For uniaxial extension:

   
Σ𝑒𝑥𝑡

𝑧 ≡ 𝐴/𝐴0(Σ𝑧𝑧 ‒ Σ𝑥𝑥 + 3𝜂�̇�)
Σ𝑒𝑥𝑡

𝑧 ≡ 𝑒 ‒ 𝜀(Σ𝑧𝑧 ‒ Σ𝑥𝑥 + 3𝜂�̇�)
                                   (𝑆11.2)

For simple shear:
∇𝑥𝑧 ∙ (Σ + 2𝜂𝐷) = 0

Σ𝑒𝑥𝑡
𝑥𝑧 ≡ Σ𝑥𝑧 + 𝜂�̇�                                            (𝑆11.3)

where  is a small artificial viscosity ( ), which is added to ease numerical 𝜂 = 0.33%𝐺𝑝𝜏𝑠
0

simulation, and results are insensitive to this small value as shown by Fig. S2.  is the overall Σ
stress with contributions from both polymeric (Eq. (S6)) and segmental parts. 

Fig. S2 Illustration of the insensitivity of simulation results to the value of  and simulation time 𝜂
step . The parameters are the standard values listed in Table I.∆𝑡
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